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Calculation of doubly excited states of helium with a finite discrete spectrum
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Doubly excited states in helium are calculated with many-body perturbation theory to all orders
in the electron-electron interaction. A Snite and numerical basis set, rotated out into the complex
plane, is used. Results, for energies and widths, are presented for states with electrons in the n = 2

and n = 3 states. The possibility of an accuracy of a few parts in 10 is demonstrated. The method is

equally applicable to the study of doubly excited states of many-electron systems and the extension
to the corresponding relativistic procedure is straightforward.

PACS number(s): 31.20.Di, 31.50.+w, 31.20.Tz, 32.70.Jz

I. INTRODUCTION

The doubly excited states of helium have been the
target of a number of theoretical approaches. The im-
portance of electron-electron correlation in these states
makes them interesting test cases for accurate theoreti-
cal methods. The energy released when one electron falls
down into an available n shell below is enough to send an-
other electron out &om the same, or higher, n shell into
the continuum. Thus most of these states are autoioniz-
ing. The width due to the presence of this process is of
pure two-electron origin and is supposed to be especially
sensitive to the quality of the wave functions.

Among the methods applied to these systems are the
Feshbach projection formalism, which has been used by
Bhatia and Temkin [1,2], and the close-coupling approx-
imation employed by Oza [3]. The method of complex
rotation, which makes bound state methods applicable to
autoionizing states, has been used by Ho and co-workers
[4—14] and by Chung and Davis [15]. Recently the multi-
configurational Hartree-Fock method has been extended
to autoionizing states by Froese-Fischer and Idrees [16]
and Tang et aL [17] have used a hyperspherical close-
coupling method based on a numerical basis set.

Alternative classification schemes for doubly excited
states have been discussed and developed by Herrick and
Sinanoglu [18], Fano [19], Lin [20], and Rau [21]. A re-
view can be found in Ref. [19].

In this work we show how the methods which use finite
numerical basis sets [22—24] to produce accurate results
for bound states can be extended to autoionizing states
by the use of complex rotation. The change needed is
not very extensive and can be introduced in the non-
relativistic as well as in the relativistic schemes.

Here nonrelativistic calculations are performed for
doubly excited states in helium with the electrons in the
n = 2 and n = 3 shells. In Sec. II the method is briefly
described and the results are discussed in Secs. III and
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IV. Comparison is done with some accurate calculations
and with experiments, when available.

II. THEORY

This calculation uses complex rotation combined with
the method developed by Salomonson and Oster [22]. As
described in [22) the atom is placed in a spherical box
and inside the box a discrete radial grid is used. Diago-
nalization of a discretized one-particle Hamiltonian gives
a discrete basis set, complete on the grid chosen. The ba-
sis set is then used to construct correlated wave functions
to all orders in the perturbation expansion of the resid-
ual electron-electron interaction. The method has been
applied to several many-electron systems, both in its non-
relativistic [25—28] and its relativistic [23,29—34] version.
The method is able to provide accurate results as demon-
strated, e.g. , for the ground state of helium [22], where
the calculated total energy —2.903 72439 a.u. compares
well with the "exact result" —2.903724377034105(28)
a.u. [35].

When perturbation theory is applied to autoionizing
states it is obvious that the use of a discrete basis set
will cause problems close to the poles in the energy de-
nominator. A complex scaling of the radial coordinates
can, however, solve this problem. The method of complex
rotation has a rather long history [36—38] and has been
used together with several approaches to atomic calcula-
tions in order to be able to use these also on autoionizing
states. Ho and co-workers have combined complex rota-
tion with the use of Hylleraas functions [38,4—14]; Chung
and Davis have combined it with configuration interac-
tion (CI) [15].

Very accurate results can be produced with Hyller-
aas wave functions, for autoionizing states as well as for
states below the first ionization threshold. However, this
method is dificult to extend to systems with more than
two or three electrons. In contrast the method presented
here, which uses a multipole expansion of the electron-
electron interaction, is applicable to many electron atoms
in general. Provided enough terms are kept in the multi-
pole expansion, it is also possible to get agreement with

1050-2947/94/49(6)/4473 {S)/$06.00 49 4473 1994 The American Physical Society



E. LINDROTH

the Hylleraas calculations to at least six digits, as will be
demonstrated below.

