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Applications of square-integrable basis functions for scattering problems:
A comparison between approaches based on Toeplitz matrices

and negative imaginary potentials
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In this work are considered two quantum-mechanical approaches to treat a single-coordinate (Eckart-
type) potential scattering process. The one approach is based on the application of Toeplitz matrices
and the other on the application of negative imaginary (absorbing) potentials. It was found that for this

type of "reactive" process, the method based on the Toeplitz matrices performed better.

PACS number(s): 03.65.Nk

I. INTRODUCTION

The application of finite-range square-integrable (L }
functions has become, during the past few years, one of
the more popular ways to handle multiarrangement chan-
nel scattering problems [1-4]. These methods have their
origin in studies of the late 1960's and early 1970's [5].
Recently, several new approaches were introduced [6,7]
and in the present study we would like to concentrate on
the one that applies Toeplitz matrices [7] (TM). This ap-
proach is based on two ideas: (a} The equation to be con-
sidered is a perturbative-type equation [8] and (b} the un-
known function is expanded in terms of an infinite set of
localized basis functions (e.g., Gaussians). Such a set
leads to a potential matrix of infinite dimensions where
the "lower" infinite part takes the form of a Toeplitz ma-
trix. The relevant set of algebraic equations can be treat-
ed analytically and, once completed, the remaining finite
set of the algebraic equations is solved with ordinary
methods.

This approach was applied to a single-coordinate
elastic-scattering problem and was shown to lead to accu-
rate phase shifts [7(a)]. In this work we concentrate on
two aspects: (a) The previous elastic-scattering problem
is extended to a "reactive" model employing Eckart-type
potentials [9] defined along the infinite range
—00 ~s ~ 00 and (b) the calculations will be done twice,
once employing the Toeplitz approach (TA) and once em-

ploying negative imaginary potentials (NIP}. The results
obtained by the two approaches will be compared, fol-
lowed by a discussion of the advantages and disadvan-
tages of each.

II. THE MODEL

and is nonzero in the vicinity of s -0 (see Fig. 1).
To obtain %z, we employ a perturbative approach [8]

going through the following steps.
(a) We define two (nonreactive) unperturbed potentials

W (s) where for a=A, , we have

%0, s)0
Wz(s}= '

0, 0 (4a)
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termed the I(, arrangement channel (AC) and the negative
part as the v AC. The relevant Schrodinger equation
(SE) to be considered is

(E —H)III~ =0,
where 4& is the complete wave function calculated for an
asymptotic boundary condition at the A, AC and H, the
Hamiltonian, takes the form

2

+ U(s} .
2p ds

Here, U(s) is a potential defined in such a way that

0, s~~
limU(s)= '

const, s ~—00

In this work we study a single-coordinate(s) reactive
model where s is defined along the range —00 &s ~ Do.

In what follows, the positive part of the s axis will be -sl

"Toeplitz lines"

'Permanent address: Department of Physical Chemistry, Uni-
versity of Barcelona, Barcelona, Spain.

FIG. 1. The single-coordinate reaction system. The two
"Toeplitz lines" are border lines for the reagents (A,) region, for
the interaction (IN) region, and the products (v) region. Also
shown are the two NIP's: one in the A, region and the other in
the v region.
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and for a =v, the form

=0, s)0
WO, s&0 (4b) g„(s)= CX

exp — (s —s„)
20

(E Hp )0 p (s)=0, a=A, , v

where

1 d'
Hp = — + W (s), a=A, , v

2p ds

by some propagative method.
(c) We now write %i as

(5)

(6)

substituting this expression in Eq. (2), and employing Eq.
(5) for a =A, , we get the inhomogeneous equation for yi
[2(a)]:

(E H)ri.—= Vi. lpga. (8)

(d) Once yi is solved, the "reactive" S-matrix element

is obtained from the expression [2(b)]

and both potentials are relatively large in the vicinity of
s=0 so that W (s)&)E; a=A, v.

(b) We solve the following two unperturbed SE's:

1

, +Ei, 0
2p

(13')

where E„is the translational energy in the respective
asymptotic region.

