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Some calculations on the ground and lowest-triplet state of helium
in the fixed-nucleus approximation
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The series solution method developed by Pekeris [Phys. Rev. 112, 1649 (1958); 115, 1216 (1959)]
for the Schrodinger equation for two-electron atoms, as generalized by Frost et al. [J. Chem. Phys.
41, 482 (1964)] to handle any three particles with a Coulomb interaction has been used. The wave
function is expanded in a triple orthogonal set in three perimetric coordinates. From the Schrodinger
equation an explicit recursion relation for the coefficients in the expansion is obtained, and the
vanishing of the determinant of these coefficients provides the condition for the energy eigenvalues
and for the eigenvectors. The Schrodinger equation is solved and the matrix elements are produced
algebraically by using the computer algebra system MAPLE. The substitutions for a particular atom
and diagonalization were performed by a program written in the C language. Since the determinant
is sparse, it is possible to go to the order of 1078 as Pekeris did without using excessive memory or
computer CPU time. By using a nonlinear variational parameter in the expression used to remove
the energy, nonrelativistic energies, within the fixed-nucleus approximation, have been obtained.
For the ground-state singlet 1 S state this is of the accuracy claimed by Frankowski and Pekeris
[Phys. Rev. 146, 46 (1966); 150, 366(E) (1966)] using logarithmic terms for Z from 1 to 10, and
for the triplet 2 S state, energies have been obtained to 12 decimal places of accuracy, which, with
the exception of Z = 2, are lower than any previously published, for all Z from 3 to 10.

PACS number(s): 31.20.Di, 31.10.+z, 31.15.+q, 31.90.+s

I. INTRODUCTION

The helium and heliumlike atoms have attracted the
attention of many authors using diferent methods to ob-
tain estimates for the energies and expectation values of
various operators. The pioneering work of Hylleraas [1]
in 1929 demonstrated the importance of including ba-
sis functions which take account of electron correlation
explicitly. However, the expansion in powers of the in-

terparticle distances he used for the wave function was
shown by Bartlett et al. [2] not to satisfy forxnally the
Schrodinger equation. In later work Bartlett [3] sug-

gested that logarithmic terms were necessary in any series
expansion. Fock [4] showed and Morgan [5] proved that
such terms were necessary.

However, some of the most accurate results for the
nonrelativistic energies of the helium isoelectronic se-
quence, Z = 1 to 10, were provided by Pekeris [6] using
a wave function which did not explicitly contain loga-
rithmic terms. He used an expansion that consisted of
products of three Laguerre polynomials multiplied by an
exponential with perimetric coordinates as the variables.
These coordinates were first introduced by Coolidge and
James [7]. Using a method to be described later in
the text, Pekeris obtained recursion relations that led to
sparse matrices in which the number of nonzero matrix
elements grows only linearly with the number of func-
tional terms and this allows a large number of terms to
be used in any truncated solution.

In 1966 Frankowski and Pekeris [8] (FP) developed the
Hylleraas approach by including logarithmic terms in the
series expansion. FP obtained their lowest eigenvalue
variationally to precision of one part in 10 to 10 &om a
nonsparse 246 x 246 matrix. By modifying the algorithm
for selecting the basis functions Freund et al. [9] obtained
energies accurate to better than a few parts in 10 using
a 230-term wave function for Z = 1 to 10. Drake [10]
superseded these results using 616 Hylleraas-type func-
tions with multiple exponential scale parameters, and the
most accurate energies to date for H and He are pre-
sented in the paper by Baker et al. [11],who perform a
476-order variational perturbation calculation by using a
combined modified FP basis and a Frankowski basis [12]
as one composite basis, similar to that of Kono and Hat-
tori [13] in their variational calculations on excited states
of helium.

Very accurate energies and expectation values of op-
erators have also been calculated using less traditional
methods such as the finite element method by Braun et
al. [14], and exact solutions using hyperspherical coordi-
nates by Zhang and Deng [15]. Haftel and Mandelzweig

[16] have also used a hyperspherical method for infinite
and finite nuclear masses and all other expectation val-

ues to a precision of a few parts in 10 and 10 for the
ground state.

