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Some calculations on the ground and lowest-triplet state of the
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The method described in the preceding paper for the solution of two-electron atoms, which was
used to calculate the 1 S and 2 S states of helium and heliumlike atoms within the 6xed-nucleus
approximation, has been applied to the case where all three particles are in relative motion. The
solutions in the present case automatically include the efFects of the mass-polarization term and are
compared with the results obtained for the term by using 6rst-order perturbation theory with the
6xed-nucleus wave functions. The input data for a particular atom consist of the atomic number, as
before, but now the corresponding mass of the nucleus must be given also. Nonrelativistic energies
with the nuclear mass included in the calculation have been obtained for the 1 S and 2 S states
for Z ranging from 1 to 10. The energy with the nucleus in motion can be expressed only to eight
significant figures (SF's) given the accuracy with which the relevant physical constants are known at
present. All the results given here are computed as if these constants were known to ten SF's so that
errors are not incurred due to rounding. Convergence of the energies to ten SF's for both the singlet
and triplet state was reached with a matrix of size 444 for Z values from 2 to 10. Convergence for
the H ion was a little slower.

PACS number(s): 31.20.Di, 31.10.+z, 31.15.+q, 31.90.+s

I. INTRODUCTION

Recently in [1] (this paper will be referred to as I from
now on) the authors showed how the body-fixed two-
electron Schrodinger equation in generalized perimetric
coordinates could be obtained &om the laboratory-fixed
form of the Schrodinger equation describing a system of
three particles. They solved the infinite-nuclear-mass
problein in which one of the particles (the heavy nucleus)
was considered to be fixed in space and so m3 -+ oo. This
simplifies the problem as some of the reduced masses are
eliminated. It also makes the only unknown mass in the
problem that of the electron. This means that it is pos-
sible to work in atomic units (in which the mass of the
electron is taken as unity) and to express all the calcu-
lated quantities in these units. The precision of these
calculated quantities is limited only by the precision of
the computational process. The calculated results may
then be turned into a form suitable for comparison with
experiment by multiplying with an appropriate factor de-
termined in terms of the currently best available physical
constant values. The precision of the final results is then
limited by the precision with which the constants can
be measured, assuming that the computations have been
carried out to arbitrary precision.

However, &om the form of the body-axed Hamiltonian
given in I, it is clear that there are few extra difficulties
in computing the full problem without fixing the nucleus
and indeed, only a small amount of extra computer CPU
time is needed beyond that for fixed-nucleus calculations.
But the problem of precision becomes more vexed. It is

seen &om the Hamiltonian form that there is no way of
factoring the nuclear masses out of the problem and that
the results of a calculation do not scale in any easy way
with changes in nuclear mass. It is thus not possible to
do each calculation in a set of "atomic units" and to de-
termine the units for comparison with experiment only
at the end of the calculation. It is necessary to include
the nuclear mass &om the beginning in each calculation
and that is known only to a particular precision. Any
redetermination of its value or change in the precision
with which it is known means that the whole calculation
must be repeated with the new value and/or to the new
precision. The results of such calculations are, therefore,
provisional on the values of the physical constants in a
rather more intimate way than are the results of clamped
nucleus calculations. However, using a computer algebra
system (MAPLE) produces expressions for the matrix ele-
ments in which both the nuclear charge and the nuclear
mass are retained as symbols and so are not dependent on
their numeric value. Therefore only the program which
resolves the symbols into their numeric values need be
rerun when data to greater precision become available.

Frost et al. [2] were the first to deinonstrate how mass
effects can be included automatically in the Hamiltonian.
for a two-electron ion. They generalized the series solu-
tion of Pekeris [3] and expanded their wave function in a
power series. They then used similarity transformations
to take their power series basis into a Laguerre basis so
as to obtain symmetric matrices. They used the H ion
as their subject and showed that for a 50 x 50 matrix
the energy de'erence due to nuclear mass agreed closely
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with the value obtained by perturbation theory from the
Pekeris fixed-nucleus calculation.

A more recent study of the effects of the nucleus in
motion was by Haftel and Mandelzweig [4] who used hy-
perspherical coordinates separating oK the center-of-mass
motion. They carried out precise nonvariational calcula-
tions of the ground state and 2 S state of helium within
the infinite-nuclear-mass approximation and in the case
of the ground state, with finite nuclear mass too.