Substituting Eq. (15) in Eq. (13') leads to the expression

n= —~, . . . , 0, . . . , &n . (15)

Here, [s„]is a set of equidistant grid points defined along
the range —oo ~s ~ ~, o. is the grid interval, and a is a
constant. This choice of functions and the fact that U(s)
is of a finite range (in both directions) lead to the follow-

ing analysis: We define two integers n, a=A, , v (n„is

negative) such that once s & s„ands &s„,U(s) is for all
V

practical purposes identically zero. In addition, Vi(s)
and V, (s) are identically zero once s )s and s & s re-

n& n v

spectively. In such a case, for n ))n& and n «n„the
inhomogeneous term Z„becomes zero [see Eq. (14)] and
if we consider the cases where also m ))n& or rn «n„
we obtain for 2„,the expression

S(v k)=i &P, ~ V„~(y +P )),
where

V, =U —W, . (10)

nm -- In —m
I

tj

where j=
~
n —m

~
and t is given in the form

(16)

To solve Eq. (8), yi is expanded in terms of a localized
basis set (e.g. , Gaussians):

a 1
E)r 1 J exp

2p 2 4
(17)

Xi. X~ 0 (s) .

Substituting Eq. (11) in Eq. (8), multiplying from the left

by g (s), and integrating over s lead to the following set
of algebraic equations:

In other words, for
~
n ~, m

~

)N, a = A, , v (where
))n ), all elements along a given diagonal are con-

stant and the rest depend only on their distance from the
main diagonal. Thus, A can be shown to have the fol-

lowing structure (the shaded area stands for nonzero nu-

merical values and the empty areas are, for all practical
purposes, zeros):

where

A „a„=Z,m= —~, . . . , oo (12) -Nv+L

-Nv

I I

and

~.„=&g. ~E H~g„&—
Z. =&(.~V, ~1(„).

(13)

(14)

-Nv

A(')

~~

A(I)
(18)

Here,

(10')

Equation (12) will be solved in two different ways: Once
applying the features of the Toeplitz matrix and once em-

ploying NIP's. In what follows we mainly concentrate on
the TA, whereas the approach based on NIP's will be
only briefly discussed.

A. The Toeplitz approach

To solve the infinite system of algebraic equations
given in Eq. (12), we choose [g„(s)]to be Gaussians of

NX-4,

The matrix A is made up of nine matrices A' ', A' ',
A' ', and A", i =1, . . . , 6. Here, A' ' is the central
(square) matrix responsible for most of the potential cou-

pling; its order is (Ni+N, ) X(Ni+N„) with elements

A „defined in Eq. (13). The matrices A' ' and A'"' are

rectangular matrices with the elements A „defined in

Eqs. (13'), (16), and (17). The matrices A"' and A' ' are
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rectangular matrices responsible for the coupling of A' '

and A' ', respectively, with A™,and the other remain-

tangular zero matrices. The matrices A' 'and A' 'with
the features just described are known as Toeplitz ma-
trices, the analytic properties of which are well defined.

To solve Eq. (12), we start by considering first its lower
part, namely, from row n ~ N&+1 and downwards, then
next its upper part, namely, from row n

' (N—,+ 1) and
upwards, and finally the central part, namely, all the rows
in the range —N„n"& N&. Recalling that for
n &N)„+I and for n'( (N„—+1) the inhomogeneous
term is Z„=O,we obtain for the lower and the upper
parts of Eq. (12), respectively, the following expressions:

An(„)+jan+j= g t„'+' a„+=0, n &N)„(19a)

L v
g (v)~ —n' —(n'+ j')~ —(n'+ j')

j=—L
V

Lv

t'"'(„.+ ')a („.+j.)
=0, n'&N„(19b}

J'= —
LV

where I.& and I.„arethe number of nonzero o8'-diagonal
terms in the lower and the upper part of A, respectively.
Since the elements of A' ', a=A, , v, don't depend on n

and since A is symmetric, Eqs. (19}become

which implies

P =exp(i8 ), a=A, , v

(22)

(23)

where H„a=A, , v, is real.
Substituting Eqs. (21a) and (21b) in Eqs. (20a) and (20b)

yields the equations for P, a= A, ,v:

(24)

Equations (24) stand for two polynomials, one for Pz and
the other for P„.In what follows they will be termed the
Toeplitz polynomials (TP). Once the roots of the two po-
lynomials in Eqs. (24} are obtained, the algebraic equa-
tions for the (N) +N„+1)components of a'

(M) ( N''' u ——1 uo ~) ''' N
V A.

are given in the form (see definition of A in Eq. (18):

A(4)a(v)+ A' 'a'~'+ A'"a'~'=Z,

where

(25)

where P and a=j(,, v are constants to be determined.
However, in order for the solution not to be increasing or
decreasing in the two asymptotes, the absolute values of
P, a =A, , v, must be equal to 1. Thus,

tp )a„+g t' )(a„j+a„+j)=0,n &N)„
j=1

(20a)

Z (Z N » Z 1&ZP&Z)» ZN )
V

(v) —p (N+L )
—''' (N+1)}—

V V V

(27)

(28a)

Lv
tp(")a „.+ g t'''(a („')+a(„.+') =0, n'&N„.

j'=1

(20b)

(A, ) ((aN +1»' ' ' ~N +L
V &}(.