The purpose of this paper is not to better these en-

ergy calculations but to show that one can increase the
rate of convergence of Pekeris's algorithm [6] with the
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aid of a nonlinear variation parameter in the calculation,
and without going to a higher order of matrix still ob-
tain sparse matrices which yield energies to the accuracy
claimed by Frankowski and Pekeris. The wave function
cusps and the virial energies are also presented to show
that the wave functions obtained by this method are of
excellent quality using criteria other than the total en-

ergy. In the following paper this will be extended to the
case where the nuclear mass is finite and all three parti-
cles are in relative motion.

The algorithm of Pekeris for S states of two-electron
atoms has been generalized to spaces of arbitrary dimen-
sionality by Loeser and Herschbach [17]. Numerical cal-
culations were reported for the ground state (1 iS) and
first two excited states (2 S and 2 i S) for a wide range of
dimensions, 1 & D ( oo, and nuclear charge, 1 & Z & 6.
They used the same definition of the perimetric coor-
dinates and wave function as Pekeris except that they
used a product of three generalized Laguerre polynomi-
als where the degree of the Laguerre o. was set equal
to (D —3)/2. For real atoms, with D = 3 and thus
a = 0, the calculations give precisely the results obtained
by Pekeris.

Frost [18] showed how the series solution (which is the
basis of the Pekeris algorithm) is equivalent to the linear
variation method, and Frost, Inokuti, and Lowe [19]gen-
eralized the series solution method to handle any three
particles with Coulomb interaction.

(4)

In the three-particle case V may be written in general as

a2 —b2 MT m
b2 —C2 MT m2
c2 —a2 M~ ms )

corresponding to a choice for ti of

t = a;(zi —zs) + b;(z2 —zi) + c;(zs —z2),

Here

2 3
~/ ZiZ)+

8tree, . f;, (t)
(7)

N

p, = ) ms Vg;Vgt,
A:=1

i, j =12, . . . , N —1 (8)

and f;t is just z;t as given by Eq. (3) but expressed as a
function of the t;. Thus

and MT = (mi + m2+ ms).
Hence the Hamiltonian Eq. (2) in the new coordinates

becomes

h2
V' (XT) ——) p, V'(t, ) V'(t )2MT.

i,j=l

II. SCHRODINGER EQUATION
AND CHOICE OF COORDINATES

N —1
2- 1/2

(9)

The equation to be solved is

where the Hamiltonian operator H is the sum of the ki-
netic energy and the potential energy operators.

The laboratory-fixed form of the Schrodinger Hamilto-
nian describing a system of three particles is

where
T(X~)iI (t),

In Eq. (7), the V'(t;) are the usual grad operators ex-
pressed in the Cartesian components of ti and the first
term represents the center-of-mass kinetic energy. Since
the center-of-mass variable does not enter the potential
term, the center-of-mass problem may be separated o8'

completely so that the full solution is of the form

2 3
e ) ~/Z~Zt'

8xep . . x;q
~t2 1

T(XT,) = exp(ik XT,), k —= (k, k„,k, ),

and where the associated translational energy is

where xi denotes a column matrix of the three Cartesian
components of the variable and x denotes the matrix of
the variables collectively. Otherwise the notation is stan-
dard and the separation between particles is defined by

x x~g x~i )

with the a sum running over x, y, and z. However, Eq.
(2) has a continuous spectrum and so cannot be solved
for bound states as it stands. Fortunately, it is possible
by a linear transformation to separate the center-of-mass
motion from the full Hamiltonian of Eq. (2) and for that
motion to carry the continuous part of the spectrum.