The underlying theory of complex rotation has been
discussed in many articles [36,5,37] and only a brief ac-
count of how it is applied together with many-body per-
turbation theory and a finite discrete basis set will be
given here.

inary part gives half the width.
The basis set orbitals are normalized to unity and it

should be noted that the conjugate vectors (g ~

are conju-
gated before r is replaced by re', i.e. , the radial variable
is not complex conjugated. The orthogonality between
the basis set orbitals is not destroyed by the rotation, al-
though they now are eigenstates to a complex symmetric,
i.e. , non-Hermitian, matrix.

A. Complex rotation

The radial coordinates are scaled with a complex con-
stant r ~ re' . The radial one-particle Schrodinger equa-
tion then transforms to

h2 d2 52 l E + 1
~

' + e ' + ev(re jIP(re'' j2m dr2 2m r2

= eP(re' ). (1)

In [22] it is described how the unrotated Schrodinger
equation can be discretized on a lattice to yield a real
symmetric eigenvalue problem. With the complex scal-
ing we will instead have to find the eigenvalues and the
eigenstates of a complex symmetric (i.e. , non-Hermitian)
matrix. As in the unrotated case a choice of an N-point
lattice will give N orthogonal basis set orbitals. Since
the atom is put in a box, only the basis set orbitals with
negative eigenvalue, those which are confined in space,
will correspond to physical states. The eigenvalues of
these physical states will not be affected by the complex
scaling. This is expected since these states are vanish-
ing outside the box and the matrix equation represents
well the original differential equation (1), which eigenval-
ues should remain the same after a variable transforma-
tion. The positive eigenvalues, however, which eigenvec-
tors constitute a pseudocontinuum, will now be complex
numbers.

When the perturbation expansion is made with this
complex basis set the imaginary parts of the pseudocon-
tinuum energies will ensure that all terms are finite. The
summation over intermediate states corresponds to an
integration following a contour in the complex plane to
avoid the poles which are situated at the real axis. Pro-
vided the rotation is large enough to achieve imaginary
parts which are not too small when the real part of the en-

ergy denominators goes through zero, the numerical pro-
cedure is stable and the results will not be affected by the
speci6c rotation angle chosen. Typically only relatively
small rotation angles, 0 = 10, are needed to calculate
autoionizing states with both electrons in the n = 2 shell.
The result is then checked to be stable up to 0 —40 .
When both electrons are in the n = 3 shell, however, the
system can autoionize by emitting a less energetic elec-
tron and a larger rotation angle is needed. Generally,
a rotation angle of 0 = 35 is used in the calculations
presented here.

The correlated energies are calculated as described in
Ref. [22], but they will now be complex numbers. The
real part gives the position of the resonance and the imag-

B. The perturbation expansion

For doubly excited states of helium it is natural to let
V in Eq. (1) be the nuclear potential and treat the whole
electron-electron interaction as a perturbation. Since the
lowest-order description of all eigenstates which belong to
the same n shell now are completely degenerate it is not
possible to use a single configuration starting point for
the perturbation expansion. Instead an extended model
space is used [39,40,31]. The lowest-order wave function
is then described by a linear combination of all the con-
figurations, with the same parity, which are degenerate in
the absence of the electron-electron interaction. The ad-
mixture of all other configurations is taken care of in the
perturbation expansion, but the admixtures of the model
functions are decided by diagonalization of a small ma-
trix. A more detailed description of this procedure can
be found in [31].

As is well known it is in general meaningless to clas-
sify doubly excited states of helium with specific 8 quan-
tum numbers since these are often not even approxi-
mately good quantum numbers. Herrick and Sinanoglu

[18], Lin [20], and others have thus suggested classifica-
tion schemes based on new approximately good quan-
tum numbers. We have not employed these here, but
it can be noted that the model space consisting of all
degenerate configurations is equivalent to the so called
doubly excited symmetry basis of Herrick and Sinanoglu
[18]. Thus, for the lowest-order wave function the quan-
tum numbers of Ref. [18] are well defined. The use of
hyperspherical coordinates is more naturally connected
to the new quantum numbers than the usual indepen-
dent particle coordinates and has been advocated, e.g. ,

by Lin [20] and by Lin and Macek [41]. Tang et aL [17]
have used a numerical basis set and constructed accurate
wave functions in the close-coupling approximation ex-
pressed in hyperspherical coordinates. Their results for
the (ni ——n2 ——2) and the (ni ——2, n2 = 3) states agree
well with the results presented here for the energies, but
in several cases there is a marked disagreement for the
widths.

