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The series solution method developed by Pekeris [Phys. Rev. 112, 1649 (1958); 115, 1216 (1959)]
for the Schrodinger equation for two-electron atoms, as generalized by Frost et al. [J. Chem. Phys.
41, 482 (1964)] to handle any three particles with a Coulomb interaction has been used. The wave
function is expanded in a triple orthogonal set in three perimetric coordinates. From the Schrodinger
equation an explicit recursion relation for the coefficients in the expansion is obtained, and the
vanishing of the determinant of these coefficients provides the condition for the energy eigenvalues
and for the eigenvectors. The Schrodinger equation is solved and the matrix elements are produced
algebraically by using the computer algebra system MAPLE. The substitutions for a particular atom
and diagonalization were performed by a program written in the C language. Since the determinant
is sparse, it is possible to go to the order of 1078 as Pekeris did without using excessive memory or
computer CPU time. By using a nonlinear variational parameter in the expression used to remove
the energy, nonrelativistic energies, within the fixed-nucleus approximation, have been obtained.
For the ground-state singlet 1S state this is of the accuracy claimed by Frankowski and Pekeris
[Phys. Rev. 1486, 46 (1966); 150, 366(E) (1966)| using logarithmic terms for Z from 1 to 10, and
for the triplet 23S state, energies have been obtained to 12 decimal places of accuracy, which, with
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the exception of Z = 2, are lower than any previously published, for all Z from 3 to 10.

PACS number(s): 31.20.Di, 31.10.+2z, 31.15.4q, 31.90.+s

I. INTRODUCTION

The helium and heliumlike atoms have attracted the
attention of many authors using different methods to ob-
tain estimates for the energies and expectation values of
various operators. The pioneering work of Hylleraas [1]
in 1929 demonstrated the importance of including ba-
sis functions which take account of electron correlation
explicitly. However, the expansion in powers of the in-
terparticle distances he used for the wave function was
shown by Bartlett et al. [2] not to satisfy formally the
Schrodinger equation. In later work Bartlett [3] sug-
gested that logarithmic terms were necessary in any series
expansion. Fock [4] showed and Morgan [5] proved that
such terms were necessary.

However, some of the most accurate results for the
nonrelativistic energies of the helium isoelectronic se-
quence, Z = 1 to 10, were provided by Pekeris [6] using
a wave function which did not explicitly contain loga-
rithmic terms. He used an expansion that consisted of
products of three Laguerre polynomials multiplied by an
exponential with perimetric coordinates as the variables.
These coordinates were first introduced by Coolidge and
James [7]. Using a method to be described later in
the text, Pekeris obtained recursion relations that led to
sparse matrices in which the number of nonzero matrix
elements grows only linearly with the number of func-
tional terms and this allows a large number of terms to
be used in any truncated solution.
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In 1966 Frankowski and Pekeris [8] (FP) developed the
Hylleraas approach by including logarithmic terms in the
series expansion. FP obtained their lowest eigenvalue
variationally to precision of one part in 10° to 10*° from a
nonsparse 246 x 246 matrix. By modifying the algorithm
for selecting the basis functions Freund et al. [9] obtained
energies accurate to better than a few parts in 10'3 using
a 230-term wave function for Z = 1 to 10. Drake [10]
superseded these results using 616 Hylleraas-type func-
tions with multiple exponential scale parameters, and the
most accurate energies to date for H™ and He are pre-
sented in the paper by Baker et al. [11], who perform a
476-order variational perturbation calculation by using a
combined modified FP basis and a Frankowski basis [12]
as one composite basis, similar to that of Kono and Hat-
tori [13] in their variational calculations on excited states
of helium.

Very accurate energies and expectation values of op-
erators have also been calculated using less traditional
methods such as the finite element method by Braun et
al. [14], and exact solutions using hyperspherical coordi-
nates by Zhang and Deng [15]. Haftel and Mandelzweig
[16] have also used a hyperspherical method for infinite
and finite nuclear masses and all other expectation val-
ues to a precision of a few parts in 10% and 10° for the
ground state.

The purpose of this paper is not to better these en-
ergy calculations but to show that one can increase the
rate of convergence of Pekeris’s algorithm [6] with the
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aid of a nonlinear variation parameter in the calculation,
and without going to a higher order of matrix still ob-
tain sparse matrices which yield energies to the accuracy
claimed by Frankowski and Pekeris. The wave function
cusps and the virial energies are also presented to show
that the wave functions obtained by this method are of
excellent quality using criteria other than the total en-
ergy. In the following paper this will be extended to the
case where the nuclear mass is finite and all three parti-
cles are in relative motion.

The algorithm of Pekeris for S states of two-electron
atoms has been generalized to spaces of arbitrary dimen-
sionality by Loeser and Herschbach [17]. Numerical cal-
culations were reported for the ground state (11S) and
first two excited states (23S and 21S) for a wide range of
dimensions, 1 < D < 0o, and nuclear charge, 1 < Z < 6.
They used the same definition of the perimetric coor-
dinates and wave function as Pekeris except that they
used a product of three generalized Laguerre polynomi-
als where the degree of the Laguerre o was set equal
to (D — 3)/2. For real atoms, with D = 3 and thus
a = 0, the calculations give precisely the results obtained
by Pekeris.

Frost [18] showed how the series solution (which is the
basis of the Pekeris algorithm) is equivalent to the linear
variation method, and Frost, Inokuti, and Lowe [19] gen-
eralized the series solution method to handle any three
particles with Coulomb interaction.

II. SCHRODINGER EQUATION
AND CHOICE OF COORDINATES

The equation to be solved is
HY =EY, (1)

where the Hamiltonian operator H is the sum of the ki-
netic energy and the potential energy operators.

The laboratory-fixed form of the Schrédinger Hamilto-
nian describing a system of three particles is

N 2 Z; Z
H@z)=-=Y m'v? 3 2
Z (2:) + 8meo Z_ zij )

where z; denotes a column matrix of the three Cartesian
components of the variable and = denotes the matrix of
the variables collectively. Otherwise the notation is stan-
dard and the separation between particles is defined by

o3 = ) (Taj — Tai)?, 3)

(s 4

with the o sum running over z, y, and z. However, Eq.
(2) has a continuous spectrum and so cannot be solved
for bound states as it stands. Fortunately, it is possible
by a linear transformation to separate the center-of-mass
motion from the full Hamiltonian of Eq. (2) and for that
motion to carry the continuous part of the spectrum.
The required linear transformation may be written as
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tXr)=zV. (4)
In the three-particle case V may be written in general as
a; — b1 as — b2 M;lml

—1
bl —C1 bg — C2 MT 1m2 (5)
Ci1 —a; C2 —az ME ms3

V=

corresponding to a choice for t; of

t; = ai(z, — z3) +bi(zy — z,) + ci(z3 — ), (6)

and Mt = (my + m2 + m3).
Hence the Hamiltonian Eq. (2) in the new coordinates
becomes

. B _, B - .
H(t,X7) = ‘MV (Xr) - 7”221#17 V(t;) - V(t;)
1 Z; Z
87"'50 Z f‘l] (7)
Here
N
= Zm;leinj, ,] = 12, ,N -1 (8)
k=1

and f;; is just z;; as given by Eq. (3) but expressed as a

function of the ¢;. Thus
N1 97 1/2
fii(t) = Z (Z (V" Ms — (K_l)ki]tak> . (9)
a k=1

In Eq. (7), the 6(;1-) are the usual grad operators ex-
pressed in the Cartesian components of ¢; and the first
term represents the center-of-mass kinetic energy. Since
the center-of-mass variable does not enter the potential
term, the center-of-mass problem may be separated off
completely so that the full solution is of the form

T(X7)¥(2), (10)

where

T(Xy) =exp(tkXr), k= (ks,ky, k),  (11)

and where the associated translational energy is

|E|?
2Mrp’

From now on the center-of-mass motion will be ignored
and we shall just consider solutions of the translation-free
problem specified by the last two terms in Eq. (7).