The required linear transformation may be written as

gT—
2MT

(12)

1 (a; —b;) (b; —c;) (c; —a;)
Pi
1 (a, —bi)(a2 —b2) (b, —c,)(b2 —c2)+

ml m2

+ Cl —Ql C2 —G2

m3

From now on the center-of-mass motion will be ignored
and we shall just consider solutions of the translation-free
problem specified by the last two terms in Eq. (7).

The general form of the reciprocal reduced masses for
the three-particle system is, from Eq. (8) and Eq. (5),
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If interparticle coordinates are chosen by means of

ai ——1, bi ——ci ——0 and c2 ———1, a2 ——b2
——0 (14)

to give

—i (—i —3) —2 (—2 X3)

p =m. +m3 i=12 —1 —1and p2 =m3

then the reduced masses take the form

(16)

where the internal coordinate part of the Jacobian is
TiT2T3. In this equation, along with Eq. (16), the re-
duced mass terms are defined as

e(y q) = Kva(y, q) + Kv (q) + V (q). (i7)

The two-electron atomic problem can be considered a
special case of this where the t, are . defined in Eq. (15)
and z3 is taken as the nuclear coordinate.

At this stage, one can either attempt to separate oK
the angular momentum to get a body-fixed coordinate
system or one can try to construct angular momentum
eigenfunctions for the translation-free problem directly.
When considering atoms, in general it is not usual to sep-
arate oK angular momentum because there is no unique
choice of a body-fixed coordinate system. However, in
the case of the two-electron atom or ion there is a unique
choice, namely, that system in which the three particles
define a plane. Two axes lie in the plane and the third
axis is perpendicular to the plane so that the whole sys-
tem is right handed. It is this body-fixed approach that
will be used here and it is described in detail in SutcliKe
and Tennyson [20]. For present purposes, however, it is
sufBcient to note that the the body-fixed Hamiltonian is
of the form

1 1——+ ——
@1 P2

1 1

P' P12

Q12

i=12
(20)

and the b,~ as

b,, =
r' + r ' rI2 2 2

(21)

where here and hereafter i, j, and k denote the distinct
difFerent choices of the indices 1, 2, and 3.

The problem with these coordinates is that since r1, r2,
and T3 (= Ti2) are sides of a triangle and so connected
by the triangular condition, the domains of the variables
are not independent. This makes integration dificult,
but Coolidge and James [7] showed that a linear com-
bination of them could be chosen to have independent
ranges. These perimetric coordinates are given by the
relations

The three internal coordinates qA, are invariant under
orthogonal transformations of the translation-free coor-
dinates t. The three orientation variables are specified
by means of an orthogonal matrix C that puts the three
particles in the plane and which can be pararnetrized by
the three Euler angles P, m = 1, 2, 3. The term Kv
contains operators and functions that depend only on
the qI, . K~~ contains the angular momentum operators,I, which are operators involving the P only. These
are multiplied by operators that depend on the qI, and
so the term couples the angular motion with the inter-
nal motion. This term vanishes for states with angular
momentum J = 0 and there will be no need to consider
this term further in the present work, which is concerned
only with S states of two-electron systems.

V(q) arises from the electrostatic interactions and,
since these are invariant under the operations of O(3),
it depends only on the qk.

The form of Kv~ depends on the precise details of
the choice of C but the form of K~ is independent of
that choice and depends only on the choice of the qI, .
Following Hylleraas we shall make the initial choice of the
three internal coordinates as the interparticle distances,
r1, r2, and r3 which are, respectively, the 3-1, 3-2 and 1-
2 interparticle distances. These are obtained by making
the choice Eq. (14) for the t, as in Eq. (15), then choosing

z, =( T, +T, +—Tk), (22)

. ( 82 Bb
Kv(zi, z2, z3) = ——) /

v, , 2 + v,

(23)

where the internal coordinate part of the Jacobian be-
comes x/8 where x is given by

x = (zi + z2)(z2 + z3)(z3 + zi). (24)

The quantities vi above are defined as

( 1 1
v, =4i — + +

p&(z~ + zk) pj (z7'. + zk) pk(z*' + zj)

(»)
while the quantities vi,. are

where i, j, A: denote each of the choices 123, 231, and
312, and r1, r2, and r3 are as above. Each perimetric
coordinate ranges from 0 to oo.

