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The term energies of the lowest ten doubly excited P terms of neutral lithium are calcu-
lated by using the restricted variational method with a full core plus correlation. Relativistic and
mass-polarization effects are included as the first-order perturbation to the nonrelativistic energy.
Our results support the assignments for the observed lines at 3619 A and at 4885 A as the decay
from the term 1s2p3s P . This term is identified as the seventh member in the P series, and
its energy is almost degenerate with that of the eighth member, being only 24 cm apart. To
facilitate unambiguous closed loop analyses in comparisons with experiment, precision calculations
are also carried out to determine the relative term values for 1s2p2p P at 26915.7(5) cm and for
ls2s3d D at 42778.4(4) cm, which agree well with the experimental data of 26915.16(6) cm
and 42778.3 cm ', respectively. Our results suggest that the transition 1s283d D —1s2p38 P
should be at 8500.5 A.

PACS number(s): 31.20.Tz, 31.20.Di, 31.30.Jv, 32.70.Cs

I. INTRODUCTION

In building up the quartet system of neutral lithium,
particular efforts have been made to locate the spec-
troscopic term which is dominated by the configuration
1s2p3s. For neutral lithium, this is the only quartet
term of the type ls2pnl (n & 2) which dives below the
ls2s S threshold [1]; thus it is metastable against au-

toionization but merges in and perturbs the 1s2snp P
Rydberg series. Its low principal and angular momen-

tum quantum numbers make it appropriate to account
for some observed transition lines. This term was erst
involved for assigning the line at 3618 A as the transi-
tion to ls2p2p P by Berry et al. [2]. This assignment
was not reconfirmed either experimentally or theoreti-
cally until the lines at 3619 A. and 4885 A were observed
and classified as the transitions 1s2p2p P —1s2p3s 4P

and ls2s3s4S —ls2p3s P, respectively [3,4]. By com-

bining with the corresponding observed lines to the low-

est quartet 1s2s2p P, a closed loop check is Bow possi-
ble. As a result, the relative term value for 1s2p3s P is

determined to be 54 540(1) or 54 536(1) cm, depending
on the decay route [5], and is illustrated in Fig. l.

On the theoretical side, no definite conclusion has been
reached on the position of the 1s2p3s term in the P
series. The pioneer work by Holglien and Geltman [6]
found that the second and third member of the P se-

ries, P (2) and P (3), can both be linear combinations
of 1s2p3s and 1s2s3p due to the strong interaction be-
tween these two configurations. The studies by Lunell

and Beche [7] and Lunell [8] found no such strong interac-
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FIG. 1. Schematic diagram (not to scale) showing the three

alternative term values 54540 cm, 54536 cm, and 54 529

cm for ls2p3s P from observed lines. The notation (T)
indicates our present theoretical result.

tion and their Hartree-Fock calculations showed 1s2p3s
should lie above 4P (5). The configuration-interaction
calculation by Glass [9] provided better term energies
and indicated that the term 1s2p3s4P cannot appear
below P (4). The calculation performed by Larsson and
Crossley [10] showed that 4P (5) should be responsible
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for the con6guration ls2p3s. Bunge's 6ne calculation
[11]stopped at 4P (4) where he was concerned of the in-

creasing contribution which may come froxn a perturber
at a higher position and denoted it by 4P~(?).

Using a model-potential method, Fairley and Laugh-
lin [12] studied the radiative properties of ls2snl and
ls2pnl quartet terms and obtained energy difI'erences in
agreement with experimental observations to within a
few cm . Their transition wavelength for 1s2s3d D-
1s2p3s4P is at 8518 A. and they found that ls2p3s4P
is the seventh member in the 4P series. It seexns to co-
incide with the line at 8517.369 L observed by Herzberg
and Moore [13] in the gas discharge spectroscopy. Yet
this line has never been found in beam-foil experiments
[1,14] where doubly-excited states are abundantly popu-
lated. Hence, it is considered as caused by an impurity
and no satisfactory assignxnent in the quartet system had
been made. If the calculation of Ref. [12] is precise, the
lines at 3619 A. and 4885 A. can no longer be assigned
to the transitions with the upper term ls2p3s. Instead,
Mannervik [15] suggested that the line at 8508 L ob-
served by Bukow and Heine [16] should be the transition
ls2s3d4D —ls2p3s 4P . However, this assignment does
not agree with Fairley and Laughlin's calculation [12].
Furthermore, it reduces the term value of ls2p3s P to
54529(4) cm ~

[5] when it is combined with the transi-
tion 1s2s2p P —ls2s3d 4D at 2337 A [13]. This relative
term value is much lower than the other alternative values
54540(1) and. 54536(1) cm ~ mentioned above (Fig. 1).