The general form of the reciprocal reduced masses for
the three-particle system is, from Eq. (8) and Eq. (5),

Ep = (12)

B2 )2 )2
i — (a'l, bz) + (b1, cl) + (Cl a,) , ;= 1’2
Hi my ma ms

1 _(a—bi)(e2=by) | (s —cr)(ba = c2) (13)

H12 my mo

(e —ai)(ea—az)
m3
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If interparticle coordinates are chosen by means of

0,1:]., b1261=0 and 02:--1, az=b2:0 (14)

to give

ty = (zy —z3) and t, = (z, - z3), (15)

then the reduced masses take the form

1

11 —1
My =my T +mg

, 1=1,2 and pg' =m3h (16)

The two-electron atomic problem can be considered a
special case of this where the ¢, are defined in Eq. (15)
and z is taken as the nuclear coordinate.

At this stage, one can either attempt to separate off
the angular momentum to get a body-fixed coordinate
system or one can try to construct angular momentum
eigenfunctions for the translation-free problem directly.
When considering atoms, in general it is not usual to sep-
arate off angular momentum because there is no unique
choice of a body-fixed coordinate system. However, in
the case of the two-electron atom or ion there is a unique
choice, namely, that system in which the three particles
define a plane. Two axes lie in the plane and the third
axis is perpendicular to the plane so that the whole sys-
tem is right handed. It is this body-fixed approach that
will be used here and it is described in detail in Sutcliffe
and Tennyson [20]. For present purposes, however, it is
sufficient to note that the the body-fixed Hamiltonian is
of the form

fl(f,g) = KVR(@ q) + KV(Q) + V(g)- (7)

The three internal coordinates g; are invariant under
orthogonal transformations of the translation-free coor-
dinates t. The three orientation variables are specified
by means of an orthogonal matrix C that puts the three
particles in the plane and which can be parametrized by
the three Euler angles ¢,,,, m = 1,2,3. The term Ky
contains operators and functions that depend only on
the gr. Ky g contains the angular momentum operators,
L, which are operators involving the ¢,, only. These
are multiplied by operators that depend on the g¢; and
so the term couples the angular motion with the inter-
nal motion. This term vanishes for states with angular
momentum J = 0 and there will be no need to consider
this term further in the present work, which is concerned
only with S states of two-electron systems.

V(q) arises from the electrostatic interactions and,
since these are invariant under the operations of O(3),
it depends only on the gi.

The form of Kyg depends on the precise details of
the choice of C but the form of RV is independent of
that choice and depends only on the choice of the gg.
Following Hylleraas we shall make the initial choice of the
three internal coordinates as the interparticle distances,
r1, T2, and 73 which are, respectively, the 3-1, 3-2 and 1-
2 interparticle distances. These are obtained by making
the choice Eq. (14) for the t; as in Eq. (15), then choosing

ri =|t;), i=1,2 and r3 =rip = [t; —t,| (18)

In these coordinates Ky becomes
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. RS 1 (0 ,0
Rvlrrars) = =5 [Z a (on7t2)

2 B 2
+ by 9 } (19)

j>i=1

/J.ij 87‘,’87"]'

where the internal coordinate part of the Jacobian is
r1rer3. In this equation, along with Eq. (16), the re-
duced mass terms are defined as
1 1 1 2
= +

M3 M1 M2 #12’
(20)

1 1 1

= — - —, 1=1,2
Hi3 Hi K12
and the b;; as
r2 +7r?— r2
bij = ‘_L___k’ (21)

’I".L"I"j

where here and hereafter 7, j, and k denote the distinct
different choices of the indices 1,2, and 3.

The problem with these coordinates is that since rq, 75,
and r3 (= ry2) are sides of a triangle and so connected
by the triangular condition, the domains of the variables
are not independent. This makes integration difficult,
but Coolidge and James [7] showed that a linear com-
bination of them could be chosen to have independent
ranges. These perimetric coordinates are given by the
relations

zi = (—ri + 71 +711), (22)

where i, j, k denote each of the choices 123, 231, and
312, and rq, r2, and r3 are as above. Each perimetric
coordinate ranges from 0 to co.

The kinetic energy operator in these coordinates has
the form [21]

. k2 2 0
Ky (z1,22,23) = -5 [Z (Uz‘iﬁ +'Ui£)

where the internal coordinate part of the Jacobian be-
comes z/8 where z is given by

r = (21 + 22)(22 + 23)(23 + 21). (24)

The quantities v; above are defined as

1 1 1 )
v; = 4 — + + )
( wilz +zk) w2+ ze) o pe(zi +25)
(25)

while the quantities v;; are

1 1 1 b; b; b;
uii:<~+~+———i——f—+i‘), (26)
H1 H2 M3 :



49 SOME CALCULATIONS ON THE GROUND AND LOWEST-. ..

and the v;; are

1 1 1 b;;
Vi = (—————+—+—]->. (27)

Hi Hj Mk Hij
The b;; are just as defined in Eq. (21) above but expressed
in terms of the z; are

bij = 2[z — 22;2(z; + 2j)]/x, (28)

where z is given in Eq. (24).

The two-electron atomic problem
with fixed nucleus

In the special case of a two-electron atom or ion with
the 7; defined as in Eq. (18), m3 can be considered the nu-
clear mass. The fixed-nucleus approximation is then the
same as the infinite nuclear mass approximation where
m3 — oo and m; = my = m, the electronic mass, so
that

1 _ 1 1 1 1 2
mom mom omom
(29)
1, L_ir o1 _1
H12 H13 m K23 m

and the Hamiltonian simplifies somewhat.

Hylleraas discovered that asymptotically the wave
function behaves as exp(—ks/2) where s = r; + rz. The
asymptotic behavior of the solution of the Schrodinger
equation, ¥, for large s requires that in the exact solu-
tion k equal 2¢, where

e=+V-E, (30)

and FE is the electronic energy. Hence, Pekeris set k =
+2v/—FE = 2¢. However, we use the relation suggested
by Frost et al. [19] to remove the energy, i.e.,

J

P =4uv(u+v+ w)(Fyy
+2ow(2v 4+ w)(Fyy — Fu + 2F 4w
+4(u+v)(u+v+w)(2F, — F) +

Q=4Z(u+v)(u+v+w)F — (2u + w)(2v + w)F,

S =—(1/2)(u +v)(2u + w)(2v + w)F,

where Z is the nuclear charge and the subscripts desig-
nate partial derivatives. The quantities P and @ arise
from the Laplacians and the Coulomb terms in H, re-
spectively, while S arises from the energy E.