The kinetic energy operator in these coordinates has
the form [21]

T, = ~t, ~, i = 1, 2 and T3 ——T]2 ——Lt
—t, ~.

In these coordinates K~ becomes

(18) ( 1 1 1 b,+ —+ ——
( Iji P2 P3 I2'j 0*k P&k ) (26)
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and the v;~ are E = —K~, (31)

( 1 1 1 b;
v'~ =21 ————+ —+ *' [.

IJ' P~ tj I P'~ )
(27)

b;, = 2[x —2z;z, (z;+ z, )]/x, (28)

The b,~ are just as defined in Eq. (21) above but expressed
in terms of the z; are

where K is a nonlinear variation parameter which with
a suitable value increases the rate of convergence. To
reduce calculation, Pekeris defined his perimetric coordi-
nates by including the energy parameter ~, and including
a factor 2 in his third coordinate so that his somewhat
asymmetric coordinates and their inverse were defined as

where x is given in Eq. (24).
u, =

e( r2+ r3 —rl) v = E(rl + r3 —r2)

w = 2e(ri + r2 —r, ), (32)
The two-electron atomic problem

with fixed nucleus 2v+ m
~1

4e

2u+m u+v
and T3 =

4e 2e
In the special case of a two-electron atom or ion with

the r; defined as in Eq. (18), ms can be considered the nu-

clear mass. The fixed-nucleus approximation is then the
same as the infinite nuclear mass approximation where

m3 ~ oo and m1 ——m2 ——m, the electronic mass, so
that

Thus

(u+ v + w) = 2e(ri + r2) = ks,

and the wave function takes the form

1 1

p1 m

1 1
)

p2 m

1 2
)

p3 m 4 = e 2 "+"+ lE(u, v, w). (33)

=0 1 1

@13 m

1 1

@23 m

(29)

t =+i/ E, — (30)

and the Hamiltonian simplifies somewhat.
Hylleraas discovered that asymptotically the wave

function behaves as exp( —ks/2) where s = ri + r2. The
asymptotic behavior of the solution of the Schrodinger
equation, 4, for large 8 requires that in the exact solu-
tion k equal 2e, where

Z1
v tU

z2 ———, and z3 ———,
26

the Schrodinger equation (H —E)@= 0 becomes (after
dividing out the asymptotic factor and multiplying by
the Jacobian, then dividing by e)

If the wave function above is, in principle, an exact
form, then, using the kinetic energy operator Eq. (23),
the reduced masses of Eq. (29) for the case of infinite
nuclear mass, and scaling the perimetrics of Eq. (22) as
in Eq. (32) above, i.e. ,

and E is the electronic energy. Hence, Pekeris set k =
+2i/ E—:2e. How—ever, we use the relation suggested
by Frost et al. [19] to remove the energy, i.e. , Here,

Q + (P + KS)e = 0. (34)

P = 4uv(u + v + w) (F„„—F„+F„„—E„)+ 2uw(2u + w) (F„„—F + 2F —2F„)
+2vw(2v + w)(F„„—F + 2F —2F„)—4(u —v )(F„—F„)+ 2(2u + w)(2v + w) (F„+F„—2F )

+4(u+ v)(u+ v+ w)(2F —F) + (1/2)(u+ v)(2u+ w)(2v+ w)F,

Q = 4Z(u+ v)(u+ v+ w)F —(2u+ w)(2v+ w)E,
8 = —(1/2) (u + v) (2u + w) (2v + w )F,

III. METHOD OF SOLUTION

To solve Eq. (34) Pekeris chose F to have the form

F = ) A(l, m, n) Li(u)L (v)L (w),
l,m, ~=O

(35)

where Z is the nuclear charge and the subscripts desig-
nate partial derivatives. The quantities P and Q arise
&om the Laplacians and the Coulomb terms in H, re-
spectively, while S arises from the energy E.

where L„(x)denotes the normalized Laguerre polynomial
of order p. The Laguerres are appropriate for the region
zero to infinity and with an exponential weight factor,
e 2, are an orthogonal system.