To resolve the discrepancy discussed above, a precise
theoretical study on the P series is needed. In a pre-
vious work [17], the Rayleigh-Ritz variational method
with Slater-type orbitals is shown to be able to obtain a
ls2s2p4P term energy with an accuracy of a few cm
Recently, the method of full core plus correlation (FCPC)
has been developed by Chung [18] for systems whose core
wave functions are not strongly perturbed by the outer
electrons. This method has been applied to systems with
a lsls S core. The recently developed restricted varia-
tional (RV) method by Chung and Zhu [19,20] are also
shown to be very useful in computations where a large
nonorthogonal basis set is used to saturate the functional
space. These methods have been shown to give very ac-
curate results for the ground or excited states of various
symmetries, + L, for three- and four-electron systems
[19—21]. In this work, they will be applied to explore
higher excited P terms of the lithium atom. In these
systems, most of the states will have a ls2s S core.

II. THEORY

The Hamiltonian and the perturbation operators con-
sidered in this work are the same as those of Ref. [17].
They will not be repeated here. The variational wave
function of the higher P terms is constructed with the
FCPC method [18] in the LS-coupling scheme. It is
composed of a ls2ssS two-electron wave function, @as,
with the p-electron orbital and other three-electron par-
tial waves, Pg, as given by

Q(1, 2, 3) = A $3s(1,2)) d;rse "YjMy(3)

+) Pu(1, 2, 3)

where A is the antisymmetrization operator. The partial
wave Pg is given by

Qg(1, 2, 3) = ) C~„I, 'R~„s(rg, r2) rs)
mnk

xgL, M(rq, r2, rs) y(123), (2)

with the basis function given by

(3)

XI,M(6 r2 rs) = ) (ilm&l2m21L12p)
VAN qf&g qP q~3

x (L,2ylsms~LM)
x Y~, , (rq) Y~, , (r2) Yj,~, (rs) ) (4)

QRv(123) = Cgy@~(123) + @s(123),

with

and y(123) denoting a quartet spin function. Here m,
n, and k are non-negative integers, and 0 represents the
angular coupling [(lq, l2) Lq2, ls] L together with the set
of nonlinear parameters (n, P, p), which differ for each
partial wave. The "core" wave function, ass, is the two-
electron analogs of Pg. The FCPC method has the ad-
vantage that it reduces the matrix size in the computa-
tions [18]. The core is prepared by minimizing the low-
est eigenvalue of the nonrelativistic Hamiltonian matrix
(Qss ~IIp ~Qss) and may not necessarily be very precise.
Then it is frozen and put into Eq. (1). The nonrelativis-
tic term energy of 4P (n) is calculated by minimizing
the lowest nth eigenvalue of the matrix (/~Hogg). The
minimizing procedures for both the two- and the three-
electron calculations are implemented by adjusting the
nonlinear parameters in each partial wave and by sys-
tematically increasing the number of partial waves in a
manner of improving the angular correlation, radial ex-
pansion, and core relaxation.

However, with the constraints of 6nite precision of a
computer and computing resources, the size of the trial
wave function may not be enlarged at one's will. The nu-
merical instability due to the linear dependence among
the basis functions arises when too many terms of R
in Eq. (3) are used to saturate the radial expansion of
the functional space spanned by various couplings from
a given set of angular momenta [lq, l2, ls]. The RV cal-
culation is an efFective xnethod to partially overcome this
diKculty.

After a sufficiently accurate wave function g in Eq. (1)
is obtained, which contains the dominant partial waves,
it is fixed and treated as a single term, Q~. It will be
referred to as the basic wave function in the restricted
variational wave function, QRv, which is given by
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@s(123)= A) Ps(123), (6)

AEclED (1s2snl —1s2pn'I') = —1.01 —0.24

= —1.25cm (n, n' ) 2).