IIT. METHOD OF SOLUTION

To solve Eq. (34) Pekeris chose F' to have the form

> Al m,n) Li(u) L (v) Ln (w), (35)

l,m,n=0

— Fy + Fyy — Fy) + 2uw(2u + w) (Fya
—2F,) — 4(u? — v*)(Fy — F,) + 2(2u + w)(2v + w)(Fy + F, — 2F,)
(1/2)(u + v)(2u + w)(2v + w) F,

4523

E=-Ké, (31)

where K is a nonlinear variation parameter which with
a suitable value increases the rate of convergence. To
reduce calculation, Pekeris defined his perimetric coordi-
nates by including the energy parameter €, and including
a factor 2 in his third coordinate so that his somewhat
asymmetric coordinates and their inverse were defined as

’U.=€(T‘2+'I'3—T‘1), ’l):€(7'1+’!‘3—7'2),
w = 2¢(ry +r2 —13), (32)
2v+w 2u +w and r u+v
rL = , Ty = , = .
! 4e 2 4e 3 2¢

Thus
(u+v+w) =2e(ry +72) = ks,

and the wave function takes the form
T = e 2 (W) Py, v, w). (33)

If the wave function above is, in principle, an exact
form, then, using the kinetic energy operator Eq. (23),
the reduced masses of Eq. (29) for the case of infinite
nuclear mass, and scaling the perimetrics of Eq. (22) as
in Eq. (32) above, i.e.,

w
z1 = , and 23= —,
2e

u
R 22 =
€

(OS]

the Schrédinger equation (H — E)¥ = 0 becomes (after
dividing out the asymptotic factor and multiplying by
the Jacobian, then dividing by ¢)

Q+(P+KS)e=0. (34)

Here,

—Fw+2Fww_2Fuw)

—
where L,(z) denotes the normalized Laguerre polynomial
of order p. The Laguerres are appropriate for the region
zero to infinity and with an exponential weight factor,
e , are an orthogonal system.

By using the basis set involving Laguerre functions of
perimetric coordinates Eq. (35) and use of the recursion
relations

gL} (z) = (z — 1)L, (z) — nLn(),
zL! (z) = nLp(z) — nL,_1(z), (36)
Ln(z) = —(n+ 1) Lny1(2) + (2n + 1) Ln(2)

—nL.,,_l(:c),
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W/ (Wy— WIC— NPT+ WWI9 =32 -~ WMT+Ph— WW3 T+ W+ WZe— AWUZ — Wuwy) (1 +u)wug— I - 0
W/ (NT—Py— WWI T+ NP~~~ WZT—Wd3p — WG+ WP T+ W+ Wwg — Wud) (1 +u)1g— I 0 -
W/ (WwW§+ Wusg — WwdZ — WM S+ WZh — W?E—wWp+ WU +wdp— We+35— 1Py — WP — WPY ) (1+1)we— 0 - T
W/ (PY—WPE—uWh+ WU T+ WPT— WZV— WU T — NT+2C— WS+ WPYV+wepy — wwag — w3 p) (1 +w)1g— 0 1 1-
N/ NUWZ 9T — WUu23] 8T + W U3 9 + W 4173 81 + WUIZ 9T — WU, W3 87 + AW W3 ¥ e+
W3 8T + W U 0T + JNU,12 8T + N UWAS OF + JA ;W12 9T + W, 13 9T + WUWd 9p + WU, W23 T + W ;WP ¥T + WP 95+
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ANWZ 8F — WU8 + U,WdpT + UP T + U, 1357 + WP 8h + ;WP 91 + Wuwe g + W1Z 8% — W12 91 + W 0T + uwd b + W,u9 + WZ Te—
WNIBT+ AUPT + ANWZT + W2 9T + uwipd gg + W23 91 + 291 + ;W3 07 + U8Z + ,17 07 + U b + 17 TE + W g + UP by + ,uwd  + Ww] 91— 0 0 0
W/ G+w)(T+u)(W—c—- W) PT 1 I -
W/ G+w) @+ (W -2 - Wx)wyg 1 - I
W/ Q+w)(a+)W—-2—- Wi)uwe 1 I I
we/@-mws—wx) T +u) (g +u)w 4 - 0
We/ @-ws—wx)(T+u)(¢c+uw)p z 0 -
W/ @-ws—nwx)a+n+nw - 0 z
W/ (e—Ws— W) (1 +w)(g+w)u 1- z 0
W/ W—2—n3)(1+w)(z+w)pe 0 4 1-
W/ W—-z-wx)(1+1n@+nwg 0 1- z
W/ (Weps—mizv - we - Wict
NTWS § + WUPRP T+ WP €+ W29 — NP L+ WU ¢ + NW2) L+ Wuw33] ¢ + WUPY ¢ + WUW2 g + WwWpPX v+
Eﬂsuxm+2m§m|252|wam+2:vm+%@«Eswxszw+2§:ETEEN+NE£|TS|EWSL@xéiafgv I 0 0
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W/ (NZT—W?T~W+29— NwWsg+wdp— W +PF— WP+ NPT — Ww)) (1 +u)(g+12)— T (] 1
W/ (NM6+WUZ— WZY — IN?S — WU T+ WNT+2C+wWh+ WPV + WIPT— AW Z — WwaX b) (T+w)(c+18)— 0 1 I
W/ (NP + W3 + NP — WWd — WaX + W +2¢ —weg— W3 —12g—) (T +u) (2 +u)- 4 0 0
W/ NPV + WP +20+wWh+ WP E+ WU T+ WZ Y — WU g) (T +w) (¢ +w)— 0 4 0
W/ (AW T+ Ww v+ W E+22+Wv+ W+ WZv — Wuwz) (1+1) @ +1)— 0 0 4
W/ a+w(a+w)(T+1)@k—-mw—-wx)2c I 1 I
we/ @+w)(@—mw-wx)(Q+uw)(z+u)? 4 1 ]
W/ a+u)y(@e—mw—mwx)(1+w)(z+w)? 1 t4 0
We/ @+)@—-mw—nwx)(T+uw)(z+u)> 4 0 T
T+ -3 a+w)(c+w)sg 0 4 1
W/a+w)@-mw-wx)a+n@+1> I 0 w
T+w)(a->)a+n@E+D2¢ 0 1 z
(u‘w ) *dey A d 0
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W/ @—W—W)vwpyg

W/ (1 —w)(@— W — W) vw>
we/ (1—-u)(T— W — W) vws
we/ 1—uw)(@—wW-— WXx)up
(T —w) (1 -3)1wg