Drake [5,6] performed high precision variational calcu-
lations on the helium atom and the hydride ion within the
fixed-nucleus approximation and was the first to point
out the necessity of including mass polarization beyond
first-order perturbation theory. Baker et al. , p. 123 [7],
and Drake, p. 146 [7], both present results for the he-
lium atom to a precision of better than 10 cm, and
conclude that at that level of accuracy, it is essential
to include the mass-polarization correction in first- and
second-order perturbation theory and say that the eas-
iest way to do this is to include the mass-polarization
operator in the unperturbed Hamiltonian.

In this work we shall calculate mass-polarization eEects
to a precision determined only by a knowledge of the
physical constants for all the two-electron ions for Z from
1 to 10 in their ground state and for Z from 2 to 10 in
their first excited triplet state.

Working in atomic units m1 ——m2 ——1 are the electronic
masses, and m3 ——M, the mass of the nucleus. Using
exactly the same approach as in I, the relation

u, = e(r2 + rs —ri),

w = 2e(r, + r, —rs),

v = e(r, + rs —r2),

(3)

and are related to those of the kinetic energy (KE) oper-
ator Eq. (23) in I by

Zl
Z1

E

'U tU
z2 = —, and z3 =

2c

The wave function takes the form

4=e 2"+"+ F(uv w)

where K is a nonlinear variation parameter, is used to
remove the electronic energy F Pe.keris's [3] forms of
the perimetric coordinates which are appropriate for an
atom are defined as
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II. METHOD OF SOLUTION

The kinetic energy operator in generalized perimetric
coordinates introduced in I is used. For the case of three
particles in motion the reduced masses become

Q + (P + P'/M + KS)e = 0. (6)

Here,

which is in principle an exact form as the exponential
term contains the correct asymptotic behavior of the so-
lution of the Schrodinger equation. Using the KE oper-
ator Eq. (23) in I, the reduced masses of Eq. (1) for the
case of finite nuclear mass, and scaling the perimetrics as
in Eq. (4) above, the Schrodinger equation (II —E)4 = 0
becomes (after dividing out the asymptotic factor and
multiplying by the Jacobian, then dividing by e)

P = 4uv(u + v + w)(F„„—F„+F„„—F„)+ 2uw(2u + w) (F„„—F + 2F —2F„)
+2vw(2v + w)(F„„—F + 2E —2F„)—4(u —v )(F„—F„)+ 2(2u+ w)(2v+ w)(F„+F„—2F )

+4(u + v) (u + v + w) (2F —F) + (1/2) (u + v) (2u + w) (2v + w) F,
P' = 4uv(u+ v)(F„„+F„„—2F„„)w(u+ v)(2u+ 2v + w)(4F —4E + F)

+4(v —u )(F„—F„)+ 4(u+ v)(u+ v+ w)(2F —F),
Q = 4Z(u+ v)(u+ v + w)F —(2u+ w)(2v + w)F,
S = —(1/2)(u+ v)(2u + w)(2v + w)F,

where Z is the nuclear charge, M is the mass of the nu-
cleus, and the subscripts designate partial derivatives.
The quantities P and P' arise from the Laplacians, Q
&om the Coulomb terms, and S &om the energy term.
It is seen that in Eq. (6) the inverse nuclear mass plays
the role of a nonlinear scaling parameter. This obser-
vation exemplifies the comments made above about the
dependence of the results upon precise values for M.

Just as in I, Eq. (6) is solved by expanding F as

E = ) A(l, m, n) L((u)L (v)L„(w),
l,m, ,m=0

(7)

where L~(z) denotes the normalized Laguerre polynomial
of order p. The Laguerre recursion relations [see I, Eq.
(36)) are used to eliminate all the derivatives and powers
of the variables (u, v, w). This leads, just as in I, to a 57-
term recursion relation between the coefficients A(l, m, n)
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in the expansion of the form

+2

) C p ~(l, m, n)A(l+ n, m+ P, n+p) = 0. (8)
a,P,p= —2

The 57 coefficients in this recursion relation are given in
Table I of I for a general case where Z, K, and M are
arbitrary.

From this recursion relation a numbering scheme

[I, Eq. (42) for singlet states and I, Eq. (43) for triplet
states] is used to collapse each triple of indices (t, m, n)
to a single index and using the method described in I the
infinite secular problem Eq. (8) can be put in the form
of a generalized eigenvalue problem

the one-standard-deviation uncertainty in the least sig-

nificant digits is given in parentheses ([9], p. 81 or [10]).
To convert atomic mass units to atomic units the follow-

ing relationship is used:

[M (a.u. )] = [M (amu)]

Since m„and m, are known only to eight significant
figures (SF) at the present time (1988 [10]),the best non-

relativistic energy with the nucleus in motion one can
obtain is to eight SF's. In Table I the masses (in a.u. )
are given ten figures and all the data used in these calcu-
lations will be used as if it had ten SF's so that rounding
errors are minimized.