(7)

For 1s2s2p P, the core is not well defined. We take
the average of the contributions of 1828 S and 182p P .
Therefore,

AEclED(ls2s2p —ls2snt) = (
—1.01 + 0.24)/2 + 1.01

= 0.63(20) cm (n ) 2).

(8)

In this case, an uncertainty of 0.2 cm is assumed.

III. RESULTS AND DISCUSSIONS

A. The term energy of 1s2s2p4P

Strictly speaking, a variational calculation using finite
basis set gives only upper bounds to the exact eigenvalues

where Cgy is the expansion coefficient and Ps takes the
same form as Pn in Eq. (2) except diiferent sets of linear
and nonlinear parameters. Thereafter, the partial waves
for saturation purpose or of higher angular components
join in the calculation as Ps. The same procedure for
obtaining the eigenvalue of g~ is repeated for QRv ex-
cept that the variation is restricted to those linear and
nonlinear parameters in gs. As a result, the overlap be-
tween the basis function in g~ and tts does not cause
any problem of linear dependence [19].

The reduced-mass corrections are considered, when
converting the energy from a.u. to cm, by using the
value 109728.731 for the Rydberg constant. In this work,
no explicit calculations are carried out for the QED ef-
fects. However, for lithium, these effects could contribute
as much as 1.25 cm to the transition energy. To esti-
rnate these contributions, we use the results of Drake [22].
We assume that the QED contribution comes mainly
from the Li+ core and the contribution from the third
electron with n ) 2 is very small. Drake has calcu-
lated the QED contribution to the ionization potential
of Li+ 182s S to be —101 cm and of 182@ P to be
+0.24 cm [22). Hence, the QED contribution to the
Li I quartet transition energies will be

of the Hamiltonian. In a previous work [17], the nonrel-
ativistic term energy upper bound, —5.367999 a.u. , was
reported for ls2s2p P with the value of —5.368001(2)
a.u. suggested for the exact nonrelativistic term energy.
The extrapolated quantity, —0.000002(2) a.u. , is the ex-
pected difference if the basis set in the calculation were
large enough to simulate a complete set. It is empirical
in nature since no formulas of extrapolation were avail-
able. Presently, a more effective improvement is possible
by using the restricted variational (RV) method [19].

In this work, we extend the 812-term wave function in
Ref. [17] to 988 terms. The upper bound is improved by
about 0.9 pa. u. to —5.3679999 a.u. This wave function
is used as the basic wave function for the RV calculation.
Following the same procedure as in Refs. [19] and [20],
we carried out an RV calculation for 21 groups of mu-

tually orthogonal [lt, l2, ls]. The total number of terms
participating in the RV calculation is 2 519. The total en-

ergy improvement obtained for the 21 groups is —5.480
pa. u. Since the RV procedure limited the flexibility of the
coupling between gs and gB, which may further lower
the energy, we add —0.5 pa. u. contribution to the energy
and assign a possible uncertainty of 0.5 pa. u. Hence, the
total nonrelativistic energy becomes —5.368 005 9(5) a.u.
By combining with the relativistic and mass polarization
corrections —610.2 pa. u. from Ref. [17], the energy of
ls2s2p P" becomes —5.368616 1(5) a.u.

A closed loop analysis will be made in Sec. IIID to
compare the transition energies involving 182p38 P with
experimental results. The three intermediate terms in
the closed loops are 182838 S, 1s2p2p P, and 18283d D,
whose transitions to 1s2s2p P have been well studied
by experiment. The energy of 1s2s3s S has been cal-
culated in Ref. [17] to be —5.213358(1) a.u. The en-

ergies of 182p2p P and 18283d D are calculated in this
work, These results together with that of 182s2p P are
given in Table I. For 1s2s3d D, the FCPC wave func-
tion is used with the same 1828 S core as that of the
1s2snp P (n & 2) series. The basic wave function con-
tains 596 terms. For 182p2p P, no core wave function
is assumed. The basic wave function of this P term
contains 625 terms, but the energy convergence is much
slower than the other quartet terms considered in the
present work. We have included high angular compo-
nents up to the [0, 9, 9] and [7, 8, 1] in our calculation.
The combined contribution of these two components to
the energy is —0.61 pa. u. Hence, we estimate that the
total contribution of the higher angular momentum com-
ponents not included in the computation should be no
less than —0.7 pa. lx.