W/ aQ-0@-Ww-— W) up

T-Da-x)wpe 0 1- -
W/ (Wy—22—1PF — WWIT — WZ T — WWIX T+ W3 + WW) + WP T+ W) uug— - - 0
W/ (PY—22C— WPT—Wp— WZT— WW + W g+ WP T+ WX + W)u1e— - 0 -
W/ (NWg =20+ WPT— AW — W —Wh+ WZV — WPV + WW ¥+ Wu ¢+ WX + N T) wg— 0 - -
W/ (W= NP +wsg —Pg— WX +22— W+ WP — WNW3 — yws ) (1 — u) u— - 0 0
W/ (WE+2C+ Wi+ Wug+ WU T+ W2+ WZV — WY T) (1 — w)w— 0 - 0
W/ (NPME+2C+ W>+ Wwa v+ WW g+ wp+ WZY — Wug) (1—1)1— 0 0 z-
W/ (T+u)(z—wW— WX)1wsg I - -
W/ G+w)(z—-mw-wx)upe 1- 1 -
W/ a+n@—-mw-wi)vwsg - - 1
W/ a+w)(a-1@-mnw-nwx)re 0 1 z-
W/ (-w)(@+1)@-W— W) wyg 0 - I
W/ (1-w)(1+u) (- Ws— W) w> 1 z- 0
W/ aQ+wa-nD-mws—-nwxnr 1 0 z-
We/(Q+w) (@ —u)(g—Ws— W)U z- I 0
We/ Q-w)ya+n@-mws—nwx)uw - 0 1
W/ (Wuwwsg+ W e+ W -
WWZ + WUWP ¥+ W WX €+ WY S+ WIWd b + WuwsX g + WIPE — WUST + WUPZ + WU 2+ WX €+ WIZv—
Ezvxm+§§m+ﬂ§o|EswmuEEN¢|ENSwm|%ol::|§N+2§néwm|2§+~§m|§2|ww|Emvzm - 0 0
W/ (Wuws 91+ WP TL+ T + WP v—
W] 9T + W TT + NIWI § + UP 9T + WUWI 8+ WIP T — WUS — WU L + N2X L+ WI1Z 9T — WU 8 + 12X 91 + WUZ 8—
ENE|Eﬂzuxm+=sw2+25w§+s§w£|N3|3+§w+:§2uswmr:::+E§+§£+§§+Eo+u&s 0 - 0
w/ ANSN + w8 + w3 9T + W wa3 g1 + Ww3¥ 9T+
NTW3 8 + UP 9T + NUWI 3 8 + WP TT + WU — WUP 9T + WU L+ W3 L+ WIZ 9T — WuP 8 + WP TT + ;3 p—
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all the derivatives and powers of the variables (u,v,w)
can be eliminated to obtain a 57-term recursion relation
between the coefficients A(l,m,n) in the expansion. (In
the case where K = 1 the 33-term recursion relation of
Pekeris is obtained.) This recursion relation has the form

+2
> Capy(l,mn)A(l+o,m+p,n+7) =0. (37)
a,f,y=-2

[The «, B, and v are defined by choosing a particular
A(l+a,m+B,n+7), see the coefficients of the recurrence

|

so that there are two solution sets in Eq. (35),

Fy(u,v,w) = Fy(v,u,w),

(38)
F,(u,v,w) = —F,(v,u,w).

The symmetric form for the singlet is
F,(u,v,w) = Z A*(1,1,n) Ly (u) Ly (v) Ly, (w)

I,n=0

+ > Ac(l,m,n)

l<m=1 n=0
X[Li(u) Ly (v) L () + Lin () Li(v) L ()]

while the antisymmetric form for the triplet is
Fo(u,v,w) = Z Z (1, m,n) [ Li(t) Ly (v) L (w)

—Lon (u) Li(v)

This symmetry also manifests itself in the matrix ele-

ments generated, thus this is taken account of in our

programs.
The “rules”

Ly (w)].

used for the symmetric case are

Line U0 - C((L,n),l,1U,n)/2,
LiynelU,m' \n' - C((l,Ln),l,m n)),
Lmne Ul n - C(l,mmn),l,U',n)),
Lmneol,m' n - C(I,m,n),l',m n))

+C((m,1,n), (I, m/,n")),

where '’ =1+ a, m' = m + 3, and n’ = n + v as noted
earlier.

These rules also apply for the antisymmetric case ex-
cept that the last condition becomes
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relation which are given in Table I for the general case
where Z, K, and M are arbitrary. The coefficient of that
A will be C, g4 and this is a function of [, m, and n, i.e.,
Ca,B,4(l,m,n). Therefore once an A(l + a,m + 8,n + )
is chosen all one needs to know is the value of I, m, and
n which is to be substituted into its coefficient. Hence,
Ca,p,~(l,m,n) of Eq. (37) could equally well be written
as C((I,m,n)(I'ym',n’)) where I’, m' and n’ are [ + «,
m+ 3 and n + v, respectively. This notation will be used
later.]

Because the coordinates u and v are electronic coordi-
nates, the Pauli principle requires that in Eq. (37)

(singlet spin state, para, or symmetric)
(triplet spin state, ortho, or antisymmetric)

f

Lmnel',m' n' - C((l,m,n),(l',m' n))
—C((m,l,n),(l',m',n")).

The numbering scheme involves collapsing each triple
of indices (I,m,n) to a single index. Equation (37) then

becomes
Z CiBr =0,
k

where for any given ¢ (= [,m,n) a particular set of k
(=1+ a,m+ B,n + v) are generated such that the Cj,
are given by the terms that coefficient A(l+a,m+8,n+
v) = By in the 57-term recursion relation. Each triple of
indices (I,m,n) is collapsed to a single index by means

of

(39)

k(l,m,n) = w(w + 22)i2w +5) 4 1-— igl)w N (1 _;m)
(l +4m)2 + 1-— (_81)l+m a1 (40)

for the symmetrical case and

TABLE II. Ordering of the indices I, m, n for the symmet-
rical and the antisymmetrical cases.

Symmetrical Antisymmetrical
l m n  w k l m nw P
0 0 0 0 1 0 1 0 1 1
0 0 1 1 2 0 1 1 2 2
0 1 0 1 3 0 2 0 2 3
0 0 2 2 4 0 1 2 3 4
0 1 1 2 5 0 2 1 3 5
0 2 0 2 6 0 3 0 3 6
1 1 0 2 7 1 2 0 3 7
0 0 3 3 8 0 1 3 4 8
0 1 2 3 9 0 2 2 4 9
0 2 1 3 10 0 3 1 4 10
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TABLE III. Energy of the 1'S state of H™ (Z = 1) with fixed nucleus showing the increased
rate of convergence when a scale parameter K is used.

—FE (hartree)
Pekeris value (K = 1)

Highest degree Matrix size Scaled value K

4 22 0.527630681 42 0.527669 054 63 1.3
8 95 0.527750016 51 0.527 750058 06 1.1
9 125 0.527750610 25 0.527750610 25 1.0
10 161 0.527 750859 79 0.527 750 860 44 0.9
11 203 0.527 750935 60 0.527750942 98 0.9
12 252 0.527750973 84 0.527750984 57 0.8
15 444 0.527751 006 30 0.527751011 88 0.7
18 715 0.527751013 39 0.527751015 84 0.6
21 1078 0.527751015 36 0.527751016 36 0.6

ww+2)(2w—-1) 1—-(-1)*
24 16
+l(m+n)+m (41)

p(l,m1 n) =

for the antisymmetric case, where w = [ + m + n. [The

term gH'Tml was omitted from k(I,m,n) in the Pekeris
paper because of a typographic error.]
Loeser and Herschbach used these formulas in a slightly

more general form

o0 +2)(20 +5) , 1-(=1)

k(l,m,n) = 01 16
+ (I+m+1)2
4
1—(—Hm

+

. 3
3 + min(l,m) + 2 (42)

for spin, s = 0—parahelium, and

(0 +1)(o+3)(20+1) + 1-(-1)°
24 16
1

+l+m+ Ilm+ (n — 1)min(l,m) — 3 (43)

p(l,m,n) =

for s = 1-orthohelium, where 0 = I+ m+n—s. A sample
of these numbering systems is given in Table II.
The infinite secular problem can then be written as

> (Fix — €Gix) B = 0, (44)
k

with the form of a generalized eigenvalue problem. The
elements of F' arise from the potential term Q and those
of G from the kinetic energy term P and the energy term
S given below Eq. (34). The infinite secular equation is
solved in truncated form of increasing size of up to any
order k (or p).