From Eqs. (21}we have

u (N„+j) +v —N„—
(28b)

(29a)

and

~n+ j
n &Nqa„ (21a)

From Eq. (19) it can be seen that t' ' and t''' differ from
each other only due to E„,which may be di6'erent in the
two asymptotic regions.

Each set in Eq. (20) stands for an independent system
of homogeneous equations for the (2L + 1),
a = j(,, v unknowns a'"' and a'" ' [here, a'"' stands
for a'"'=—(a„L,. . . , a„+L) and a'" ' for a'" '

—=(a„.L, . . . ,a„,+L)]. Equation (20a) is formed at the
grid point s„andEq. (20b) at grid point s„.Similar equa-
tions can be formed at grid points s and s, respective-
ly, for the similar unknowns a' ' and a' '. However,
since the respective coefficients are identical, the equa-
tions at s„and s (as well as those at s„and s ) must
have the same solutions (up to a constant), and, conse-
quently, a sufficient and necessary condition to obtain a
valid solution at all grid points is that

and

uN) +j AuN~ (29b)

N~

A„a =Z„, n = N„,. . . , N), —
m= —N

V

where

(30)

L

~n (N„+j)Iv&—
j=1

—N &n &N&, m= —N

N &n &Nz,

X ~n —(N~+ jA&
j=1

—N &n &N&, m=N~ .

(31)

Substituting Eqs. (29) in Eq. (26) yields the following sys-
tem of equations:

Q =PJ, n'&N
& —n

(21b) To complete the derivation, we still have to extract the
relevant roots of the two TP's given in Eq. (24). This was
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done in our previous publication [7(a)], namely,

P =expi(k cr), a=A, , v

where

k =(2pE,',"')', a=A, v .

in applying the NIP's is the need to assume a relatively
wide range As ( —1 A) along which the NIP has to be
defined so that it properly absorbs the encountered flux,

As mentioned earlier, the numerical study is carried
out for an Eckart potential [9]:

Here, E,'„'is the translational energy in the o. asymptotic
region. In the Appendix we show that this behavior is
also related to the expansion of exp(iks ) in terms of local-
ized Gaussians.

where

y =exp(2ms/i) . (39)

B. The NIP approach The reactive (transmission) probability is given in the
form [9]

Since this approach has been frequently discussed, we
will just refer to it briefly.

To solve Eq. (12), a NIP of the following form is con-
sidered:

S Sg
i V—oi, si s (sz+ As' )

As&

where

cosh[2'(a —P) ]+I
cosh[2'. (a+P) ]+I

S +S~
iVo,

As
—(s„+As ) ~s ~ —s,, (42a)

0 otherwise .

and

Vi (s) =0 for s ~si (35a)

The values of s, + =A, , v, are determined in such a way
that

' I/2
1 E —3
2 C

h-'C=—
8ml

I =cosh(2n. 6)

(42b)

(42c)

(42cl)

V, (s)=0 for s ~ —s„,
and the values of hs and Vo, a=A, v, can be estimated
from the two inequalities [10(a)]

where

1 8 —C5=—
2 C

' j/2

(42e)

E(a)

bs Sp

Next, VI(s) is added to H to form HI:

(36) In the present application we assumed

3 =0, 8=1.5 eV, l=1 A

HI =H+ VI(s),

and, consequently, Eq. (12) is modified to become

(37)

(12')

(13')

The system of equations given in Eq. (12 ) is finite be-
cause the range for which g&%0 is limited, i.e.,

-(s +As„)~s~(s„+As&).

III. THE NUMERICAL STUDY

The aim of the numerical study is not only to show
that the application of the TA is capable of yielding for-
mally accurate results but also to probe its eSciency as
compared with the NIP approach. The main drawback

Reactive probabilities, calculated from Eqs. (40) and
(41), as a function of energy are given in Table I (and
Table II). In Table I we also present reactive probabili-
ties employing the TM and the NIP approaches. These
calculations are carried out for s i ( = —s, ) =3.0 A, for
fixed values of o (=0.1 A) and a (=1.2) [in all calcula-
tions the number of Gaussians per angstrom was taken to
be equal to 11 but for a varying number of Gaussians
beyond sz and (

—s,, )]. This number for the NIP case is
proportional to As and the larger this number is, the
larger the As 's, a=A, v, are. In the case of the TA, the
number of Gaussians is equal to I.& (and I.„)and there-
fore is a measure for the convergence of the series given
in Eqs. (19)].