TABLE E. Term energies (in ya. u. ) of 1s2s2p P, ls2p2p P, and 1s2s3d D for neutral lithium. Here H is the mass
polarization, H2 the mass variation, H3 the Darwin term, and H4 the orbit-orbit interaction.

Term
1s2s2p P
1s2p2p P
1s2s3d 4D

Eupperbound
—5 367 999.9
—5 245 390.3
—5 173072.1

Enonre1
—5 368 005.9(5)
—5 245 404.5(10)
—5 173080.6(5)

Nonrelativistic energy
+RV
—6.0(5)

—14.2(10)
—8.5(5)

Perturbative corrections
(H&) (H2 + Hp) (H4)
—15.4 —604.0 9.2

—27.43 —552.8 18.2
1.20 —611.5 0.2

Etotal
—5 368 616.1(5)
—5 245 966.5(10)
—5 173690.8(5)

Includes an estimated —0.7 pa. u. from higher-l angular components.
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B. Term values of the P series

The present study will pursue an accurate energy for
P (n), then locate the perturbing term ls2p3s P sub-

merged in the energy spectrum. The FCPC method is
used to construct the trial wave function from which the
energy eigenvalue and the perturbative corrections are
obtained. It is followed by the RV method to give the
nonrelativistic term energy. Beginning with P (2), the
calculation proceeds upwards until two terms beyond the
one which can be recognized as the perturber. There are
nine terms involved, namely P (n), n = 2—10.

The S core wave function prepared for the present cal-
culation contains 51 terms in five partial waves, [l, l] sS
for 0 & l & 4, and gives the eigenenergy of —5.110719
a.u. , which is to be compared with the nonrelativistic
energy of —5.110727 a.u. derived from Accad et al. [23].
The inaccuracy of the core is compensated by the three-
electron partial waves of the type [l, l, 1] in the FCPC
and the RV calculations. The number of terms in each
of the final FCPC wave function of 4P (n) ranges from
452—657. In the succeeding RV calculations there are 21
groups of mutually orthogonal [l, l, 1] and [0, l, l+ 1] with
0 ( l ( 10 considered for each 4P (n). The details of the
energy convergence and RV results are not given. They
will be supplied to the interested reader upon request.
The results together with those perturbative corrections
are collected in Table II, where the values of ARy con-
tain the RV results and the additional contributions esti-
mated for the relaxation of the basic wave function as de-
scribed in Sec. III A. These contributions are —0.5 pa. u.
for n = 2—7 and —0.3 pa.u. for n = 8—10. In Table II,
the best previous values available from other theoretical
works are also presented. These previous upper bounds,

pp b Q are improved in the present calculation. The
estimated energy of 4P (2) in Bunge [11]agrees with that
of the present work excellently. His results for 4P (3) and
for 4P (4) are slightly higher than the energies obtained
in this work.

Along the P series, the trends of the perturbative
contributions are disturbed at the seventh and the eighth

members, which are possible candidates of the perturber.
The two terms are only 24 cm apart such that quadru-
ple precision computations (128-bit storage for a floating
point number) and noniterative type algorithm are nec-
essary to resolve them in the eigenvalue problem.

The predicted relative term value, T( P (n)), to the
ground quartet 1s2s2p P can be determined by

T( P (n)) = Ei«~i( P (n)) —Et~t~i(ls2s2p P ) (9)

with Ei~t~i(ls2s2p P ) = —5.3686161 a.u. given in
Sec. IIIA. The results are presented and compared with
experiment in Table III. For the term 4P (7), the pre-
dicted relative term value, 54539.2(4) cm i, is to be com-
pared with 54 529(4), 54 536(l), and 54 540(1) cm for
1s2p3s P from experiment [5]. The experimental val-
ues span a range of 16 cm, which is comparable to the
difference between 4P (7) and P (8). Therefore, no con-
clusion on the identification of these lines can be drawn
before the radiative and electron-configurational charac-
teristics of 4P (7) and 4P (8) are clarified. This will be
done in Sec. IIIC. The configuration assignments from
Sec. IIIC are used to estimate the QED corrections to
the relative term values in Table III by Eq. (8).