IV. RESULTS AND DISCUSSION

To show the effect that the scale parameter K has on
the energy it has been varied at each order of the matrix
and is shown in Table III for the hydride ion and Table IV
for helium.

In Table IV the energies in the third column can be
found in [6] but have been reevaluated here and are pre-
sented to 12 significant figures. The fourth column con-
tains the energies obtained for the fixed-nucleus problem
using a scale parameter, hence the heading of the column.

The best value presented by Pekeris, in his second
(1959) paper, for helium was rounded to nine decimal
places, i.e., 2.903 724 375, the value in the last row of the
third column of Table IV (in bold type). As can be seen
from Table IV (also in bold type), this value was achieved
at a matrix size of 252 by using a scale parameter of 0.4,
and if one goes on to a matrix size of 1078 as Pekeris
did, a marked improvement in the last digit can be seen,
i.e., 2.903724 377, which is better than his eztrapolated
value. It is obvious, therefore, that a scale parameter is
invaluable in a calculation of this form.

TABLE IV. Energies of the 1'S state of He (Z = 2) with fixed nucleus showing the increased
rate of convergence when a scale parameter K is used.

—F (hartree)

Highest degree Matrix size

Pekeris value (K = 1)

Scaled value K

4 22 2.903 688 986 12 2.90371394425 0.7
8 95 2.903 723389 08 2.903724 30491 0.5
9 125 2.903 723878 62 2.903 72434000 0.5
10 161 2.90372411115 2.903 724 364 62 0.4
11 203 2.903 724 228 32 2.903 72437160 0.4
12 252 2.903724 29041 2.90372437468 0.4
15 444 2.903 724 356 22 2.903724 37675 0.3
18 715 2.903724 37081 2.903724 376 98 0.3
21 1078 2.90372437476 2.903724 37702 0.2




HAZEL COX, STEPHEN J. SMITH, AND BRIAN T. SUTCLIFFE

68V¥8CLLY O
Y116626€S06V 0
0LSLS8TIVC98Y 0
L80692E60¥8Y°0
009926920LLY°0

18¥599586'6
ZETIS6EE686°6
9680L659166 6
E€CIT08LY986'6
9TLBEVTELRE 6

PP986€EL899 1T
96CITLYYT69 LT
V6TTTLYYT69 LT

YvT90CLLY 0
¢T0TI8692506V 0
89T6€9L6T98V°0
6¥860CLV0¥8YV 0
0GL9V8TY69LY 0

29G609986°8
VIETSS0L686'8
6V8EVVINI66'8
9GT8BLELIBE 8
8B0TSIEVILBG'8

V689T6EVEEY 61
GLBILIEELIB G
8LBTLIEELIB'GT

96LOTLLY O
LLLLBYS0S06F 0
066€EVS9ETIBY 0
EV6SL6886E8Y 0
96CCITLEBILY O

£8EVSG86°L
Z1L90190066 L
IS6T619S166 L
8GET6VR6986 L
¥992€T96986 L

IVVETTVEBGT LT
90TEILBETYO V1
YOTEILRETYO VT

£80869.L¥%°0
2G99E8VLY067°0
L090¥PLS098Y "0
T6L61SET6E8Y 0
66GL1900L9L¥%°0

T6E9¥5986'9
86650T0¥066'9
L000066¥166°9
LB80SG0ETTL86'9
VvLV699L986°9

GLGGB6CSEI6 VI

78G960L9L12°C1
08G960L9L12°C1

966089.L7°0
999€9162¥067 0
GT8TS609658Y 0
Y69€992TI8ESY 0
2E06ZTITSILY O

S99€S86'S
8689€91L066°S
09¥0v0CV166°'S
89C9911V.L86°S
99LLTILYSI86°S

TLOS68VI6TL T
LEIBSIVEEBE OT
P€963S90€L6E 0T

8G18999.¥0
1GET6ETT/LEYV 0
L8L86L66LG8Y0
SYV6SETLIEBY O
1¥S69€€9CILY 0

¥Sv0TS986°Y
299¥6992266'V
09¥0991€166 ¥
PLSTTI099L86'Y
8C991€6T986'Y

86ETOTVIS69S'8
I16ETO0TVIS699'8
19€T0TPIS699']

8L6619LY°0
096£022ST067°0
0TP6L1895998Y°0
0836SL9VERY 0
LGLEITLYBSLY O

G0EL6V86°C
PGEILSLITE6'E
9Z889IBITI66°C
PYTI0TTILBG €
9200L6L64986°¢C

9196900¥0€92'8
868V96EVLIVL9
698Y96EVLIVL 9

P80LGSGLY 0
L¥16808L006% 0
00TLS0L9TS8Y'0
GTIVVESSIESY 0
£€T99T62TSLY'0

16LL5V86°C
898199V1166'C
79922€E6066°C
0VLIBTEVLE6'T
T9LLEGSSSEB6'T

Y1TTLESOTEEON 9
[EVBEST609C6 'V
GLEBEGT609T6'Y

0689CV.LY 0
BLYLIGLGB68Y 0
C1686LGLTV8V'0
6LEETBLETBY 0
CYSEI9VIVELY 0

60¥SLESE'T
£286LEITO66'T
100010TS066'1
LT169V8EEIBE6'T
0¥86€L00586°1

GL9TV60€€018'E
T9098TCCTIIIT'E
CV6S8ITTITITE

£98900L7°0
8L6VEBGYOLLY O
G60L0VS6TELY O
¥¥82098L999%°0
LOST98STIGST O

TV9T1186°0
LG9966L6TLG86°0
G8ISV61LIERE O
250066C€68L6°0
66276898€TL6°0

0€LIPPETIBLEG O
PIIZYP6198LE6 0
8809GEVI62898°0

n

CETPLBOTTZE'S]  098899TSTPL'El  8SSTPPOOTIOT'ZT  LTTEPEIS08G'0T  CIPIPGLIS000'6  OSPE069THITH L  GSSS99IS8TPS'S  8ETOLVOTINOTY  LEEIVSOIEV69T  60L8VPCTITEIs80 () + (Ah-
PPI86EELRI9 TIC  S689CT6EVEEY 61  OVVETTYESGT LI GLSSG86TSEI6'F1  TLOSESPI6TL'CT  66ET0TPIS69S'8  9196900V0€9C'8  VITTLESOZEE0'9  SGLITVEOELEOIR'E  0ELIVPEI98LES O
96CITLYPT69 L1 GLBTLIEELIR'GT  90TEILSETYO'VT  TRS960LILIT'TT  LEIBSIOEE6E 01  TEELIOTVIS69S'8  868VI6EVLIVL'9  [EPBSST609C6'y  19098ITTITIT'E  VIICYPET98LEG O
P6TITLYYT69 LT PLBILISELIR'ST  POTEILSETVO'PT  089960L9L1T'C1  PEI6SI0EE6E01  09ETOIPIS69S'8  698FI6EVLIVL'9  GLEBSGI609C6'Y  CP6SBITTILIT'E  880SSEVI6T8I8'0
CETPLBOTZTE ST 098899TCGTFL'ET  S888IPPIOION'ZI  LITEPETB08G'01  TIVIPGLIB000'6  9SV6069THICH L  T8BG99TS8ZYS'S  VETOEVOTIIOT'Y  LEEIVBOIEVEI'C  6TL8YPTTITTI®O o) -

