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The method described in the preceding paper for the solution of two-electron atoms, which was
used to calculate the 1'S and 23S states of helium and heliumlike atoms within the fixed-nucleus
approximation, has been applied to the case where all three particles are in relative motion. The
solutions in the present case automatically include the effects of the mass-polarization term and are
compared with the results obtained for the term by using first-order perturbation theory with the
fixed-nucleus wave functions. The input data for a particular atom consist of the atomic number, as
before, but now the corresponding mass of the nucleus must be given also. Nonrelativistic energies
with the nuclear mass included in the calculation have been obtained for the 1'S and 23S states
for Z ranging from 1 to 10. The energy with the nucleus in motion can be expressed only to eight
significant figures (SF’s) given the accuracy with which the relevant physical constants are known at
present. All the results given here are computed as if these constants were known to ten SF’s so that
errors are not incurred due to rounding. Convergence of the energies to ten SF’s for both the singlet
and triplet state was reached with a matrix of size 444 for Z values from 2 to 10. Convergence for
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the H™ ion was a little slower.

PACS number(s): 31.20.Di, 31.10.4z, 31.15.4+q, 31.90.+s

I. INTRODUCTION

Recently in [1] (this paper will be referred to as I from
now on) the authors showed how the body-fixed two-
electron Schrodinger equation in generalized perimetric
coordinates could be obtained from the laboratory-fixed
form of the Schrédinger equation describing a system of
three particles. They solved the infinite-nuclear-mass
problem in which one of the particles (the heavy nucleus)
was considered to be fixed in space and so ms — oco. This
simplifies the problem as some of the reduced masses are
eliminated. It also makes the only unknown mass in the
problem that of the electron. This means that it is pos-
sible to work in atomic units (in which the mass of the
electron is taken as unity) and to express all the calcu-
lated quantities in these units. The precision of these
calculated quantities is limited only by the precision of
the computational process. The calculated results may
then be turned into a form suitable for comparison with
experiment by multiplying with an appropriate factor de-
termined in terms of the currently best available physical
constant values. The precision of the final results is then
limited by the precision with which the constants can
be measured, assuming that the computations have been
carried out to arbitrary precision.

However, from the form of the body-fixed Hamiltonian
given in I, it is clear that there are few extra difficulties
in computing the full problem without fixing the nucleus
and indeed, only a small amount of extra computer CPU
time is needed beyond that for fixed-nucleus calculations.
But the problem of precision becomes more vexed. It is
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seen from the Hamiltonian form that there is no way of
factoring the nuclear masses out of the problem and that
the results of a calculation do not scale in any easy way
with changes in nuclear mass. It is thus not possible to
do each calculation in a set of “atomic units” and to de-
termine the units for comparison with experiment only
at the end of the calculation. It is necessary to include
the nuclear mass from the beginning in each calculation
and that is known only to a particular precision. Any
redetermination of its value or change in the precision
with which it is known means that the whole calculation
must be repeated with the new value and/or to the new
precision. The results of such calculations are, therefore,
provisional on the values of the physical constants in a
rather more intimate way than are the results of clamped
nucleus calculations. However, using a computer algebra
system (MAPLE) produces expressions for the matrix ele-
ments in which both the nuclear charge and the nuclear
mass are retained as symbols and so are not dependent on
their numeric value. Therefore only the program which
resolves the symbols into their numeric values need be
rerun when data to greater precision become available.
Frost et al. [2] were the first to demonstrate how mass
effects can be included automatically in the Hamiltonian
for a two-electron ion. They generalized the series solu-
tion of Pekeris [3] and expanded their wave function in a
power series. They then used similarity transformations
to take their power series basis into a Laguerre basis so
as to obtain symmetric matrices. They used the H™ ion
as their subject and showed that for a 50 x 50 matrix
the energy difference due to nuclear mass agreed closely
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with the value obtained by perturbation theory from the
Pekeris fixed-nucleus calculation.

A more recent study of the effects of the nucleus in
motion was by Haftel and Mandelzweig [4] who used hy-
perspherical coordinates separating off the center-of-mass
motion. They carried out precise nonvariational calcula-
tions of the ground state and 215 state of helium within
the infinite-nuclear-mass approximation and in the case
of the ground state, with finite nuclear mass too.

Drake [5,6] performed high precision variational calcu-
lations on the helium atom and the hydride ion within the
fixed-nucleus approximation and was the first to point
out the necessity of including mass polarization beyond
first-order perturbation theory. Baker et al., p. 123 [7],
and Drake, p. 146 [7], both present results for the he-
lium atom to a precision of better than 10~*cm™!, and
conclude that at that level of accuracy, it is essential
to include the mass-polarization correction in first- and
second-order perturbation theory and say that the eas-
iest way to do this is to include the mass-polarization
operator in the unperturbed Hamiltonian.