C. The term 1s2pss4P and
the 1s2snp 4P Rydberg series

Current experimental assignments imply that, in the
transitions to 182s38 8, 1s2p2p P, and 1s283d D, the
perturbing term, 1s2p38 P, should has the strongest
intensities among its neighboring terms in the P se-
ries. We, therefore, calculate the absorption oscillator
strength f and the emission rate A (in sec i) for 4P (n).
The results are presented in Table IV. The transition
probability for 1s2s3d4D —4P (7) is 1.01 x 10s sec
which is close to the value of 1.4 x 10 sec calculated
by Fairley and Laughlin [12]. It can be seen that the term
P (7) has larger transition probabilities than 4P (8) for

all three transitions considered and is the appropriate
candidate for 1s2p3s P from the radiative aspect.

TABLE II. Term energies (in pa. u. ) of P (n) for neutral lithium, n = 2—10. Here Hi is the mass polarization, H2 the mass
variation, 03 the Darwin term, and H4 the orbit-orbit interaction.

Term
P (2)

'P (3)

P (4)

'P (5)
P (6)

4P (7)
P (8)
P (9)
P (10)

Enonr el
—5 187279.3(5)
—5 187278(9)
—5 149 736.1(5)
—5 149 722(4)
—5 134476.7(5)
—5 134454(5)
—5 126 714.6(5)
—5 122 223.0(5)
—5 119522.2(5)
—5 119378.6(3)
—5 117487.7(3)
—5 116151.9(3)

—8.2(5)
—4.6(5)
—8.0(5)
—1.6(3)
—1.2(3)
—2.8(3)

Nonrelativistic energy
Eupperbound +RV

—5 187272.09 —7.2(5)
—5 187236
—5 149 729.94 —6.2(5)
—5 149 692
—5 134473.29 —3.4(5)
—5 134422
—5 126 706.35
—5 122 218.44
—5 119514.24
—5 119376.97
—5 117486.50
—5 116149.12

0.32 —614.97 0.25

0.86 —615.17 —0.08

1.09
1.20

—20.68
—0.59

1.30
1.32

—615.31
—615.35
—564.48
—611~ 15
—615.41
—615.43

—0.21
—0.27
12.25
0.74

—0.33
—0.36

Perturbative corrections
(Hi) (H2 + Hs) (H4)
—1.57 —613.39 1.32

Etotal
—5 187892.9(5)

—5 150 350.5(5)

—5 135091.1(5)

—5 127 329.0(5)
—5 122 837.5(5)
—5 120 095.2(5)
—5 119989.6(3)
—5 118102.1(3)
—5 116766.4(3)

Reference [11].
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TABLE III. Relative term values (in cm ) of ls283s S, 1s2p2p P, 1s2s3d D, and P ( ),
n = 2—10 for neutral lithium. The term values are relative to 1s2s2p P .

Term
'P (2)
P (3)
P (4)
P (5)
P (6)
P (7)

P (8)
P (9)
P (10)

Tcalc

39 661.1(2)
47 900.0(2)
51 248.8(2)
52 952.3(2)
53 937.9(2)
54 539.8(2)

54 562.9(1)
54 977.2 (1)
55 270.3(1)

QED corr.
0.6(2)
0.6(2)
0.6(2)
0.6(2)
0.6(2)

—0.6(2)

0.6(2)
0.6(2)
0.6(2)

T This work

39 661.7(4)
47 900.6(4)
51 249.4 (4)
52 952.9(4)
53 938.5(4)
54 539.2 (4)

54 563.5(3)
54 977.8(3)
55 270.9(3)

Assignment

1s2s3p 4P

1s2s4p P
1s2s5p P
1s2s6p P
1s2s7p 4P

1s2p3s 4P

1s2s8p P
ls2s9p P
ls2slOp P

Experiment
39 655(4)

54 529(4)'
54 536(1)
54 540(1)'

P(1)
'S(I)
D(1)

26 916.3(2)
34 072.5(4)
42 777.8(2)

-0.6(3)
0.6(2)
0.6(2)

26 915.7(5)
34 073.1(6)
42 778.4(4)

1s2p2p 4P

1s2s3s S
1s2s3d D

26 915.16(6)
34 072.0
42 778.3

Reference [5].
Based on the observed lines at 1680 and 5033 A.