09986€€L899 12~
L8TITLYVT69 LT~
€0ETTLYYT69 LT-
VI8ELB0TTTE ST~

V6TLELIVLEE €V
£89TYV68¥8E GE
L6GCYY68Y8E G

0069T6EVECT 61~
998TLIEELIB GT-
BLBILIEELIB G-
[0G8991GTIVL €T

G6LEG8LBII8 BE
TVLEVELOVEL'TE
TGLEVELIVEL TE

CSVETTVERGT L1~
S6TEILBETYO V1~
Z0TEILBETYO V1~
LLVIPVI0191°C1-

8689V V8996€ VE
T0V9TSLLYBO 8T
90V9TSLLYBO 8T

08G986T9EI6 VI~
0LG960L9L12°C1-
1LG960L9LTCC1-
6£9ZVET8085 01~

PATIL6S0LT6°6C
TSIE6TVESEV VT
TISTEBIVESEY VT

9L0S68V16CL°TI-
¢T96S90€E6E 01~
8196590€£6€ 0T~
6GLG€GL98000°6-

LVT06L6C8SY'ST

6GC61ET1998L°0T
7ST6TIETI98L 0T

€EETOTPIS69S'8-
PICI0TV 156998~
ZOL10TIPTS699'8-
£8GC0691VICY L~
€LT0T8TO6ET LT

T920C8C06€ET LT
9YT0TVTO6ET LT

L996900¥0€92 8~
CLIVI6EVLIVL O~
00SY96EVLIVL 9~
T0TLSITS8TYR'S

876£108092S°91
LG6T6L8VECT €1
9E6THLBYEGY €1

00€TLESOZEE0 9~
9Z188S1609T6 V-
V6695160926V~
PLIBIVOTTIO9T ¥~

TSYPLOTP990°CT
99G911E81CE8'6
69€9TTEBITSY 6

1922V60€€018°€-
909G8ICTITIT €
POVLBICCITLIT €
GLTTIEBOLIEV69'T-

9E6EBBTY90C9 'L
L991LEYVTTLTY
90VELEVITTTT'Y

EV6LEVETIIBLEG O
69956V6198LE6°0-
L69CC9V16T898°0-
20661CVC12TI8°0-

LOVBBBETLGLS'T
L9LEGBETLSLR'T
8LLL6BTBSGIEL'T

IV6LYLICYYO 0€  T9ELEEEOE8Y LT  GIEEBVTITTE YT  9SGLSRITITIT'IC  LTLLOSELTIO0'S8T  FOTIBEESTHY' VI SOETEEOLS8I'TI  TIGSYSOPTTES'8  CT9LLITTIBRE G £98999¥CV¥C9'1 (A -
L20S19908906'€6 0S6E£9ETTLIES GL 6VLTTIS6S9S1 6 GOLSPISPVISL PP 1681099¥C90F CE TTTO8STLE0E0°CT LIVSETIISSSIET  TIZIPETI66LT'L LIOLLEVTLEOG'T G6SEITOTSLLTS O
086719908906'€6 Z06E9ETTLIES SL 00LZTIS6G9ST 6S STLSYISYPISL PP IV8I099¥CI0F'CE SG8TO8STLE0E0°TT 99EBETHISSSI €T  €T9TTPET66LT'L  I869LEVTLEO6'T  00V8STOTSLLTS O
96719908906 €6 PTLEIETILIES GL 8TSTTIS6SIST 6S SPSBVISHYISL'FF  LLITO99VTIOV CE GTO0SSTLE0E0TT LOTBETIISSSY'ET  6VPTIVEI66LT L  8SLILEVTLEO6'T  9VSSITOTSLLTS O
80£T19908906°'¢6 OVZI9ETILIES GL 6FV00TTS6S9ST 65 9LOIVISPVISL' VY LIT66S9VTI0V'TE €8SLLSTLE0E0'TT 008SET999999°€T  SITOIPEI66LE'L  SLIVLEVTLEO6'T  TLLSVBE0SLLTSO 2>M

YP986€€L899'1C  V6RITEEVEEY 61  IPPETTHEVGT LT  GLGG86CSEI6' VI TLOS68VI6CL'TT  66E10IPIS69S'8  9196900¥0€92'8  PITTLESOTEEN'9  SLITVE60ELEOIR'E  0ELOVVEIIBLEG O

96TITLYVT69'LT  SLSILIEELIS'ST  90TELILBETYO' VI  Z8SI60L9L1T'CT  LEIBSI0EE6E 01  T6ETOTPIS69S'8  868FI6EVLIVL'9  1EPBSSI609C6'V  190981TTITIT'E  VIITYP6I98LE6°0

V6TITLYYT69 LT DLBILIEELIS'ST  VOTEILBETFO'VI  08S960L9L1C°CT  FEY6SY0EE6E 0T  09ETOTVIS69S'8  698FI6EVLIVL'G  GLEBSST60926'F  TV6S8ITTITIT'E  88099EVI6T898 0

CETPLBOTTZE' ST  098899TISTPL'ET  888IVYPIOTION'CT  LITEPETRO8S0Y  ZIVIPGLI8000°6  9SVE069TVICH L  C88G99TS8THR'S  8ETOELYOTIIIT P  LEEIVBOIEV69'C  6TLBYYCTITTI®'O =

0 z'0 z0 20 20 €0 20 0 0 90
€0 €0 €0 €0 €0 £0 €0 €0 €0 90
€0 €0 €0 €0 €0 £0 €0 €0 €0 L0
¥ 0 ja) v 0 ¥ v0 0 ¥0 0 0 80 M
01 6 8 L 9 g 14 € [4 T z

4528

"PaXY STR[NU Y)m 0yels G| T 9y} 10§ St
Siq, "(1=)7) uonje[nored SLLayod |L0] © WOIJ paurejqo senjes dsno oyj aIe J, pue ;) Jo mol YRy syj) pue .01 Pue ‘ST ‘Fhy ‘7Cg 19PpIo Jo $9zIs Xujeur 0} puodssriod MOI yord
UT SMOIQUS INOJ 9], “}X9} 9} Ul PaQLIOSap Se onpea dsnd uoIjoa[e-untjde[e ayj SI j, pue onfeA dsnd SNaONU-U011dI[d ay) ST /) "SIUN 9SaY) Ul OS[R IR son[ea uorjejoedxa ay) pue
g (seoxyrey) JO SYUN UL ST 5 "WDIOdY) [RLIA 3Y3} I0] Sonfea uorejnadxe snowea pue ‘(searyrey ur) 2y — A810us oYy > rojourered A31ouo oy ‘37 1ojourered o[eos oyJ, "A TIV.L



4529

SOME CALCULATIONS ON THE GROUND AND LOWEST-. ..