III. RESULTS

The states with both electrons in n = 2 have been stud-
ied with many theoretical methods. In Table I a compar-
ison is made between this work and the complex rotation
methods based on Hylleraas wave functions [9—11,13] and
on CI [15]. The later calculation includes partial waves

upton =3for the SstateanduptoE = 4
for the P state. This is probably the source of the
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small deviation from the results presented here, which
includes E = ll or 8 = 10 and are extrapolated
from there. The convergence pattern when higher S val-

ues are included is seen in Table II for the (2s2p) ' P
states and in Table III for the even-parity states. As is
usually found the triplet states converge faster than the
singlet states. After the 8 sum is extrapolated the re-
sults agree within a few units in the sixth decimal with
the results by Ho and Bhatia [9—11,13], where Hylleraas-

type wave functions were employed and thus no expan-
sion in partial waves is done. Oza [3] uses a very different
method based on scattering theory. The widths are ob-
tained kom the calculated phase shifts and he uses an
algebraic variational method. Also here the minor devi-
ation is probably due to the smaller number E = 3 of
partial waves included.

For the nonautoionizing state (2pz)sP some very ac-
curate calculations exist [42—44]. Here the (2@2) P state
is calculated together with the autoionizing states. The
width of this state then has to be zero by numerical
means. It is indeed approaching zero and with the nu-

merical setup used here a spurious width of only 10
a.u. is obtained, which reHects the numerical accuracy.

For the states with one electron in n = 2 and one
electron in n = 3 accurate calculations exist by Ho and
Bhatia [9—11,13] and by Oza [3]. The agreement between
the methods is generally very good, as can be seen in Ta-
ble IV. For the very narrow width of the third P there
is, however, a slight disagreement. The result obtained
here is 25'%%up larger than the result obtained by Ho and
Bhatia. Although there is a state of the same symmetry
rather close in energy —a (2E4E')sP state is ( 6 x 10
a.u. above [3]—which possibly could destroy the conver-
gence of the state in question, see below, there is no sign
of such problems. The width seems well converged and
in some other cases we 6nd results in good agreement
with Ho and Bhatia in spite of an even closer level of the
same symmetry. For example, ( 3 x 10 a.u. above the
highest S' state in Table IV there is another level of the
same symmetry. The second (3838')~P state in Table V
is another example, which is discussed below.

Also for the states with both electrons in the n = 3
shell calculations have been performed by Ho and Bha-
tia [9,11—14] and by Ho and Callaway [8] and the results
are listed in Table V. In most cases the agreement is
rather good. However, the width of the F state, which
Ref. [8] finds to be ( 1 x 10 s Ry, is here determined to
be 3.13x10 a.u. , i.e., 6.26x10 Ry. Although the per-
turbation approach used here has problems with a small
number of states, that does not apply to this state. The
problems, discussed below, arise when two physical states
are very close to each other and they manifest themselves
by, usually slowly, diverging energy values. The F state
is far away &om any other state of the same symmetry
and the width is converged to at least eight digits.

A few states with the same symmetry are extremely
close in energy. For example, the highest (2E3E') ~P state
is only 6 x 1Q 4 a.u. below the lowest (2/4t) P state
[10]. The highest (2E3E')~P state then converges slowly
and the prediction of the narrow width is rather unsta-
ble. That this width is very sensitive to the quality of the
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TABLE II. Convergence of the energies and widths of the (2s2p)' P states in helium when the
number of included partial waves is increased. The results are given in atomic units (a.u. ) for

energy. 1 a.u. = 2 Ry = 27.211396(1—
M ) eV.