By using the basis set involving Laguerre functions of
perimetric coordinates Eq. (35) and use of the recursion
relations

xL"(x) = (x —1)L (x) —nL„(x),
xL'„(x) = nL„(x) —nL„ i(x), (36)
xL (x) = (n + 1)L„~i(x) + (2n + 1)L—(x)

—nL„ i(x),
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all the derivatives and powers of the variables (u, v, ut)
can be eliminated to obtain a 57-term recursion relation
between the coefficients A(l, m, n) in the expansion. (In
the case where K = 1 the 33-term recursion relation of
Pekeris is obtained. ) This recursion relation has the form

) C &,(l, m, n) A(l + ~, m + P, n + ~) = O. (37)
cx,P,p= —2

[The n, P, and p are defined by choosing a particular
A(l+o. , m+P, n+p), see the coe%cients of the recurrence

I

relation which are given in Table I for the general case
where Z, K, and M are arbitrary. The coefficient of that
2 will be C p ~ and this is a function of t, m, and n, i.e. ,

C p ~(l, m, n). Therefore once an A(l + a, m + P, n + p)
is chosen all one needs to know is the value of l, m, and
n which is to be substituted into its coefficient. Hence,
C p ~(l, m, n) of Eq. (37) could equa11y well be written
as C((l, m, n)(l', m', n')) where l', m' and n' are l + a,
m+ P and n+ p, respectively. This notation will be used
later. ]

Because the coordinates u and v are electronic coordi-
nates, the Pauli principle requires that in Eq. (37)

A(m, l, n) (singlet spin state, para, or symmetric)A l, m, n —A(m, l, n) (triplet spin state, ortho, or antisyrnmetric)

so that there are two solution sets in Eq. (35),

F,(,uv, m) = F, (v, um),

F (u, v, w) = F(v, u, m—).

The symmetric form for the singlet is

(38)

while the antisymmetric form for the triplet is

F, (u, v, w) = ) A'(l, l, n)L~(u)Li(v)L„(m)
l,n=0

) ) A'(l mn)
l(m=1 n, =O

x[Li(u)L (v)L„(w) + L (u)L~(v)L„(m)]

l, m, n ~ l', m', n' ~ C((l, m, n), (l', m', n') )
—C((m, l, n), (l', m', n') ).

The numbering scheme involves collapsing each triple
of indices (l, m, n) to a single index. Equation (37) then
becomes

) CUBI =o,
k

where for any given i (= l, m, n) a particular set of k
(= l + n, m + P, n + p) are generated such that the C;~
are given by the terms that coefficient A(l+ o, , m+P, n,+
p)—:By in the 57-term recursion relation. Each triple of
indices (l, m, n) is collapsed to a single index by means
of

k(l, m, n) = m(m + 2) (2m + 5) 1 —
(
—1) (l + m)

24
+ +

16
F (u, v, m) = ) ) A (l, m, n)[L~(u)L (v)L„(m)

i&m=1 ~=0

—L (u)Li(u)L„(~)].

This symmetry also manifests itself in the matrix ele-
ments generated, thus this is taken account of in our
programs.

The "rules" used for the symmetric case are

(l + m)2 1 —
(
—1) +

+ + +t+1

for the symmetrical case and

(4o)

or

l, l, n ~ I', l', n' —+ C((l, l, n), (l', l', n'))/2,

l, l, n ~ l', m', n' ~ C((l, l, n), (l', m', n') ),
l, m, n ~ l', l', n' —+ C((l, m, n), (l', l', n') ),

l, m, n ~ l', m', n' ~ C((l, m, n), (l', m', n') )

+C((m, l, n), (l', m', n') ),

where l' = l + o., m' = m + P, and n' = n + p as noted
earlier.