In Table I we present reactive probabilities as a func-
tion of energy calculated in three diferent ways: (a) Em-
ploying the i&IP approach, (b) employing the TA ap-
proach, and (c) employing the analytical expression [Eqs.
(40) and (41)]. The calculations for the NIP case were
carried out twice: once for V=0.5 eV and once for
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TABLE I. Reactive transition probabilities as calculated for Eckart potential. Analytic results and those obtained applying Toe-
plitz matrices and negative imaginary potentials are compared. The numerical calculations were done with 11 Gaussians per A.

0
Higher accuracies can be obtained by increasing the density of the Gaussians. All calculations were done for sq = —s„=3A. The
numbers in brackets denote multiplicative powers of ten.

Method
E (eV)

No. of additional Gaussians 0.30 0.32 0.34 0.36 0.37 0.38 0.39 0.40 0.41 0.42

NIP
ID=0 5 eV

6
11
22

0.194[—3] 0.232[—2] 0.0249 0.132 0.341 0.787 0.988 0.929 0.874 0.879
0.208[—3] 0.227[—2] 0.0229 0.157 0.367 0.687 0.889 0.942 0.947 0.950
0.210[—3] 0.226[—2] 0.0224 0.165 0.375 0.664 0.863 0.939 0.961 0.971

NIP
V10=0.3 eV

6
11
22

0.182[—3] 0.235[—2] 0.0250 0.127 0.273 0.827 1.180 0.974 0.788 0.750
0.208[—3] 0.227[—2] 0.0227 0.160 0.375 0.685 0.864 0.922 0.952 0.980
0.211[—3] 0.296[—2] 0.0226 0.168 0.378 0.656 0.853 0.938 0.967 0.979

Toeplitz 0.247[—3] 0.228[—2] 0.0298 0.0836 0.478 1.410 1.100 0.681 0.589 0.692
0.209[—3] 0.224[—2] 0.0219 0.172 0.377 0.633 0.835 0.940 0.979 0.987
0.209[—3] 0.224[—2] 0.0219 0.171 0.376 0.637 0.839 0.940 0.976 0.983

Analytic 0.212[—3] 0.226[—2] 0.0220 0.172 0.383 0.645 0.840 0.938 0.977 0.992

P (s )=exp[iok(s )], (32')

V=0.3 eV.
The analytic results are considered to be the accurate

probabilities. From the Table it is easily seen that the
NIP approach requires many more additional Gaussians
to attain the same accuracy that is achieved by the TA
approach. This seems to hint at the fact that in heavy
close-coupling calculations the application of TM's could
lead to a reduced numerical effort. Still, this outcome has
to be carefully probed in relevant cases.

Another subject that was considered is the effect of
varying sz and s„onthe accuracy of the results. This
study was carried out with respect to the TA only, but
two aspects were checked, both of which are related to
the expression of P given in Eq. (32). In Eq. (32), P is
defined in terms of k which is assumed to be the asymp-
totic value (and therefore independent of s). Since our
aim is to make s, a =A, , v, as small as possible (and to do
that without significantly aff'ecting the final outcomes),
both k and P may become s dependent, namely,

Consequently, in forming the (P )J, a=A, , v, required for
constructing the A matrix [see Eq. (29)], we can use one
of two possibilities:

(a) The ordinary choice, namely,

P(s )=exp[(ijok(s )] . (32")

(b) The other possibility, which is to replace (P )J by
P'~), namely,

j—1

P~~'(s )=exp io g kI '

1=0
a=A, ,v (43)

(j)

P"'(s, )=exp i J „,k(s)ds
(0] (45)

where

kI' '=k[k(~s ~+lo)], a=A, ,v.
The plus and minus signs are for a =A, and a =v, respec-
tively. This choice leads, in fact, to the JWKB approxi-
mation [11],i.e.,

where

k (s )=+2(M[E—U(s )] . (33')

Reactive probabilities employing the TA as a function of
energy for various values of s„and sz are presented in
Table II where they are compared, again, with exact re-

TABLE II. Reactive transition probabilities as calculated employing the Toeplitz approach. Analytic results and those obtained
with fixed k values [Eq. (32") and varying k values [Eqs. (43) and (44)] are compared.