(2s2p)'P (2s2p) P

&maz

&maz

&maz

&maz

&maz

=8
=9
= 10
= 11

-0.6929940
-0.6931160
-0.6931215
-0.6931251
-0.6931274

0.00137247
0.00137308
0.00137311
0.00137314
0.00137315

-0.7604845
-0.7604921
-0.7604922
-0.7604923
-0.7604923

0.00029882
0.00029885
0.00029885
0.00029885
0.00029885

extrapolated -0.693135 0.001373 -0.760492 0.000299

TABLE III. Convergence of the energies and widths of the even-parity states in helium with n& ———n2 ——2 when the number
of included partial waves is increased. The results are given in atomic units (a.u. ) for energy. 1 a.u. = 2 Ry = 27.211396
(1 —

M ) eV.

S (1) 'S (2) (2p')'P 2)lD

&ma* = 8

&maz

&maz

-0.7778665
-0.7778668
-0.7778670

0.0045422
0.0045419
0.0045418

-0.6218779
-0.6218919
-0.6219010

0.0002160
0.0002160
0.0002160

-0.7104992
-0.7104996
-0.7104998

-0.7019313
-0.7019356
-0.7019383

0.0023640
0.0023636
0.0023633

extrapolated -0.777868 0.004541 -0.621926 0.000216 -0.710500 -0.701946 0.002362

TABLE IV. Energies and widths of the n1 ——2 and n2 ——3 states in helium obtained with different methods. The results
are given in atomic units (a.u. ) for energy. 1 a.u. = 2 Ry = 27.211396(1—~) eV. The ' P' states and the ' D states are
nonautoionizing due to symmetry reasons.

Present Ho and Bhatja Oza'

'S' (1)'S' (2)'S' (1)'S' (2)
pe

3pe
'D' (1)
'D' (2)
D' (1)

'D' (2)'P' (1)
P (2)

'P (3)
'P (1)
P (2)'P (3)

1oo
3DO
1 go
3Fo

-0.58989
-0.54809
-0.60258
-0.55975
-0.58025
-0.56781
-0.56922
-0.55643
-0.58378
-0.56069
-0.59707
-0.56409
-0.5471
-0.58467
-0.57903
-0.54884
-0.56380
-0.55933
-0.55828
-0.56620

1.36 x 10
7.62 x 10
6.64 x 10
2.56 x 10

5.56 x 10
2.00 x 10
3.ox 10
7.51 x 10
3.84 x 10
3.01 x 10

&10"
8.23 x 10
1.88 x1O-'
1.6 x 10

1.28 x 10
2.34 x 10

-0.589895
-0.5480855

-0.569221
-0.5564303
-0.58378427
-0.560687
-0.59707381
-0.56408514
-0.5470927
-0.5846723
-G.57903099
-0.54884435

1.35 x 10
7.8 x 10

5.55 x 10
2.01x 10
2.86 x 10
7.5 x10
3.84399x 10
3.01057x 10
1.5O?x1O-'
8.225 x
1.8942 x 10
1.27x 10

-0.589865
-0.5478765
-0.602576765
-0.5597187

-0.569115
-0.5563903
-0.58378017
-0.5606695
-0.59?0725
-0.56401

-0.584652
-D.5790245
-0.54879738

1.38 x 10
8.27x 10
6.42 x 10
2.3 x10

5.7x 10
1.99x 10
3.21 x 10
7.4 x 10
3.89 x 10
3.1 x ].0

7.?x10
1.78 x 10
1.08x 10

Partial waves included up to 4 = 7 and extrapolated from there. The extrapolation does not change the triplet states to
the accuracy shown here. The singlet states change not more than one unit in the last digit, with the exception of the width

of the second 5 state which change from 7.49 x 10 to 7.62 x 10 after extrapolation.
Hylleraas wave fu ctions and complex rotation S, Ref. [9]; ' D', Ref. [11]; P, Ref. [10]; and P, Ref. [13].