(9) III. RESULTS AND DISCUSSION

and solved in truncated form of increasing size.

Computational details

The MAPLE computer programs and the C programs
written for the fixed-nucleus calculation are readily ex-
tended to perform the present calculations. The MAPLE

program produces expressions for the matrix elements in
which both the nuclear charge and the nuclear mass are
retained as symbols. A C program then resolves the sym-
bols into their numeric values on a case-by-case basis. As
long as there is sufficient storage for the symbolic forms,
this strategy is very efficient.

Table I contains the isotope (the most abundant in
each case), and atomic mass, in atomic mass units (amu)
and atomic units (a.u.). Z is the atomic number (number
of protons) of the nuclide and A is the mass number of
the nuclide. The final column contains the mass of the
nucleus of the nuclide which is the value used in the work
to follow.

The atomic mass is given in unified atomic mass units,
m„= m (i2C)/12. The data were extracted from Wap-
stra and Audi [8] and are as used in [9], pp. 90 and
91. The value of the unified atomic mass constant m„
is taken to be 1.660540 2(10) x 10 2~ kg and the mass of
an electron m, to be 9.1093897(54) x 10 si kg, where

The scale parameter K was varied to minimize the
energy at each order of matrix size, and is shown in row 1
of Table II for the singlet and Table III for the triplet.
It was found that K had a dramatic effect on the rate of
convergence as found in I for the fixed-nucleus calculation
and reached the converged energy (to ten SF's) several
iterations before the unscaled energy, equivalent to K =
1, did.

For the higher-order matrices the scale parameter K
that appeared to minimize the energy was not unique. If
K was plotted against the energy, rather than a distinct
minimum appearing, the graph would have the form of
a flat basin. Therefore, in the tables, if the K value is
marked by an asterisk this indicates that a range of val-

ues about that value would give that result. For example,
the minimizing energy for Z = 2 and n = 252 was ob-
tained with K = 1.7, 1.8, and 1.9. However, in the case
where the unscaled (K = 1) energy gave the minimized
result, this is the value shown. The reason for this is that,
in the limit, the minimized energy should be obtainable
without a scale parameter, and this is an indication that
the minimized energy has been reached.

The H ion (Z = 1) does not appear in Table III as
it only has one bound state, which is the singlet state.
This was proved rigorously by Nyden Hill within the fixed
(infinite-mass) approximation [11]and for the case where
the nuclear mass is finite [12].

TABLE I. Atomic data for -Z from 1 to 10.

1
2
3
4

6
7
8
9
10

Symbol

H
He
Li
Be
B
C
N
0
F

Ne

1
4
7
9
ll
12
14
16
19
20

Mass of atom
(aniu)

1.007 825 035
4.002 603 24
7.016 003 0
9.012 182 2
11.009 305 4
12 (by definition)
14.003 074 002
15.994 914 63
18.998 403 22
19.992 435 6

Mass of atom
(a.u. )

1837.152696
7296.299537
12789.39139
16428.20356
20068.73654
21874.66236
25526.04298
29156.94642
34631.97132
36443.98154

Mass of nucleus
(a.u. )

1836.152696
7294.299537
12786.39139
16424.20356
20063.73654
21868.66236
25519.04298
29148.94642
34622.97132
36433.98154
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Rows 4—7 of both Tables II and III show the compo-
nents of the virial theorem. As can be seen for both the
singlet and the triplet states (K) is in good agreement
with the energy parameter e and (V) is twice that. The
virial (K) + (V) gives e in all cases for all orders of ma-
trices (where E = —Ke ).

The cusp condition for a particle pair is equal to the
product of the two charges and the reduced mass of the
two particles [see I, Eq. (48)j. Therefore the theoret-
ical electron-electron cusp value is unchanged &om its
clamped nucleus value of 1/2 but the electron-nucleus
cusp value becomes —Zpi2. In the nucleus in motion
approach it would be expected that the exact solution
for the singlet, up to linear terms, could be written, after
suitable scaling, as

(M+1) 1e=1 —Zl l
(ri+r2) + -r»+'''~

M ) 2

where M is the mass of the nucleus as given in Table I.
However, the reduced mass for the moving nucleus is very
near to the value 1 as in the fixed-nucleus case where
M ~ oo and the nuclear cusp is —Z.

