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We present a two-step method to calculate the vibrational-rotational spectrum of diatomic
molecules in general. The aim of the method is to solve the radial part of the Schrodinger equation
with the effective potential in the general form of V = P „a„r,where n may be a positive or
negative number. The fiexibility of the form of the prototype potential used enables us to describe
accurately the interatomic potential in general. The method of solution is composed mainly of two
steps. In the first step, we introduce a transformation so that the domain of the wave function is the
whole real axis. The operator formalism is used to carry through the variational conditions analyti-
cally for the ground state of the system. In the second step, we improve the ground-state energy by
a standard diagonalization procedure around the ground state using the harmonic oscillator basis
obtained from the first step. In this way, we also obtain the low-lying excited states accurately. The
method is applied to the following systems explicitly: (1) the lower-energy levels of the H atom or
Kratzer's potential in molecular problems, (2) the vibrational-rotational spectrum of the Zs state
of the H2+ ion, and (3) the so-called spiked oscillator harmonic system. The results of all these cal-
culations demonstrate that the two-step method is very powerful in the solution of one-dimensional
problems, in particular for cases where the e8'ective potential has only one minimum.

PACS number(s): 31.15.+q, 03.65.Ge, 31.50.+w

I. INTRODUCTION

In the vibrational-rotational spectrum of diatomic
molecules one tries to solve the radial part of the
Schrodinger equation in the form

—1 d (, d)—
i

r'
i
+V.&(—r) @(r) = E@(r), (1.1)2mr2 dr i dr)

where the effective potential V,g includes the contribu-
tion of the angular momentum

V,tr(r) = V(r) + J(J+ 1) (1.2)

In this paper, we use atomic units so that 6 = 1. The
general form of the interatomic potential V(r) essentially
consists of a short distance repulsive part and a long dis-
tance attractive part. The sharp rising short distance
repulsive potential arises essentially from the Coulomb
repulsive force of the nuclei and the increase of the elec-
tronic energies due to the localization of electrons in the
core area and the Pauli exclusion principle. On the other
hand, the long distance attractive potential is due to the
induced instantaneous dipole-dipole dispersive forces and
other tunneling phenomena of the electrons. Both of the
above mentioned effects tend to zero as the interatomic
distance approaches infinity. Therefore, in general, the
interatomic potential has a minimum at the equilibrium
position of the diatomic molecules. The simplest ap-
proach to solve the Schrodinger equation (1.1) is to use
the distance

from the equilibrium interatomic distance ro as the new
variable and expand the effective potential in a Taylor
series of x around the equilibrium position. By retain-
ing only the lowest order term, which is quadratic, the
Schrodinger equation (1.1) reduces to the textbook prob-
lem of simple harmonic oscillators [1]. The higher order
nonlinear terms of the potentials are then used as per-
turbations for improvement.

There are obvious difhculties in this approach: First of
all, interatomic potentials are complicated in shape and
many terms in the power series expansion are needed in
order to obtain accurate results. In particular, it is diK-
cult to use simple power series to describe correctly the
sharp rising repulsive part of the interatomic potential
at small r. In addition, for rotational spectra, the in-

teratomic distance r appears in the denominator of the
effective potential due to the angular momentum. The
power series around the equilibrium position needs many
terms to describe the effective potential correctly and
sometimes the series may even be divergent.

Recently, we have proposed a two-step approach to
treat the anharmonic oscillators [2] and vibrational prob-
lems [3,4]. The method is straightforward and has a clear
physical picture. It can compete with existing methods
in obtaining accurate results with ease.

In this paper, we apply the two-step approach to
solve the vibrational-rotational spectrum of diatomic
molecules. We first fit the effective interatomic poten-
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V,ff(r) = ) a„r". (1.3)

An important point to be emphasized here is that, since
we include terms with negative integer powers of r to
deal with the sharp rising repulsive potential, only a
small number of terms is needed to describe accurately
the interatomic potential. Furthermore the contribution
of the angular momentum is already of the right form.
The widely used Lenard-Jones 6-12 potential consists of
course of two terms only:

tial in powers of positive and negative integer order of
r )

P(x) = QR(x),

with the operator

(2.7)

Q g X (2.8)

We now carry through a similarity transformation be-
tween the new Hamiltonian operator H and the original
operator H by

At this point, we should take into account the fact that
the transformed Hamiltonian operator H in (2.5) is no
longer Hermitian. In order to obtain a Hermitian opera-
tor H, we introduce the new wave function P(z) related
to the old wave function R(x) by the transformation

V(r) = Cg2r ' —Csr (1.4)
(2.9)

In Sec. II we describe our general approach in detail.
As a demonstration, in Sec. III we apply the method to
the textbook problem of energy levels of the hydrogen
atom, which is a special case of the Kratzer potential [5].
In Sec. IV we apply the method explicitly to the energy
levels of the H2+ Zs state [6, 7]. In Sec. V we apply
the method to the so-called spiked oscillators [8, 9]. A
discussion and conclusion are given in Sec. VI.

1.e.)