In this work we shall calculate mass-polarization effects
to a precision determined only by a knowledge of the
physical constants for all the two-electron ions for Z from
1 to 10 in their ground state and for Z from 2 to 10 in
their first excited triplet state.

II. METHOD OF SOLUTION

The kinetic energy operator in generalized perimetric
coordinates introduced in I is used. For the case of three
particles in motion the reduced masses become

1 _ 1 1 1 _ 1 1
H1 m;  mgz’ K2 my M3’
1 1 1 1 1
=, — = (1)
K3 my maz M2 mg
1 1 1 1
H13 ml’ H23 mz.

Working in atomic units m; = my = 1 are the electronic
masses, and m3z = M, the mass of the nucleus. Using
exactly the same approach as in I, the relation

E=—-Ké, (2)

where K is a nonlinear variation parameter, is used to
remove the electronic energy E. Pekeris’s [3] forms of
the perimetric coordinates which are appropriate for an
atom are defined as

u=¢€(reg+713—71), v=-¢€(ry +7r3 —T2),

(3)

w = 2¢(ry + 12 —T3),

and are related to those of the kinetic energy (KE) oper-
ator Eq. (23) in I by

21:3, zzzg, and 23=£. (4)
€ € 2e

The wave function takes the form
U = (IO Py g W), (5)

which is in principle an exact form as the exponential
term contains the correct asymptotic behavior of the so-
lution of the Schrédinger equation. Using the KE oper-
ator Eq. (23) in I, the reduced masses of Eq. (1) for the
case of finite nuclear mass, and scaling the perimetrics as
in Eq. (4) above, the Schrédinger equation (H—E)¥ =0
becomes (after dividing out the asymptotic factor and
multiplying by the Jacobian, then dividing by ¢)

Q+(P+P/M+ KS)e=0. (6)

Here,

P=4uv(u+v+w)(Fuu — Fy + Fyp — Fy) + 2uw(2u + w) (Fyu — Foy + 2F 0 — 2Fy0)
+20w(20 + W) (Fyy — Fu + 2F o — 2Fy0) — 4(v? — v?)(Fy, — F,) + 2(2u + w)(2v + w)(F, + F, — 2F,)
+4(u+v)(u+v+w)(2Fy — F) + (1/2)(u + v)(2u + w)(2v + w) F,

P =4uv(u+ v)(Fuu + Fuov — 2Fu)w(u + v)(2u + 2v + w) (4Fyy — 4F, + F)
+4(v? —u?)(F, — F,) + 4(u +v)(u + v + w)(2F, — F),

Q=4Z(u+v)(u+v+w)F — (2u + w)(2v + w)F,
S=—(1/2)(u+v)(2u + w)(2v + w)F,

where Z is the nuclear charge, M is the mass of the nu-
cleus, and the subscripts designate partial derivatives.
The quantities P and P’ arise from the Laplacians, Q
from the Coulomb terms, and S from the energy term.
It is seen that in Eq. (6) the inverse nuclear mass plays
the role of a nonlinear scaling parameter. This obser-
vation exemplifies the comments made above about the
dependence of the results upon precise values for M.
Just as in I, Eq. (6) is solved by expanding F' as

F= 3" A(l,m,n)Li(u)Lm(v)Ln(w), (7)

I,m,n=0

where L,(z) denotes the normalized Laguerre polynomial
of order p. The Laguerre recursion relations [see I, Eq.
(36)] are used to eliminate all the derivatives and powers
of the variables (u,v,w). This leads, just as in I, to a 57-
term recursion relation between the coefficients A(l, m,n)
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in the expansion of the form

+2
Y. Capallmm)Al+am+Bnty)=0. (8)

a,By=-2

The 57 coefficients in this recursion relation are given in
Table I of I for a general case where Z, K, and M are
arbitrary.

From this recursion relation a numbering scheme
(I, Eq. (42) for singlet states and I, Eq. (43) for triplet
states] is used to collapse each triple of indices (I,m,n)
to a single index and using the method described in I the
infinite secular problem Eq. (8) can be put in the form
of a generalized eigenvalue problem

Z(Fik —€Gix)Br =0,
%

(9)

and solved in truncated form of increasing size.

Computational details

The MAPLE computer programs and the C programs
written for the fixed-nucleus calculation are readily ex-
tended to perform the present calculations. The MAPLE
program produces expressions for the matrix elements in
which both the nuclear charge and the nuclear mass are
retained as symbols. A C program then resolves the sym-
bols into their numeric values on a case-by-case basis. As
long as there is sufficient storage for the symbolic forms,
this strategy is very efficient.