Representing the expansion of our solution in the form

@ = 1 —U(ri+r2)+Tr»+

the values of U and T should approach the values of Z
(approximately) and 1/2, respectively, as the basis set
size increases, and are given in rows 8 and 9 of Table II
for the wave functions for Z = 1 to 10, from the nucleus
in motion calculation.

Mass correction

Calculating the energies with the nucleus in motion
avoids the need to calculate mass-polarization correc-
tions. However, it is of interest to see whether the diEer-
ence between the nucleus in motion and the fixed-nucleus
energies agree with the corrections calculated by Pekeris
&om his fixed-nucleus calculations.

Some care must be taken in making the comparisons,
however, because of the physical constants involved. In
the case of fixed-nucleus calculations it is natural to work
with the atomic unit of energy defined in terms of the the-
oretical energy levels of the hydrogen atom with nucleus
fixed. Thus the Hartree is defined as

me4

(4~&oh) 2

where the Rydberg constant for infinite nuclear mass B
is the preferred energy unit of atomic spectroscopists.
The theoretical energy levels of the hydrogen atom with
the nucleus in motion are given almost as in Eq. (10) but
with the electron mass m replaced by the reduced mass
p. It is natural, therefore, to extend the definition of
the Rydberg to cover the so-called finite-mass cases by
defining

M
RM ——R M+m'

M o
M

o

o

M

Q

c5
M

~ W

MQ

o
M

+pl

Q

a5

O M

~ 5 g3

Q)

03

M

a) o

03

~ ~ Q
M M

~ ~

Q ~ ~
M g
s

M M Q)

M

g3 ~ ~

Q)