'Close-coupling method, E = 3, Ref. [3].
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wave function has been demonstrated by Ho [10]. His re-
sult, 1.507 x 10 a.u. , was obtained with Hylleraas wave
functions with 1140 terms. With 969 terms a rather dif-
ferent result, 4.403 x 10 a.u. , was obtained. In Table IV
the result for the energy position of the highest P state
is given with fewer digits due to these complications and
the width is only indicated. A similar situation exists for
the highest (SESS') S state, which is 1 x 10 a.u. be-
low the lowest (3851) S state. In addition two (3/4E) S
states lie below the highest (SESS)~S state [9]. This sit-
uation cannot be treated without special considerations
and thus this level is not calculated here. Also the sec-
ond (SESS')~P state is very close, and above, the lowest
(4ESE')~P state. The difFerence is only 2 x 10 a.u.
[8]. As a consequence of this the width is less well con-
verged than for most other states, although the result in
Table V is accurate to the number of digits shown. This
result also agree well with the result by Ho and Callaway.

IV. COMPARISON WITH EXPERIMENTS

A. Photoabsorption experiments

The P states can be observed in photoabsorption ex-
periments. Since the classical measurement by Madden
and Codling [45,46], several measurements have been car- .

ried out [47—51]. These experiments measure the doubly
excited state relative to the ground state. To obtain this

energy difference we combine the results in Tables I, IV,
and V for the excited states with the vlaue —2.9037838
a.u. for the ground state. The latter value is the sum of
the helium ionization potential, including mass polariza-
tion and relativistic and radiative effects, calculated by
Drake [52], —0.903693 7 a.u. , and the relativistic He+ en-

ergy, —2.000 106 5 a.u. , corrected for radiative efFects [53],
0.0000164 a.u. The result in eV is obtained after multi-
plication with 27.207665, which is the conversion factor
corrected for reduced mass. The present results for the
excited states are nonrelativistic and without mass po-
larization, but the corrections due to these eKects have
been calculated for the (2s2p) P state by Chung and
Davis [54]. Their result was —0.26 x 10 a.u. , which de-
creases the theoretical value on the first row of Table VI
with 0.0007 eV, as indicated on the second row. Correc-
tions of this size are, however, beyond the experimental
uncertainty.

As can be seen in Table VI the theoretical result
for the energy position of the (2s2p) ~P state agrees
rather well with the experiment by Morgan and Ed-
erer [48], but according to the other measurements
the theoretical result is only just covered by the er-
ror bars. There is also a recent measurement from
the Berliner Electronenspeicherring-Gesellschaft fur Syn-
chrotronstrahlung facility [51], which seems to support
the result by Morgan and Ederer for the energy position,
but this experiment claims a width of 0.0423+0.0023 eV,
which in not consistent with theory and hardly with the

TABLE V. Energies and widths of nq ——nq ——3 states in helium obtained with diferent methods. The results are given in
atomic units (a.u. ) for energy. 1 a.u. = 2 Ry = 27.211396 (1 —M) eV.

Present Ho eg at.b

'S' (1)
S' (2)'S' (3)
P' (1)
P' (2)

'D' (1)
'D' (2)
'D (3)
3D8
3+6

Ice
'P (1)
'P (2)
P (1)
P (2)

1Do

D
1pO
3pO

-0.35354
-0.31745

-0.33609
-0.29115
-0.34317
-0.31554
-0.29009
-0.32533
-0.31072
-0.30712
-0.33563
-0.28283
-0.35038
-0.30938
-0.32823
-0.31558
-0.30424
-0.33165

3.01x 10
6.67x 10

4.49 x 10
7.41 x 10
5.16x10
4.29 x 10
1.26 x 10
7.24x 10
1.98x 10
6.63 x 10
7.02 x 10
1.45 x 10
2.99x 10
1.12x10
3.21x 10
2.09x 10
3.25 x 10
3.13x 10

-0.353537
-0.317455
-0.2573716
-0.3360879
-0.29115823
-0.343173
-0.31553
-0.290092
-0.325331
-0.310725
-0.30705
-0.3356259
-0.28282897
-0.3503777
-0.30938001
-0.32823
-0.315575
-0.304215
-0.33164

3.004 x 10
6.67x 10
2.09 x 10
4.4887 x 10
7.40 x 10
5.155x 10
4.305 x 10
1.261 x10
7.25 x 10
2.08x 10
6.70x 10
7.023 x 10
1.4621 x 10
2.9866x 10
1.11767x 10
3.18x 10
2.08 x 10
3.25 x 10( 0.5x10

For the S states partial waves included up to E = 4, otherwise partial waves included up to g = 7 and extrapolated
from there. The extrapolation does not change the triplet states to the accuracy shown here and the singlet states change not
more than one unit in the last digit.