'Based on the observed lines at 2337 and 8508 A.
Based on the observed lines at 2934 and 4885 A.

'Based on the observed lines at 3714 and 3619 A. .

Reference [17].

The fine-structure split tings of 1s2p3s 4P and of
1s2snp P should be quite different if we consider them
as resulting from the 1s2p P core with a 3s electron and
from the ls2s S core with an np electron, respectively. It
is obvious that the main contributions should come from
the two core electrons. Larger splittings are expected
from the term dominated by the ls2p P core. Table V
presents the first-order perturbative contributions to the
total term energy for the J = 5/2 level of P (n) calcu-
lated in the LSJ scheme and their fine-structure split-
tings. The perturbation operators are the same as in
Ref. [24]. It is clear that P (7) can be discerned def-
initely from the ls2snp Rydberg series and it can be
named ls2p3s with reasonable certainty. The splittings
of 4P (8) are also orders of magnitude larger than that
of P (6) and P (9). It suggests a certain amount of
mixing between the configurations ls2p3s and ls2s8p as
was anticipated by Mannervik [15]. In calculations using
configuration wave functions as the basis functions, the
mixing should have an important effect on the results.
Fairley and Laughlin [12] have located ls2p3s 4P as the
seventh member, however they reported that it interacts
only very weakly with the 1s2snp P Rydberg series.

The term energies and the configuration assignments in
Table III for the 1s2snp series can also be studied through
the quantum defect analysis using the Ritz formula [25],

D. Transitions involving 4P terms

In recent experimental works [2—4,15], the three ob-
served lines at 3619, 4885, and 8508 A are tentatively

0.50

C
I

0.45
U
CD

CD

Cl

E

0.40

Q

~ P'(7)

l'p'(9)
P {10)

po(8)

Li I: 1s2snp P'

4p

'(3}

quantum defects for the series, which shows that, ex-
cluding 4P (7), the term energies of the other eight terms
studied in this work can be appropriately described by
the Ritz formula as in a Rydberg series with ls2s8p be-
ing slightly perturbed. The linear least-square fit gives
o. = —2.732 x 10 5 and p = —0.3971, which can be used
in the extrapolation for higher P term energies.

(n + p + aI„)2 n*2 '
0.35

0 2000 4000 6000 8000 10000

where n and p are constants, % is the Rydberg con-
stant, and n' is the effective quantum number of ls2snp.
The nonrelativistic ionization potential I„ is obtained
from the term energy of this work and the 1s2s S se-
ries limit —5.110727 a.u. [23]. Figure 2 presents the

Ionization Potential (cm-~)

FIG. 2. Quantum-defect diagram for the ls2snp Rydberg
series by using the Ritz formula. The straight line is 6tted for

np, where n = 4, 5, 6, 7, 9, and 10. The diagram also shows
the point for P (7) if it were assigned as 182a8p.
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TABLE IV. Absorption oscillator strengths, f, and emission rates, R (in sec ), of the transitions
between P (n) and ls2s3s S, 1s2p2p P, and 1s2s3d D for neutral lithium, n = 1—10.

1s2s3s 4S 1s2p2p 4P 1s2s3d D
Term
'P (1)
P (2)
P (3)
'P (4)
P (5)
P (6)
'P (7)
P (8)
P (9)

4P (10)

6.37x 10
9.51x 10
5.12x 10
5.35 x 10
3.67x 10
2.91x 10
2.87x 10
1.38x 10
5.15x 10
4.91x 10

R
1.48 x 10
6.61x 10
2.18x 10
3.51x 10
2.91x 10
2.56 x 10
2.67x 10
1.29 x 10
5.00 x 10
4.90x 10

f
3.59x 10
6.69x 10
8.83 x 10
8.07 x 10
4.61x10 '
5.34 x10
1.41 x 10
1.37x 10
1.58 x 10
7.84 x 10

R
1.73 x 10
7.26 x 10
2.59x 10
3.l.9x 10
2.08 x 10
2.60 x 10
7.16x 10
7.01x 10
8.29 x 10
4.21 x 10

3.35 x 10
4.26 x 10
7.58 x 10
1.15x10
4.30 x 10
2.00 x 10
6.55 x 10
3.66 x 10
8.93x 10
5.93x 10