c5

M O

M ~
N

Q ~ o
O

C4 M

CQ ce ~~c5

2

Cb 00 00
00 O OOQO
QQ

Q Q
MQ) Ch

00 00
W 00 00
oo t t
CDt t

CbROO

MCh Ch
Cb O O
CO 00 00
m LQ ~
00 00 00
WCb Cb

CD CO CO

QQ MOO

t t t
00 00 00
C4 CO CO
COMM
OUCH
& 00 00WOO
W CO CO

t KOO

O

CO

O

W 00 00
W 00 00

CO O O

Cb 00 00

O CO CO

~ HOO

LQ Cb Cb
CO O O
Ch O O~OO
00 00 00

CO 00 00
CO W C0
& 00 00

~ WOO

ChWW
t

ON%ChOO
CO Ch Ch
t

O O

CO N O
O 00 O
W 00 &
Cb CO CO
rl NO
00 CO CO
CO O H

Cb QOW

CO W

CDOHO
Cb & W
Cb Cb CO
CO Cb WOOH

QceOO

QQ Cb Ch
QQ 00 00

t t
Ch Ch Ch
CO CO CO
CO CO CD
CO CD CD

OOO
CO CO CO

CO 00 00

QOO
QQ 00 00
Ch Cb Ch

00 00 00

QQ t
CO 00 00
lO LQ LO
CV M W

cO cO M
& M CO

00 00 00

t Cb Cb
Cb Ch Cb
00 00 00

LO LO W
CO CO CO

& CQ W
Cb Ch Cb
CV M W

OHH
W CO CO

Ch Cb Cb

W W rt

& CV W

Ch CbOOO
CO CO CO

Ch O ~
CO CO CO

OOOrl

lQ LQ LQ

LQ Ch
00 00 Ch

Ch O O& & CQ
Cb Ch Ch

00 W M~OO
CD M MKOO
cO 00 00
M t t
COt t
CD & W

LQ LQ

CD 00 00
QQ

t Ch Ch
M ChCb

LQ LQ

LQ & M
MWLO
O CO CO

oO W W
O CV H

QQ
00 M CO
C4 & &
Cb M &
O CO CO

O 0000~oo

00t t

HOO~OO
&COW
00 CO CO

00 Cb Cb

CO & ~
CbOOMOO
CO CO CO
Cbt t
M CO CO

CO CO

oO W Ch
Ch Ch 00
W 0000
O COCO
00 O O

00 00
W Cb Cb

W COCO

LO Cb O& 00 00

O t O

CD W &
LQ

00 M O
O O Ch
0Q Ch CO~NO
00 W 00
Ch QQ M
M CbCh

Q 00 00
Cb O OOOO
QQ~OQ
MCh Cb~ 00 00
M 00 0000t t
cOt t

I I I

CC Cb CbChOO
cOt t
CO 00 00

QO QO 00
WCb Ch~ Ch Ch

CO CO CO

I I I

CQ W W
t t t
00 00 00
C4 CD CO
COMMOR%& 00 00WOO
& CD CO

I I I

~ tb W
CO CO CO
W CO CO
Q w
M 00 00

t

I I I

00 Cb 00
'Cf' 00 00

CO O OWag&
Ch 00 00

O CO CO

I I I

00~ Ch
Ch ~ O
Ch O O+OO
QQ QQ 00~ CO M
CO 00 00
CO M CO
M 00 00

I I I

Q W LQ
COW&
t

O K CO
Ch O O
CO Ch Cb

BOO
I I I

00 CO OOWCh
Cb 00 O
CO 00 &AAO
Cb CO COWHO
00 CO CO
COO C4

I I I

W Cb W
lQ

CO W W
COMMOHO
Ch M W
Cb Cb CO
COCh WOOH

I I I

Ch 00 00
00 O OOOO
QQ~OO
W Ch Cb~ 0000
M 00 00
00 t t-
CO t

WCb ChChOO
COt t
CO 00 00
m aQ W
00 00 00
CQ Cb Cb~ Cb Cb

CO CO CO

LQ LQ
t t

QQ QQ 00
M CO CO
CO Cq W
O N 5)
& 00 00WOO
& CD CD

Q

CO CO CO
W CO CO

W 0000
LQ

W 0000~ QQ 00

CO O O

Cb 00 00
LOMM
O CO CO

WCh Ch
CO O OCbOO~OO
00 00 00

CO 00 00
CO M C0
M 00 00

(V) (V)

Cb LOW

tC4&MOAKCbOO
CO Cb Ch
tWOO

CD K O
W W Cb
O 00 O
W QOCO
tOP) O
Ch CO CO
%COO
00 CO CO
CD O A

O C4 H
CD Cq W

CD& r)OHO
Ch M rF
Ch Ch CO
CO Ch WO OH

00 00
00 O OOOO
QQ

Q O
W Ch Ch~ 0000
CQ 00 00
oo t t-
COt t

M Cb ChCbOO
CO
CO 00 00

00 00 00
M Ch Cb

CO CO CO

lQ LQ

00 00 00
& COCO
CD M &
O N CO& 0000WOO
W CD cO

Q

CO cO cO
W cOcO
Q
M 0000
LQ

W 00 00
W 00 00

COOO
LQ 10 LQ

Cb 00 00
LD & &
O CO CO

LQ Ch Cb
COOOChOO

Q Q
00 00 00

CO 00 00
CO M M
& 0000

Cb W LQ
CO W W
t
O CO
CbOO
CO Ch Ch
t

stan

ROO

CO K O
W W Ch
O 00 O
WOO&RYJO
Ch CO COWKO
00 CO CO
CO O 0

O N C4

COW&OAO
Ch C4 W
Ch Ch CD
CO ChWQOH

cg

+

I



4538 HAZEL COX, STEPHEN J. SMITH, AND BRIAN T. SUTCLIFFE

TABLE IV. Energies (in hartrees) of the unscaled 1 S state of the helium atom. vu is the order
of the polynomial and n the order of the corresponding determinant.

10
12
15
18
21

161
252
444
715
1078

Fixed nucleus,

2.903724111
2.903724290
2.903724356
2.903724370
2.903724375

Nucleus in motion,

2.903304291
2.903304470
2.903304536
2.903304550
2.903304555

10'aE

4.19820
4.19820
4.19820
4.19820
4, 19820

10 (Mass correction)

4.1982576
4.1982565
4.1982563
4.1982563
4.1982563

where M is the mass of the nucleus. Because the theory
of the hydrogen atom is so complete and because such
accurate experiments can be performed to determine its
spectrum (see, for example, [13])the quantity R can be
determined as a primary constant and is usually quoted
directly in cm

As the most accurate calculations of these mass cor-
rections by Pekeris were carried out on the helium atom,
this is a good subject of comparison.

For the purpose of comparison, it is necessary to estab-
lish the value Pekeris used for the mass of the helium nu-

cleus and the Rydberg constant for infinite nuclear mass
and, unfortunately, neither are quoted in his papers. The
reference he gives is [14], and within this reference R
is quoted as 109737.309 6 0.012 cm so this is the value
used here for comparison purposes.