PYSTISLGLEBOL'S
T169€LTSY960E°6
09096£9€€012'8

CELBTVILLYTS L
TELBCYILLYTISR L
TTETGTI9TLLE L

I8STVL6ECTIV6 9
18STVL6ETIVE 9
TS1889€ITYYS 9

6C09TEETBLS09
6C091EECTIBLS0'9
89999TT9ETTL'S

TESV6LLYSYLT'S
TESV6LLYSYVLT'S
T18LIVV0T98L8 ¥

L66VL0EEOV0S'E
L66VL0ECOVOS'E
L6T8L8B0TIVOY

S96¥80C0vVY9°€
92S6908SVEBL'T
S6T111009CV29°C

GYSS8CEEI016'T
02TVI8LGLL86 T
9GGSTIRETLESD'T

S8TLLLIGSYIVT'T
LTLLLT68YOVC T
CTOLLLI68YIVT'T

CT1919080068L°L 10262£889866°9 TOTY9SEEVB0T 9 €80¥9S0CT991°G 9TV981698C1V'V 68VV81EV86S9'E 8LV6908SVE8L'C TETPIBLGLT86'T S6Y96V0LTTET'T ((31) +(A))—
SYSTGLSLEBOL'8 CELBTVILLYTS L T18STPL6ETTVE6 9 0€091EETBLS0'9 TESVOLLYSYVLT S L66V.L0EEOVOS € S96¥80C0VVV9°'E GYSS8CEEI0T6 T 8TLLLI6SYIVT'T
T69€LTSY960E 6 CELBTYILLYTB L I8GTVL6ECTV6'9 6C09TECTBLSO0'9 TESV6LLYSYLT'S L66VL0EEOV0S'E 92S6908SVEBL'T 02CV9I8LSLTR6'T LTLLLTIESYOVT'T
0S096€£39€€0TT'8 T2ETGTSITLLE L TG188G9€9CHYS 9 89G99TTIETTL'S 18L9VP0T98L8°V L6TBLBROTIVO ¥ S6T110092VL9°C 99GGTI861LEI0'T COLLLI68YOVT'T
¢1919080068L°L 10T62£889866°9 10T¥9SEEVB0T 9 £€80¥99021991°S 9TP981698C1V 'V 68VV8IEVB6S9°E 8LV6908SVE8L'T TETVIBLGLTB6'T S6V96VOLTTET T ()-
PYSTSLGLEBOL 8- TEL8TYTLLY TS L~ TI8STVL6ETTIV6 9- 6C09TEETBLG0"9 0ESPOELLYSYLT G- £66VL0EE0V0S €~ L96V80C0¥¥V9°€- £€998CEEI0T6°1- 80LLLI68YIVT 1~
€69€LTSV960E 6~ 0ELBTYILLYTS L- 6LSTVL6ETTTE 9~ LT09TEETBLG0'9- 6CSV6LLYSYLT G- LL6VLOEEOVOS €~ P0S6908SVEBLC- G8TVIBLGLTBE 1~ GLILLI68YIVT T~
6€£096£39€E01C'8- OTETGTSITLLE L- OvI889€9TY V<9~ 69999TTIETIL G- 8LLIVPOTIBLS V- CT1T8L880TIVO V- L001T009¢VL9°C- 9EVSTI86TLEID T LOLLLT68YIVT T
T9L19080068L°L- S0¥6TE€889866'9- €0VY9SEEYB0T 9 69L€G500T991°G- LETIBT6I8TIY V- EIVPBIEYB6S9°E- €268908S¥E8L°C- 66LE98LSLT86 1~ 0T066V0LTTET T (1) -
60€0STSLITY LT 9V LSBTYS6V9'ST 9TEBV6LYT88 ET 90C€99C9STTT1 906859606v€°01 0666719908002 C1669T708882°L 6L0TLG99C128°€ 9TVSSEBLETEY'T
8TLYS06T619'8T 9V LS8V 6V9°ST 9TEBY6LYTR] ET 90C€99CI9ST1°TT 9068356067€ 01T YL66¥1990800°L 0€06ETIT6995°G POV8TLSTSS96'E T16E£SSE8L6T6VC
6026L0L902V'91 €92090€SVSL V1 629L1LTS880°€CT E1EEETTLTTY'TT 69SE680CTLSL6 60¥9GLLT2260°'8 2022300298V E'S C660€96EVLTTV 69V3GEBLETEV T
LEETTITOBLS ST T98G99LELE6 €T 098CTLI8ITY T V8LOTIVTTEE 0T £99CLEBELGTS'S €0689€98961€"L T0¥8€T191699S°S TE6LTLSTSG96'E 90$9660¥£29Z°C (A)—
€L0V85979899°09 8T96CE8EITR6'8Y G800TELYIVY S 8E T6VLELTBILGE 6T 80€T0659SL0CV 1T €I8BVELGBEEL VI LLL68S99TL6T 6 89GTLELTLOTT'S GETBLEGTTSLI'T
€L0V85979899°09 LTS6TEBEITB6 8V ¥800TELYIVY S 8E 06VLELTBILGE 6T L0€2069S202Y 1T LOBSVELEBEEL VT TLL68SI9TLET 6 €9GTLELTLOTT'S 0€T8LE6TTSLT'T
£90¥859%9899°09 80S6CE8EITRE 8V VL00TELYIVYS 8E I8VLELTIBILSE 6T L6220695L0CV°1T C088VELEBEEL VT TCL68S999TL6T 6 CYSTLELTLOTIT S 8LIBLEGTTSLT'C
998€85979899°09 86C6CE8EITRE 8V 9G861ELVYIVPS'8E SYCLELTIBILSGE 6T ¥90206SSL0CY 1T 09G8VELEBEEL VT TSV68S991.L6C 6 90TTLELTLOTT'S 0¥99LE6CTSLTT 22
SYGTGLSLESOL'S CTELBTYILLYTR L I8GTIVL6ETTV6 9 6C09TECTBLS0'9 TESVOLLYSYLT S 866V.L0EE0V0S '€ GS6V80C0VFY9'E GY9G8TEEI0T6'T S8TLLLIG8YIVT T
T6GELTSVI60E6 CELSTYILLYTS L I8STIV.L6ECTV6'9 6209TEETBLSGO9 TESVOLLYSYLT'S L667L0EE0V05°€ 9296908SVE8L'T 0ZTV98LGLT86'T LILLLTI68YIVT T
05096€£39€€012°8 TTETSTIITLLE L 1S1889€92¥¥S°9 89G99TT9ETIL'S T8L9VV0T98L8Y L6T8L880TIVO ¥ S6T1T009CVL9°C 9GGGTI86TLEIDT CTOLLLTESYIVT T
Z¢T1919080068L°L 10262£889866°9 TOTV9SEEYB0C 9 C¢80%SG02T991°S 9TV981698C1V 'V 06VP8IEY86S9°€ 8LV6908S¥E8LT TETYIBLGLTS6'T S6V9I6VOLITET T B
80 80 80 80 80 1 L0 VI v
L0 80 80 80 80 [N ¢l €1 vl
60 60 60 6°0 6°0 6°0 €1 1 v
(U 01 [ Il 11 i1 c1 €1 LT D |
0ot 6 8 L 9 S 14 € 4 4

“PoxXy snaponu

Y3m 93eIs G g 9Y) 10§ ST SIYT, ‘801 PU® ‘GIL ‘Fip ‘¢Gg 19PIO JO S9zIS XIIjewr 0} Puodsaliod MOl Ydes Ul SMOIQNS INOJ SYJ, "SHUN 9SOY} Ul OS[e dIe SanfeA uone)dsdxs ayj pue
z (seexyrey) JO S3IUN UT ST 3 "WISI0OY] [RLIIA B} IOJ SoN[eA UOIFe}oadxo SNOLIeA pue ‘(sea1prey ul) .5 — AS31ous oY) ‘> 1ejouwrered A31ous ayj ¢ 37 19jowrered oeds oy, ‘TA ATAVI



4530

Pekeris, in his second paper, took only helium to in-
creased convergence. In his first paper he calculates the
ground-state energy for Z from 1 to 10 using a matrix of
size 203 and then extrapolates. His energy for helium has
only converged to six decimal places at this matrix size.
He then proceeds, in his second paper, to take helium to
nine decimal places of convergence, corresponding to a
matrix size of 1078. Therefore Table V fills in the gaps
that Pekeris left. The 115 state energy of the helium
isoelectronic sequence Z = 1 to 10 is taken to increased
convergence and shown in the third row of Table V. The
four subrows correspond to energies from matrices of or-
der 252, 444, 715, and 1078. These are presented so as
to exhibit the rate of convergence of E with increase in
the order of the polynomial used.