Table I contains the isotope (the most abundant in
each case), and atomic mass, in atomic mass units (amu)
and atomic units (a.u.). Z is the atomic number (number
of protons) of the nuclide and A is the mass number of
the nuclide. The final column contains the mass of the
nucleus of the nuclide which is the value used in the work
to follow.

The atomic mass is given in unified atomic mass units,
My = mq(12C)/12. The data were extracted from Wap-
stra and Audi [8] and are as used in [9], pp. 90 and
91. The value of the unified atomic mass constant m,,
is taken to be 1.6605402(10) x 10~27 kg and the mass of
an electron m, to be 9.1093897(54) x 10~3! kg, where
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the one-standard-deviation uncertainty in the least sig-
nificant digits is given in parentheses ([9], p. 81 or [10]).
To convert atomic mass units to atomic units the follow-
ing relationship is used:

(M (aw)] = [M (amu)] .

mMe

Since m, and m, are known only to eight significant
figures (SF) at the present time (1988 [10]), the best non-
relativistic energy with the nucleus in motion one can
obtain is to eight SF’s. In Table I the masses (in a.u.)
are given ten figures and all the data used in these calcu-
lations will be used as if it had ten SF’s so that rounding
errors are minimized.

III. RESULTS AND DISCUSSION

The scale parameter K was varied to minimize the
energy at each order of matrix size, and is shown in row 1
of Table II for the singlet and Table III for the triplet.
It was found that K had a dramatic effect on the rate of
convergence as found in I for the fixed-nucleus calculation
and reached the converged energy (to ten SF’s) several
iterations before the unscaled energy, equivalent to K =
1, did.

For the higher-order matrices the scale parameter K
that appeared to minimize the energy was not unique. If
K was plotted against the energy, rather than a distinct
minimum appearing, the graph would have the form of
a flat basin. Therefore, in the tables, if the K value is
marked by an asterisk this indicates that a range of val-
ues about that value would give that result. For example,
the minimizing energy for Z = 2 and n = 252 was ob-
tained with K = 1.7, 1.8, and 1.9. However, in the case
where the unscaled (K = 1) energy gave the minimized
result, this is the value shown. The reason for this is that,
in the limit, the minimized energy should be obtainable
without a scale parameter, and this is an indication that
the minimized energy has been reached.

The H™ ion (Z = 1) does not appear in Table III as
it only has one bound state, which is the singlet state.
This was proved rigorously by Nyden Hill within the fixed
(infinite-mass) approximation [11] and for the case where
the nuclear mass is finite [12].

TABLE 1. Atomic data for Z from 1 to 10.

Z Symbol A Mass of atom Mass of atom Mass of nucleus
(amu) (a.u.) (a.u.)
1 H 1 1.007 825 035 1837.152696 1836.152696
2 He 4 4.002 603 24 7296.299537 7294.299537
3 Li 7 7.016 003 0 12789.39139 12786.39139
4 Be 9 9.012 182 2 16428.20356 16424.20356
5 B 11 11.009 305 4 20068.73654 20063.73654
6 C 12 12 (by definition) 21874.66236 21868.66236
7 N 14 14.003 074 002 25526.04298 25519.04298
8 o 16 15.994 914 63 29156.94642 29148.94642
9 F 19 18.998 403 22 34631.97132 34622.97132
10 Ne 20 19.992 435 6 36443.98154 36433.98154
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TABLE IV. Energies (in hartrees) of the unscaled 1'S state of the helium atom. w is the order
of the polynomial and n the order of the corresponding determinant.

w n Fixed nucleus, Nucleus in motion, 10°AE 10*(Mass correction)
—Ep —Em

10 161 2.903724111 2.903304291 4.19820 4.1982576

12 252 2.903724290 2.903304470 4.19820 4.1982565

15 444 2.903724356 2.903304536 4.19820 4.1982563

18 715 2.903724370 2.903304550 4.19820 4.1982563

21 1078 2.903724375 2.903304555 4.19820 4.1982563

where M is the mass of the nucleus. Because the theory
of the hydrogen atom is so complete and because such
accurate experiments can be performed to determine its
spectrum (see, for example, [13]) the quantity R, can be
determined as a primary constant and is usually quoted
directly in cm™1.

As the most accurate calculations of these mass cor-
rections by Pekeris were carried out on the helium atom,
this is a good subject of comparison.

For the purpose of comparison, it is necessary to estab-
lish the value Pekeris used for the mass of the helium nu-
cleus and the Rydberg constant for infinite nuclear mass
and, unfortunately, neither are quoted in his papers. The
reference he gives is [14], and within this reference R
is quoted as 109 737.309 £+ 0.012cm™! so this is the value
used here for comparison purposes.