R
2.45 x 10
1.66x 10
2.21 x 10
9.17x 10
4.95 x 10
2.77x 10
1.01x10'
5.64x 10
1.48 x 10
1.03 x 10

assigned as the transitions &om ls2p3s 4P to ls2p2p4P,
ls2s3s 4S, and ls2s3d 4D, respectively. The present
study determines the term values which give the aerial
transition wavelengths in excellent agreement with the
first two lines; but the large discrepancy for the third line
leaves the assignment for the relatively weak line at 8508
A in doubt (see Fig. 1). However, the present calculation
shows that it cannot be replaced by the line at 8517.369 A.

observed by Herzberg and Moore [13] (see Sec. I). In fact,
our results show that the 1s2s3d D —ls2p3s P tran-
sition occurs at about 8500.5 A.. It should be mentioned
that the mass-polarization and relativistic contributions
are crucially important for these identifications. If only
nonrelativistic energies were considered, our results for
the relative term value of 4P (7) would be 54 531.0 cm
which would favor the assignment [15] of the line at 8508
A. for the transition 1s2s3d4D —1s2p3s P .

One may predict a line at 4879 A and a line at 3616 A
arising &om the transitions &om ls2s8p P to ls2s3s S
and ls2p2p4P, respectively, using the term values in Ta-
ble III since Table IV has shown these transition proba-
bilities are not too small. However, the two lines were not
reported in the experiments [3—5,26]. It is possible that
the line at 4879 A was blended by the intense line of Li11
at 4881 A. , and the line at 3616 A. was not resolved from
the relatively stronger line of the corresponding transi-
tion from 1s2p3a 4P at 3619 A. .

IV. CONCLUSION

The purpose of this work is to establish firmly the po-
sition of the lithium ls2p3s P within the P series. In
doing this we have calculated the energies for the ten
lowest members of the 4P symmetry. The identification
is made by studying the transition rates, quantum de-
fects, and fine structures. In all these studies, they show
clearly that ls2p3s is the seventh lowest member in the
series, which is in accord with the study of Fairley and
Laughlin [12]. It lies very closely to the eighth member,
ls2s8p P, and perturbs the energy of this term. Nev-
ertheless, the perturbation is suKciently weak such that
both terms retain their ls2p3s and ls2s8p characteris-
tics.

In order to make closed loop analyses, we have also
calculated the term energies of ls2p2p P and ls2s3d4D.
The results are predicted to well within 1 cm . To our
knowledge, these are the most reliable theoretical results
to date.

As for the current status of the quartet system of neu-
tral lithium, the optical study of the beam-foil spectrum
has satisfactorily established the 4S and D series with the
transitions P (1) —la2sna S, n = 3—6, and the transi-
tions P (1) —la2snd4D, n = 3—10. However, little has
been known for excited P terms. As the high-resolution
and in&ared measurements have been proposed, we hope
the present study will stimulate further theoretical and
experimental works.

TABLE V. First-order perturbative contributions (in a.u. ) of spin-orbit (SO), spin-other-orbit
(SOO), and spin-spin (SS) interactions and fine structure splittings (in cm ') of P (n) for neutral
lithium, n = 2—10.

Term
P (2)
P (3)
'P (4)
P (5)
P (6)
'P (7)
P (8)
P (9)
P (10)

Perturbative
(Hso)

1.841 x 10
6.558 x 10
3.097x 10
1.720 x 10
1.111x 10
1.633x 10
1.378x10
4.634x 10
3.222 x 10

contribution
(Hsoo)

1.880 x 10
6.676 x 10
3.143x 10
1.753x 10
1.130x 10
1.378x10
1.165x 10
4.757x 10
3.349x 10

for the J = 5/2 level

(Hss)
-1.961 x 10 '
—6.941 x 10
—3.266 x 10
—1.812 x 10
—1.171 x 10
—1.647 x 10
—1.381 x 10
—4.825 x 10
—3.371 x 10

Level

&E3i2-i(~
—0.397
—0.140
—0.065 9
—0.036 6
—0.023 6
—2.75
—0.231
—0.009 81
—0.006 94

splitting
&E5)2-3)2
0.162
0.059 2
0.028 4
0.015 9
0.010 2
1.46
0.127
0.004 52
0.003 13
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