Of the triplet states, Pekeris discussed only the triplet,
238, state of helium. The convergence of the 23S state
was more rapid than in the ground state, a determinant
of order 715 was sufficient to achieve convergence to nine
decimal places. In Table VI results for the triplet state
for Z from 2 to 10 are given, including the reproduction of
the helium results of Pekeris but with the aid of a scale
parameter. The value of the scale parameter and the
energy parameter is shown in the first and second rows
with the energy in the third row. Again, the four sub-
rows of each property row correspond to data obtained
from matrices of order 252, 444, 715, and 1078.

The H™ ion (Z = 1) does not appear in Table VI as it
only has one bound state, which is the singlet state. This
was proved rigorously by Nyden Hill within the fixed-
nucleus (infinite-mass) approximation [22] and for the
case where the nuclear mass is finite [23].

A. The virial condition

Consider any system of charged particles interacting by
Coulomb forces. If in a certain system its Hamiltonian is

H=K+V

and its expectation energy

E = (K)+(V), (45)

where K and V are kinetic and potential energy opera-
tors and

o [v*Kydr

[*Vipdr
K = — v T
(K) T dr

and (V)= Tobdr

are kinetic and potential expectation values, respectively,
and if ¢ is a true wave function then, given that the
potential is Coulombic, the virial theorem holds in the
form that the negative of the potential energy is twice
the kinetic energy.

Although the energy of an approximate wave function
may be good even if the virial theorem is not well satis-
fied, the extent to which the virial theorem is obeyed is
an added indication of the quality of the wave function.

The fourth through seventh rows of both Table V and
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Table VI show the components of the virial theorem. As
can be seen for both the singlet and the triplet states
(K) is in good agreement with the energy parameter ¢

and (V) is twice that. The virial (K) + (V) gives ¢ in all

cases for all order of matrices (where E = —Ke?). For
completeness, (€} is calculated from
[ Sydr

= Toar

where S is defined below Eq. (34). This is possible be-
cause of the unusual formalism of the problem as the
energy parameter € is implicit in the wave function.

B. Cusps

The cusp conditions describe the behavior of the wave
function at the singularities of the Coulomb potential
corresponding to the coalescence of two or more particles.

For an N-electron atom with the infinite nuclear mass
approximation, Kato [24], proved the following cusp con-

ditions:
d
(6 ) = 1(®).,yer (46)
T12 120

where 75 is the distance between the coalescing particles
1 and 2; dis @ averaged over a small sphere about the
singularity. ¥ = 1/2 for an electron-electron singularity
while at a nucleus-electron singularity v = —Z where Z
is the nuclear charge.

Bingel [25] integrated Kato’s result and removed the
spherical average restriction by adding an angular de-
pendent term. He used the resulting equation to derive
the cusp conditions on the first order probability density.
Steiner [26] has also derived the cusp conditions on the
probability density of an N-electron atom.

Roothaan and Weiss [27] showed that the exact wave
function for the ground state of heliumlike systems sat-

isfies
1oey (108 __,
®0r1 /. o ~\@0r, ra=0 -

12y _1
P 3’!‘12 r12=0 N 2’

where 71, 72, and 71, are the electronic and interelectronic
coordinates.

Pack and Byers Brown [28] extended the earlier stud-
ies by deriving the more general conditions for the coa-
lescence of a pair of particles when all the particles are in
motion. They showed that the cusp condition for a parti-
cle pair, provided that the wave function does not vanish
at coalescence, could be expressed in Bingel’s form as

(47)

P = (D) L+ Zy Zapazriz + 12 - i1z + O(r]y)]. (48)

rz=ol

Here Z; is the signed magnitude of the charge of par-
ticle 4 in units of the proton charge and pq2 is the re-
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TABLE VII. Table to show how cusps are related to the scale parameter K and the energy E

(hartrees) for a selection of atoms.

Z K U T E = -Ké

2 0.2 1.99016379823 0.489857567478 —2.903724377017
0.3 1.99148850079 0.486600579669 —2.903724377014

6 0.2 5.99071635898 0.490429163665 —32.406246601891
0.3 5.99234587013 0.487949802254 —32.406246601877

10 0.2 9.98933951132 0.490539299114 —93.906806515027

0.3 9.99250079790

0.488199510524 —93.906806515017

duced mass of the particle pair. The coefficient of
is the equivalent of v in Eq. (46). The vector iy, is an
unknown vector. If the wave function does vanish at co-
alescence then the cusp behavior is not determined by
the Coulomb singularity. In the present case this means
that the electron-electron cusp values should vanish in
the triplet states.

The energy eigenvalues, discussed previously, depend
on the whole of space, rather than on its properties at a
particular point and good results for a cusp value cannot,
of course, guarantee good energy results. But good en-
ergy results and good cusp values indicate that the wave
function is good. In the clamped nucleus approach it
would be expected that the exact solution for the sin-
glet, up to linear terms, could be written, after suitable
scaling, as

¢=1—Z(T1+T2)+%7‘12+"‘,

i.e., with cusp values —Z and 1/2.
Representing the expansion of our solution in the form

‘I’:].—U(T'1+T2)+TT12+...,

the values of U and T should approach the exact values
of Z and 1/2, respectively, as the basis set size increases,
and are given in Table V for the wave functions for Z =1
to 10, from the fixed-nucleus calculation.

The isolated fifth subrow for U and T contains the
cusps obtained from a Pekeris-type calculation, i.e., with
K=1 at a matrix of size 1078.

As can be seen, the scaled electron-nucleus cusp is bet-
ter than the Pekeris cusp by 5x 1073 for Z = 1 and better
by 2 x 10~2 for all other Z’s. The improvement in using
scaled energies rather than Pekeris-type energies is even
more marked for the electron-electron cusp, i.e., 7x 1073

for Z =1 and about 1.5 x 10~2 for all other Z.

Table VII shows some examples of the variation of en-
ergy and of cusp values with scale parameter for a ba-
sis set of size 1078. It is interesting to note that if a
larger scale parameter was used, although a slightly worse
energy was obtained, the electron-nucleus cusp was im-
proved in the third decimal place. This confirms the ob-
servation made above about the behavior of the energy
and cusp values.

An analysis of the behavior of our triplet wave function
shows that for sufficiently small r; it is of the form

X(Tl - 1‘2)

and it thus exhibits the theoretical behavior for the
electron-electron cusp value. There do not appear to be
any results for the value of X in the exact solution and in
the calculations carried out here, X became smaller and
smaller as the basis was improved. It seems likely, there-
fore, that the triplet nuclear cusp values really should
vanish and so the computed quantities are not recorded
in Table VI.
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