The total mass correction appearing in the last col-
umn of Table IV is calculated from the Rydberg constant
Rjps, and the so-called mass-polarization correction €y,
defined in Pekeris’ papers. The figures in the preceding
column are found as the difference between the fixed-
and moving-nucleus Pekeris-type (K=1) calculations. It
is seen that the entries in the two columns agree pretty
well and, interestingly enough, that the entries in the dif-
ference column are constant and independent of basis set
size to this degree of accuracy.

Table V contains the energies of the 1S states and
Table VI those of the 23S states of the relevant two-
electron ions. The tables also contain the ionization en-
ergies (IE) which are given using the most up-to-date
value that we could find of the Rydberg constant for in-

finite nuclear mass [13], 109 737.315 683 0(31) cm ™! with
an uncertainty of 2.9 x 107! (one standard deviation).
The results for this work are calculated using

M
Eg=(2E- ——2?) R
1B (2 M ) ; (12)
where E = —Ke2, the energy for the two electron sys-

tem in hartrees and the second term in the parentheses
is twice the energy for the one electron hydrogenic ion
with a moving nucleus, in the same units. By combin-
ing the results of Pekeris’s Table V and VI of the first
paper [3] and using the new R, value and exact nuclear
masses to calculate Rps, the figures in the last column
of Table V were obtained. This comparison is crude as,
apart from helium, Pekeris calculated his energies using
a matrix of dimension only 203 and then extrapolated.
However, in the case of helium the result of his very ac-
curate calculation with a matrix of dimension 1078 was
used.

For the triplet problem, Pekeris calculated only the
triplet state of helium. He obtained a nonrelativistic IE
for triplet helium of 38 452.907 64 cm ™~ as compared with
the value calculated in this work of 38452.90796 cm™!
which again is in very good agreement. The results for
the triplet states of the helium isoelectronic sequence are
given in Table VI.

Note added in proof. Drake [7] has pointed out that
for the helium atom it is possible to achieve an accuracy
of 12 SF’s by using the ratio of the electron mass to the

TABLE V. Values for the 1'S states of the nonrelativistic energy with the nucleus fixed and with the nucleus in motion.
The mass effects AE and the theoretical value of the ionization energy (IE) using the energy obtained from the nucleus in
motion calculation and the results Pekeris obtained for his nonrelativistic IE.

Mass effects Nonrelativistic IE Pekeris’s IE

AE = Er — Eym

(cm~")

(em™%)

7 Ry Nucleus fixed, Nucleus in motion,
(cm™1) Er (a.u.) Eum (a.u.)
1 109677.5834 0.5277510164 0.5274458809
2 109722.2735 2.903724377 2.903304558
3 109728.7340 7.279913413 7.279321520
4 109730.6347 13.65556624 13.65470927
5 109731.8465 22.03097158 22.02984605
6 109732.2979 32.40624660 32.40473349
7 109733.0156 44.78144515 44.77965835
8 109733.5511 59.15659512 59.15453312
9 109734.1463 75.563171236 75.52949958

—
[=]

109734.3038

93.90680651

93.90419575

0.0003051355
0.000419819
0.000591893

6083.406871

198312.6037
610067.8012

6083.389355
198312.6007
610067.7929

0.00085697 1241172.129 1241172.117
0.00112553 2091696.178 2091696.168
0.00151311 3161654.213 3161654.200
0.00178680 4451081.243 4451081.231
0.00206200 5959972.080 5959972.075
0.00221278 7688343.229 7688343.220
0.00261076 9636158.364 9636158.356
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TABLE VI. Values for the 23S states of the nonrelativistic energy with the nucleus fixed and
with the nucleus in motion. The mass effects AE and the theoretical value of the ionization energy.

Z Nucleus fixed, Nucleus in motion, Mass effects Nonrelativistic IE
Er (a.u.) En (a.u.) AE =Er — Epm (cm™1)
2 2.175229378 2.174930191 0.000299187 38452.90796
3 5.110727373 5.110326331 0.000401042 134028.3816
4 9.297166590 9.296598849 0.000567741 284677.4509
5 14.73389735 14.73316110 0.00073625 490258.9383
6 21.42075590 21.41977416 0.00098174 750734.3135
7 29.35768174 29.35652899 0.00115275 1066095.612
8 38.54464732 38.54332259 0.00132473 1436334.246
9 48.98163833 48.98022128 0.00141705 1861450.161
10 60.66864658 60.66697891 0.00166767 2341432.451

a-particle mass, which is known much more accurately
than m, and m..
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