Hylleraas wave functions and complex rotation S, Ref. [9]; P', Ref. [14]; ' D', Ref. [11]; P, Ref. [12]; and P, Ref. [13]-
The other states are calculated with CI functions and complex rotation Ref. [8].
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TABLE VI. Comparison between the present results and photoabsorption experiments for some P states. The results are
given in eV relative to the ground state, which has a total energy of —2.9037838 a.u. = —79.00518 eV including relativistic
effectsand mass polarization. (Refs. [52,53], see Sec. IV for details. )

Present Experiment

60.1466
60.146'

60.133
60.151
60.133

+0.015
+0.010

0.015

0.038
0.038
0.038

+0.004
+0.002
+0.001'

n1=2 n2=3 0.008 63.655
63.655

+0.007
+0.010

0.008
0.0083

+0.004
+0.002

69.874" 0.191 69.92
69.914
69.880

+0.03
+0.015
+0.022

0.132
0.200
0.180

+0.014
+0.020'
+0.015'

The result for the excited state is taken from Table I.
Madden and Codling [45,46].
Added to the result for the excited state in Table I are the corrections due to mass polarization and relativistic effects, —0.0007

eV, given in Ref. [54].
Morgan and Ederer [48].

'Kossmann et al. [49].
Dhez and Ederer [47].

sThe result for the excited state is taken from Table IV, the second P' (2) state
"The result for the excited state is taken froxn Table V, the first P' (1) state
'Zubek et al. [50].

TABLE VII. Comparison between the present results and experiments where the doubly excited
state is produced by electron impact and the observations made of the Auger electron. The results

are given in eV relative to the (2s2p) P state, which is used as reference in the experiments. The

energy of the (2s2p)'P' state, —0.693 135 a.u. , is taken from Table I. 1 a.u. = 27.211 396 eV.

Present Experiment

n1=n2=2

1oe

3+0

-2.306

1.938

-0.240

-1.833

0.124

0.006

0.064

0.008

-2.31
-2,35
1.93
1.97

-0.24
-0.26
-1 ~ 83
-1.84

+0.04
+0.03
+0.03
+0.03'
+0.03
+0.03
+0.03
+0.03

0.138
0.138

0.072
0.07

( 0.015~
0.01'

+0.015
+0.015'

+0.018
+0.018'

n$ —2) n2 —3

2.809
3.372'
3.512
2.951

0.037
0.015
0.008
0.002

2.81
3.37
3.52
2.94
2.95

+0.03
+0.03
+0.03

0.03
+0.03

0.041 +0.01

The result is taken from Table I.
Hicks and Comer [55].

'Gelebart et al. [56].
The results for the higher states are taken from Table IV.
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other experiments either. At the level of accuracy given

by the experiments the calculations listed in Table I all

agree equally well with the measurements.
For the state with one electron in the n = 2 shell and

one electron in the n = 3 shell the agreement between
theory and experiment is good for both the position and
the width. For the state with both electrons in the n = 3
shell there are conHicting experimental results for the
width, but the theory agrees well with the more recent
results [49,50]. The theoretical result for the energy posi-
tion is slightly outside the experimental error bars when
compared with the experimental values of Refs. [47,49],
but the result by Zubek et al. [50] is in close agreement
with theory.