These rules also apply for the antisymmetric case ex-
cept that the last condition becomes

l

0
0
0
0
0
0
1
0
0
0

Symmetrical

0 0 0
0 1 1
1 0 1

0 2 2

1 1 2

2 0 2

1 0 2
0 3 3
1 2 3
2 1 3

k
1
2
3
4
5

6
7
8
9
10

Antisymmetrical
m n m

1 0 1
1 1 2
2 0 2

1 2 3
2 1 3
3 0 3
2 0 3

3 4
2 2 4
3 1 4

p
1

2

3

5
6
7
8
9
10

TABLE II. Ordering of the indices I,, m, n for the symmet-
rical and the antisymmetrical cases.
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TABLE III. Energy of the 1 S state of H (Z = 1) with fixed nucleus showing the increased
rate of convergence when a scale parameter K is used.

Highest degree
4
8
9
10
11
12
15
18
21

Matrix size
22
95
125
161
203
252
444
715
1078

E—(hartree)
Pekeris value (K = 1)
0.527 630 681 42
0.527 750 016 51
0.527 750 610 25
0.527 750 859 79
0.527 750 935 60
0.527 750 973 84
0.527 751 006 30
0.527 751 01339
0.527 751 015 36

Scaled value
0.527 669 054 63
0.527 750 058 06
0.527 750 610 25
0.527 750 860 44
0.527 750 942 98
0.527 750 984 57
0.527 751 01188
0.527 751 015 84
0.527 751 016 36

K
1.3
1.1
1.0
0.9
0.9
0.8
0.7
0.6
0.6

to(to + 2) (2ur —1)
p I m ) n

24
i l (m + n) + m

1 —(—1)
16

(41)

for the antisymmetric case, where to = l + m + n. [The
term (+2 ) was omitted from k(l, m, n) in the Pekeris
paper because of a typographic error. ]

Loeser and Herschbach used these formulas in a slightly
more general form

k(l, m, n) = ~(~+ 2)(2~+ 5) 1 —(-1)
24

+
16

(i+m+1)'+
4

+ 1 —(-1)'+
(42)

3+ min(l, m) +—
4

for spin, s = 0—parahelium, and

p(l, m, n) = (o + 1)(ir + 3)(2cr + 1) 1 —(—1)
24

+
16

1
+l + m + lm + (n —1)min(l, m) ——

8
(43)

) (F;s —eG,s)Bx = 0, (44)

for s = 1—orthohelium, where e = l+m+n —s. A sample
of these numbering systems is given in Table II.

The infinite secular problem can then be written as

with the form of a generalized eigenvalue problem. The
elements of F arise from the potential term Q and those
of G from the kinetic energy term P and the energy term
S given below Eq. (34). The infinite secular equation is
solved in truncated form of increasing size of up to any
order k (or p).

IV. RESULTS AND DISCUSSION

To show the effect that the scale parameter K has on
the energy it has been varied at each order of the matrix
and is shown in Table III for the hydride ion and Table IV
for helium.

In Table IV the energies in the third column can be
found in [6] but have been reevaluated here and are pre-
sented to 12 significant figures. The fourth column con-
tains the energies obtained for the fixed-nucleus problem
using a scale parameter, hence the heading of the column.

The best value presented by Pekeris, in his second
(1959) paper, for helium was rounded to nine decimal
places, i.e., 2.903 724 375, the value in the last row of the
third column of Table IV (in bold type). As can be seen
from Table IV (also in bold type), this value was achieved
at a matrix size of 252 by using a scale parameter of 0.4,
and if one goes on to a matrix size of 1078 as Pekeris
did, a marked improvement in the last digit can be seen,
i.e., 2.903724377, which is better than his extrapolated
value. It is obvious, therefore, that a scale parameter is
invaluable in a calculation of this form.

TABLE IV. Energies of the 1 S state of He (Z = 2) with fixed nucleus showing the increased
rate of convergence when a scale parameter K is used.