E (eV)
Type of k sz (A) s„(A) 0.30 0.32 0.34 0.36 0.37 0.38 0.39 0.40 0.41 0.42

Fixed +3.0
+3.0
+2.0

—2.0
—1.0
—1.0

0.194[—3] 0.220[—2] 0.0221 0.165 0.362 0.604 0.780 0.873 0.925 0.960
0.248[—3] 0.222[—2] 0.0190 0.157 0.355 0.582 0.724 0.799 0.833 0.858
0.258[—3] 0.243[—2] 0.0198 0.146 0.330 0.556 0.708 0.796 0.843 0.876

Varying +3.0
+3.0
+2.0

—2.0
—1.0
—1.0

0.192[—3] 0.219[—2] 0.0221 0.169 0.363 0.593 0.766 0.864 0.921 0.961
0.236[—3] 0.254[—2] 0.0234 0.163 0.340 0.555 0.701 0.766 0.779 0.788
0.230[—3] 0.260[—2] 0.0243 0.166 0.341 0.550 0.698 0.776 0.801 0.812

Analytic 0.212[—3] 0.226[—2] 0.0220 0.172 0.383 0.645 0.840 0.938 0.977 0.992
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suits due to Eqs. (40) and (41). Two types of results are
shown, namely, those obtained with fixed values of k ap-
plying Eq. (32") and those obtained with varying values
of k employing Eqs. (43) and (44). It is seen, in general,
that as the values of ~s

~
decrease, the results become

worse. The reason is related to the fact that as ~s ~

de-

creases, the potential becomes less different from zero
and, consequently, the matrices A' ', a=A, , v, are no
longer pure Toeplitz matrices. However, the two types of
calculations, namely, those with fixed k values and those
with varying ones, yield different types of results. It is
easily seen that the fixed k probabilities are, in most
cases, in better agreement with the analytic ones.

where B (k) is given by
' 1/2

B(k}
2I 2

exp 2' (A3)

A—= g exp
m, n

—a (m n—)
exp(if m )a„

=B(k) g exp[i(ka +f )m ]

and does not depend on either m or n. Multiplying both
sides of Eq. (A2) by exp(ifm) and summing over m, one
obtains

IV. CONCLUSIONS

=2mB(k) g 5(kcr+f 2rrm )—, (A4)

In this work we compare the efficiencies of two ap-
proaches to yield quantum mechanical (reactive) transi-
tion probabilities for a single-coordinate reactive
(Eckart-} type potential: one based on the application of
TM's and the other based on the application of NIP's. It
was found that, at least for this type of system, the TM
approach is more efficient. This may hint at the possibili-
ty of replacing, in heavy multiarrangement-channel cal-
culations, the NIP approach by the TM approach. How-
ever, the present indication is by far not enough. The
main achievement in applying the NIP's was in creating
the decoupling of a given arrangement channel from all
the rest. Therefore, the crucial question is whether the
TM's can create a similar decoupling. This subject is
now being studied in our group and we hope to be able to
report on our findings in the near future.
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APPENDIX

where, so far, f is an undefined variable. Changing, on
the left-hand summation, the summation indices to be n

and l =m —n, we have

A= +exp
—al2 2

4
eifi y einfa

n

n

(A5)

The expression in the curly brackets (which is a func-
tion of f only) will be termed 3 (f), while the sum is the
Fourier representation of a function 8(f). From Eqs.
(A4) and (A5), one obtains that

&(f)=2m A '(f)B(k) g 5(ko+f 2am ), —(A6)

and, consequently, the coefficients a„are given in the
form

a„= e 'I"a

=B(k)g I A '(f)5(kcr+f 2~m)e ' "df—.
m

(A7)

For each fixed m, the integral over the 5 function van-
ishes unless

In this appendix we wish to show that the periodic
behavior of the Gaussian coefficients in the asymptotic
regime, namely, a„=C exp(icrkn ), can be obtained from
the free wave solution of the original Schrodinger equa-
tion, i.e., g( r) =C exp(ikr ).

Consider an expansion of the free wave in terms of
Gaussians:

exp(ikr)=g a„g„, (A 1)

where g„were defined in Eq. (15). Multiplying both sides

by g and integrating over r yield the following set of
equations:

—~(f0=2~m —kcr (~,
—ifOn

in which case it has the value A '(fo)e ' . Since the
difference between each fo to the following one (corre-
sponding to higher rn) is equal to the integration interval
length, i.e., 2m, exactly one element of the sum over m

does not vanish, namely, where f0
= kcr(mod2n—).

However, since the exponent e '~" is periodic with 2m

period and, according to the definition of 3 (f} [see Eq.
(A5)], so is A '(f), it follows that

a„=B(k)A '( kcr )exp(i—ko n ) =C(k)exp(ikcrn ) .

(A8)

g exp
—a (m n)—

a„=B(k)exp(ikom ), (A2)

Thus, the Gaussian coefficients obtained from the exact
expansion of the free wave coincide with those obtained
from the Toeplitz method.
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