The total mass correction appearing in the last col-
umn of Table IV is calculated &om the Rydberg constant
RM, and the so-called mass-polarization correction 6M,
defined in Pekeris' papers. The figures in the preceding
column are found as the difFerence between the fixed-
and moving-nucleus Pekeris-type (K=1) calculations. It
is seen that the entries in the two columns agree pretty
well and, interestingly enough, that the entries in the dif-
ference column are constant and independent of basis set
size to this degree of accuracy.

Table V contains the energies of the 1 S states and
Table VI those of the 23S states of the relevant two-
electron ions. The tables also contain the ionization en-
ergies (IE) which are given using the most up-to-date
value that we could find of the Rydberg constant for in-

finite nuclear mass [13], 109737.3156830(31) cm with
an uncertainty of 2.9 x 10 i (one standard deviation).
The results for this work are calculated using

ME — ZM+m ) ™ (12)

where E = —A e, the energy for the two electron sys-
tem in hartrees and the second term in the parentheses
is twice the energy for the one electron hydrogenic ion
with a moving nucleus, in the same units. By combin-
ing the results of Pekeris's Table V and VI of the first
paper [3] and using the new R value and exact nuclear
masses to calculate BM, the figures in the last column
of Table V were obtained. This comparison is crude as,
apart &om helium, Pekeris calculated his energies using
a matrix of dimension only 203 and then extrapolated.
However, in the case of helium the result of his very ac-
curate calculation with a matrix of dimension 1078 was
used.

For the triplet problem, Pekeris calculated only the
triplet state of helium. He obtained a nonrelativistic IE
for triplet helium of 38452.90764 cm as compared with
the value calculated in this work of 38452.90796 cm
which again is in very good agreement. The results for
the triplet states of the helium isoelectronic sequence are
given in Table VI.

Note added in proof. Drake [7] has pointed out that
for the helium atom it is possible to achieve an accuracy
of 12 SF's by using the ratio of the electron mass to the

TABLE V. Values for the 1 S states of the nonrelativistic energy with the nucleus fixed and with the nucleus in motion.
The mass effects b.E and the theoretical value of the ionization energy (IE) using the energy obtained from the nucleus in
motion calculation and the results Pekeris obtained for his nonrelativistic IE.

1
2

3
4
5
6
7
8
9
10

(cm ')
109677.5834
109722.2735
109728.7340
109730.6347
109731.8465
109732.29?9
109733.0156
109733.5511
109734.1463
109734.3038

Nucleus fixed,
Es (a.u. )

0.5277510164
2.903724377
7.279913413
13.65556624
22.03097158
32.40624660
44.78144515
59.15659512
75.53171236
93.90680651

Nucleus in motion,
EM (a.u. )

0.5274458809
2.903304558
7.279321520
13.65470927
22.02984605
32.40473349
44.77965835
59.15453312
75.52949958
93.90419575

Mass efFects
AE = Ep —E~
0.0003051355
0.000419819
0.000591893
0.00085697
0.00112553
0.00151311
0.00178680
0.00206200
0.00221278
0.00261076

Nonrelativistic IE
(cm ')

6083.406871
198312.6037
610067.8012

1241172.129
2091696.178
3161654.213
4451081.243
5959972.080
7688343.229
9636158.364

Pekeris's EE

(cm ')
6083.389355

198312.6007
610067.7929

1241172.117
2091696.168
3161654.200
4451081.231
5959972.075
7688343.220
9636158.356
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TABLE VI. Values for the 2 S states of the nonrelativistic energy with the nucleus 6xed and
with the nucleus in motion. The mass effects AE and the theoretical value of the ionization energy.

2
3
4
5
6
7
8
9
10

Nucleus 6xed,
E& (a.u. )

2.175229378
5 ' 110727373
9.297166590
14.73389735
21.42075590
29.35768174
38.54464732
48.98163833
60.66864658

Nucleus in motion,
EM (a.u. )

2.174930191
5.110326331
9.296598849
14.73316110
21.41977416
29.35652899
38.54332259
48.98022128
60.66697891

Mass effects
AE = EF —EM
0.000299187
0.000401042
0.000567741
0.00073625
0.00098174
0.00115275
0.00132473
0.00141705
0.00166767

Nonrelativistic IE
(cm ')

38452.90796
134028.3816
284677.4509
490258.9383
750734.3135

1066095.612
1436334.246
1861450.161
2341432.451

a-particle mass, which is known much more accurately
than m„and m, .
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