Highest degree
4
8
9
10
11
12
15
18
21

Matrix size
22
95
125
161
203
252
444
715
1078

E(hartree)—
Pekeris value (K = 1) Scaled value

2.903 688 986 12 2.903 713944 25
2.903 723 389 08 2.903 724 304 91
2.903 723 878 62 2.903 724 340 00
2.903 724 11115 2.903 724 364 62
2.903 724 228 32 2.903 724 371 60
2.903 724 290 41 2.903 724 374 68
2.903 724 356 22 2.903 724 376 75
2.903 724 370 81 2.903 724 376 98
2.903 724 374 76 2.903 724 377 02

K
0.7
0.5
0.5
0.4
0.4
0.4
0.3
0.3
0.2
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Pekeris, in his second paper, took only helium to in-
creased convergence. In his first paper he calculates the
ground-state energy for Z &om 1 to 10 using a matrix of
size 203 and then extrapolates. His energy for helium has
only converged to six decimal places at this matrix size.
He then proceeds, in his second paper, to take helium to
nine decimal places of convergence, corresponding to a
matrix size of 1078. Therefore Table V fills in the gaps
that Pekeris left. The 1 S state energy of the helium
isoelectronic sequence Z = 1 to 10 is taken to increased
convergence and shown in the third row of Table V. The
four subrows correspond to energies from matrices of or-
der 252, 444, 715, and 1078. These are presented so as
to exhibit the rate of convergence of E with increase in
the order of the polynomial used.

Of the triplet states, Pekeris discussed only the triplet,
2 S, state of helium. The convergence of the 2 S state
was more rapid than in the ground state, a determinant
of order 715 was sufFicient to achieve convergence to nine
decimal places. In Table VI results for the triplet state
for Z from 2 to 10 are given, including the reproduction of
the helium results of Pekeris but with the aid of a scale
parameter. The value of the scale parameter and the
energy parameter is shown in the first and second rows
with the energy in the third row. Again, the four sub-
rows of each property row correspond to data obtained
from matrices of order 252, 444, 715, and 1078.

The H ion (Z = 1) does not appear in Table VI as it
only has one bound state, which is the singlet state. This
was proved rigorously by Nyden Hill within the fixed-
nucleus (infinite-mass) approximation [22] and for the
case where the nuclear mass is Suite [23].

A. The virial condition

Consider any system of charged particles interacting by
Coulomb forces. If in a certain system its Hamiltonian is

H =A+V

and its expectation energy

Table VI show the components of the virial theorem. As
can be seen for both the singlet and the triplet states
(K) is in good agreement with the energy parameter ~

and (V) is twice that. The virial (K) + (V) gives c in all
cases for all order of matrices (where F = —Ke ). For
completeness, (e) is calculated from

where S is defined below Eq. (34). This is possible be-
cause of the unusual formalism of the problem as the
energy parameter e is implicit in the wave function.

B. Cusps

The cusp conditions describe the behavior of the wave
function at the singularities of the Coulomb potential
corresponding to the coalescence of two or more particles.

For an N-electron atom with the infinite nuclear mass
approximation, Kato [24], proved the following cusp con-
ditions:

(46)

where rqq is the distance between the coalescing particles
1 and 2; C is 4 averaged over a small sphere about the
singularity. p = 1/2 for an electron-electron singularity
while at a nucleus-electron singularity p = —Z where Z
is the nuclear charge.

Bingel [25) integrated Kato's result and removed the
spherical average restriction by adding an angular de-

pendent term. He used the resulting equation to derive
the cusp conditions on the first order probability density.
Steiner [26] has also derived the cusp conditions on the
probability density of an N-electron atom.

Roothaan and Weiss [27] showed that the exact wave

function for the ground state of heliumlike systems sat-
isfies

E = (K) + (V), (45)

Jl

where A and V are kinetic and potential energy opera-
tors and

t'1 841 1

(4 Br12) „o 2

and

are kinetic and potential expectation values, respectively,
and if @ is a true wave function then, given that the
potential is Coulombic, the virial theorem holds in the
form that the negative of the potential energy is twice
the kinetic energy.