B. Experiments observing the ejected electron

Only P states can be observed in the photoabsorp-
tion experiments, but other states can be produced by
electron impact. In the experiments by Hicks and Comer
[55] and by Gelebart et at. [56] the electron ejected in the
Auger process is analyzed and dependence of the resolu-
tion of the electron beam is thus avoided. In Table VII
a comparison is made between theory and experiments.
The experiments [55,56] used the (2s2p)1P state as a
reference; the energy of the ejected electron was thus
measured relative the energy of the electron ejected &om
that state. Madden and Codling's result for the P
state [46] was then used to relate the other states to the
ground state. What is listed in Table VII is, however,
the position relative the (2s2p)~P state directly, which
can be compared with the energy difference given by the-
ory. Generally the agreement for the energy positions is
fair, although the calculation for the lowest S state does
not fall between the two experiments, which would be re-
quired if it should agree with both. The comparison for
the width for the same state is just inside the error bars.
The other widths agree inside rather generous error bars.
To convert the calculated results to eV the conversion fac-

tor for infinite nuclear mass is used due to an effective
cancellation of reduced mass and center of mass effects
as explained in Ref. [1].

C. Beam-foil experiments

Some doubly excited states are not able to autoionize
due to symmetry reasons. For example, the (2p3p) P
state is bound because (lssE) cannot couple to a P'
state. Other states are very narrow, e.g. , the first D'
state in Table IV has a width of only 3 x 10 a.u. These
states can be studied with optical methods since the ra-
diative decay is a competitive or the dominant process.
In Table VIII the calculated results are compared with
some measured transition wavelengths [57] and widths
[58]. The transition wavelengths agree very well.

For the widths the experimental situation is more
complicated. Since for the 2364 A. [(2s2p)sP —(2p3p)sP]
as well as for the 2578 A. [(2s2p)sP —(2838')sD'] transi-
tion the upper state is of zero, (2p3p)sP, or negligible,
(2838') D', width, it is expected that the width for the
transitions should be completely dominated by the width
of the lower state (2s2p)sP . In energy units the widths
of 3.20 jt and 4.46 A. correspond to 7.10 6 0.12 meV and
8.32+0.08 meV, respectively; thus the two measurements
of the width of the (2s2p)sP state give two different an-
swers.

In Ref. [58] also the transition [(2s2p) P—(2E4E') D'],
2082 A. , is measured. Again the transition width should
be given by the width of the (2s2p)sP state. Here the
result is 2.90 6 0.06 A or 8.29 6 0.15 meV, which thus
supports the result from the [(2s2p) P—(2E3E') D'] tran-
sition

The width obtained here is 8.14 meV (corresponding
to transition widths of 3.67 A. , 4.36 A. , and 2.84 A) and
very similar results are obtained by other calculations as
can be seen in Table I. This gives further support to the
conclusion that the width of the (2s2p)sP state is around
8 meV. There is at present no explanation for the appar-

TABLE VIII. Comparison between the present results and some beam-foil experiments, which
measure the transition wavelengths between doubly excited states in He. The results are given in

Present Experiment
r

(2s2p) P—(2p3p) P 2364.3 3.67 2364.0 +0.5
3.20 +0.05'

(2s2p) P (2E3I') D' (1—) 2578.0 4.36 2577.6 +0.5
4.46 +0.04'

(2p2p) P—(2E3g') P (3) 2818.0

(2p2p) P—(2E3E') D (2) 3013.5

0.00028 2817.6

3013.0

+0.5

+1.0

The results from Tables I and IV. To convert the energy differences to transition wavelengths, A,
we use A (A.) = 455.5505/b, Z (a.u.). The number in parentheses tells if it is the first, second, or
third state of a particular symmetry which is used.
Brooks and Pinnington [57].

'Cedequist et al. [58].



4480 E. LINDROTH

ently too narrow experimental width of the (2s2p) P-
(2p3p)sP transition [59].

V. CONCLUSIONS

It has been shown that it is possible to describe doubly
excited states accurately with 6nite discrete basis sets
combined with complex rotation. The results presented
here agree well with the most accurate earlier calculations
available, which uses Hylleraas wave functions.

The method described here can easily be applied to
larger systems than helium along the same lines as the
bound-state scheme was extended &om helium to other
systems. The use of, e.g. , a Hartree-Fock basis set

requires though an iterative scheme to obtain the ro-
tated Hartree-Fock potential. The extension to rela-
tivistic systems cause no special problems either. The
complex rotation of the one-particle Dirac equation is

as straightforward as the complex rotation of the one-
particle Schrodinger equation.
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