Although the energy of an approximate wave function
may be good even if the virial theorem is not well satis-
Ged, the extent to which the virial theorem is obeyed is
an added indication of the quality of the wave function.

The fourth through seventh rows of both Table V and

where rq, rq, and rqq are the electronic and interelectronic
coordinates.

Pack and Byers Brown [28] extended the earlier stud-
ies by deriving the more general conditions for the coa-
lescence of a pair of particles when all the particles are in
motion. They showed that the cusp condition for a parti-
cle pair, provided that the wave function does not vanish

at coalescence, could be expressed in Bingel's form as

(C )„qq —0 [1 + +1~2012+12 + r12 ' F12 + 0(r12)] (48)

Here Z; is the signed magnitude of the charge of par-
ticle i in units of the proton charge and p~~ is the re-
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TABLE VII. Table to show how cusps are related to the scale parameter K and the energy E
(hartrees) for a selection of atoms.

Z
2

K
0.2
0.3

U
1.99016379823
1.99148850079

T
0.489857567478
0.486600579669

E= —K~
—2.903724377017
—2.903?24377014

0.2
0.3

5.99071635898
5.99234587013

0.490429163665
0.487949802254

—32.406246601891
—32.406246601877

10 0.2
0.3

9.98933951132
9.99250079790

0.490539299114
0.488199510524

—93.906806515027
—93.906806515017

duced mass of the particle pair. The coefEcient of rq2
is the equivalent of p in Eq. (46). The vector uq2 is an
unknown vector. If the wave function does vanish at co-
alescence then the cusp behavior is not determined by
the Coulomb singularity. In the present case this means
that the electron-electron cusp values should vanish in
the triplet states.

The energy eigenvalues, discussed previously, depend
on the whole of space, rather than on its properties at a
particular point and good results for a cusp value cannot,
of course, guarantee good energy results. But good en-

ergy results and good cusp values indicate that the wave
function is good. In the clamped nucleus approach it
would be expected that the exact solution for the sin-
glet, up to linear terms, could be written, after suitable
scaling, as

4 = 1 —Z(rg + r2) + -rg2 +

i.e., with cusp values —Z and 1/2.
Representing the expansion of our solution in the form

4 = 1 —U(rg+r2) +Tri2+. . . ,

the values of U and T should approach the exact values
of Z and 1/2, respectively, as the basis set size increases,
and are given in Table V for the wave functions for Z = 1
to 10, from the fixed-nucleus calculation.

The isolated fifth subrow for U and T contains the
cusps obtained from a Pekeris-type calculation, i.e., with
K=1 at a matrix of size 1078.

As can be seen, the scaled electron-nucleus cusp is bet-
ter than the Pekeris cusp by 5x10 for Z = 1 and better
by 2 x 10 for all other Z's. The improvement in using
scaled energies rather than Pekeris-type energies is even
more marked for the electron-electron cusp, i.e., 7 x 10

for Z = 1 and about 1.5 x 10 for all other Z.
Table VII shows some examples of the variation of en-

ergy and of cusp values with scale parameter for a ba-
sis set of size 1078. It is interesting to note that if a
larger scale parameter was used, although a slightly worse
energy was obtained, the electron-nucleus cusp was im-

proved in the third decimal place. This confirms the ob-
servation made above about the behavior of the energy
and cusp values.

An analysis of the behavior of our triplet wave function
shows that for suKciently small r, it is of the form

X(r, —r2)

and it thus exhibits the theoretical behavior for the
electron-electron cusp value. There do not appear to be
any results for the value of X in the exact solution and in
the calculations carried out here, X became smaller and
smaller as the basis was improved. It seems likely, there-
fore, that the triplet nuclear cusp values really should
vanish and so the computed quantities are not recorded
in Table VI.
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