3~ 3~

—1 a, d f d sl
e "—

l

e*—e 2*
l

+. V,ff(z)
2m dz ( dz
—1 d 2~d 3—e —+ —e * + Vff(z).
2m dx dz 4

(2.10)

II. THE TWO-STEP METHOD

We start with the Hamiltonian
—1 d ( d)

H = —
l
r

l
+ V—ff(r),2mr2 dr q dr)

where

(2.1)

V,ff(r) = ) a„r" (2.2)

with n being either positive or negative numbers. In
order to use basis-set functions of harmonic oscillators,
our first step is to employ a transformation [10] so that
the domain of the wave function is the whole real axis.
A convenient way is to set

where R and R' are given, respectively, by

Rl —
2 mal (2.12a)

Then, for two arbitrary wave functions P and P, and the
corresponding wave functions R and R, we have

OO

(&'IHIP'~) = (P')' e2 He & P dz

OO

e~ (lt')' He & P dz

(R') *[HR]es*dz

R' *HRr dr = R'HR, 2.11

r = e*, (2.3 )

l.e.) 3R=e (2.12b)
x = lnr. (2.3b)

The domain of de6nition is changed from the positive
real axis of (r: 0 & r & oo) to the whole real axis of
(x: —oo & x & oo). From Eq. (2.3a) or (2.3b), the
Schrodinger equation becomes

Furthermore, the original eigenvalue problem HR = ER
now takes the form Hltl = EP From (2.10)., it is easy to
prove that H is a Hermitian operator since it satis6es

(2.13)

—1 s d ( d l
e

l

e
l
+ V,ff(x) R(z) = ER(x).

2m dx g dx)

(2.4)

Following the procedures described in Ref. [2], we now
write the Hamiltonian in a second quantized form by in-
troducing the creation operator at and the corresponding
annihilation operator a into (2.10). We set

—1, d f dlH= e —
l

e —l+Vff(z)
2m dx g dx)

(2.5)

In other words, the Hamiltonian (2.1) now becomes 1 (a+at)+r,
2m(d

(2.14a)

with

V,ff(x) = ) a„e" (2.6)

d

dx 2
(a —at). (2.14b)

The two parameters ur and r in (2.14a) and (2.14b) are



4450 PEACE CHANG AND CHEN-SHIUNG HSUE

[a, at] = 1

[a, a] = 0,

(2.15a)

(2.15b)

the frequency and the displacement of the origin of the
harmonic oscillator system we intend to use. Clearly,
the operators a and at have the following commutation
relations:

[a', a'] = O. (2.15c)

To proceed the calculation we now follow the step taken
in Ref. [2] by rewriting the Hamiltonian of (2.10) in a
normal ordered form where all the creation operators are
pushed to the left of the annihilation operators. We have

—1 —» (a+at )g2 rn cu

2m

mcd
(a —at)

2

(a+at )+~ m{d ( )(~+~ )+
&(e vs~~ a —a ~e '. &' . +Vtr

2 )

Cd 1

4 8m

2 —2—2~+ -' a .. t.2 2- - a Cd —27.+ -'- —at:——ae ' ~2~~ e~~~ (a ) + a e&2~ + —e ~ ~ e&'~ [a'a]e&2™~
2

2( —2 —aev& ev'2 + VgefF ) (2.16)

2
nw+- n f n

V g — a e v 2m' e +2rnu e ~2m' (2.17)

OEO

OEO

t9Cd

(2.20a)

(2.20b)

In the above derivation, we have used the following
special case of the Campbell-Baker-Hausdorff formula:

A+B A B —
2 [A,B]

which holds when the commutator of the two operators
[A, B] is a c number [1]. We now introduce the harmonic
oscillator eigenstates as our basis set, i.e. ,

Explicitly, after some simplification, we have

t'~
+ e 2 v'2m

q2 4mj

—) na„e '
& &' j = 0, (2.21a)

(a~O) = O,

(a')"
(2.18a)

(2.18b)

) 2 (
mw e 'I&' ) — n(n+ 2)a„e '( &' "& = 0.

(2.21b)

In the first step we first take [0) as the trial wave func-
tion of the ground state and determine the parameters cd

and 7 of the ground state by the variation principle. The
expectation value of the ground state is

Ep ——(0[H[0)
-2+-, -' ' - ..+(—

[
—+ [e ' &~- +) a,„e 'i~-) .

(4 8m)

(2.19)

We now impose the following variation conditions for ~
and cd:

The solutions of v and cd may be conveniently obtained
by iteration or standard Newton-Raphson method.

In the second step we can improve the energy level
of the ground state by adding the "perturbation correc-
tions" around the ground state ~0) using standard per-
turbation methods. Conceptually the simplest and most
straightforward way is to use a truncated basis set con-
sisted of {[u):u&X for a fixed N j and calculate all the
Hamiltonian matrix elements (u[H[v) in this basis sets.
Then the Hamiltonian matrix can be diagonalized by the
Jacobi diagonalization method in order to solve for the
eigenenergies and eigenvectors. Using a general form of
the matrix element in the form

u —g

ue at~a e v
s=p
u —2

~s+t ( u)v ) i/2). s!t! ( (u —j —s)!(v —k —t)!)C=O

(u —j —s[v —A: —t)

s=p
u —j

v. 8,.) v —I(:—u+ j+2s
s!(u —j —s)!(v —k —u+ j+ s)!

= Q [( —~ —~)'( —I: —v)'~']
'

( ' ')'" '" " ' "
q=p

(2.22)
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we can represent the matrix element of the Hamiltonian (u~H~v) as

(u~H~v) = e + (u~e ' (at) + a e '
~v) + —e + (u~e ' atae '

~v)

+ (

—+
)

e + (u]e ' e ' (v)+) a„e '&&' & (u[e~" e~" [v),
q4 8m'

(2.23)

where

2mb)

2mB)

(2.24a)

(2.24b)

III. APPLICATION TO THE ENERGY LEVELS
OF THE HYDROGEN ATOM

As a test of our approach, we first apply the two-step
method to solve the textbook problem of the radial part
of the energy spectrum of the hydrogen atom. This prob-
lem is a special case of the Kratzer potential in the molec-
ular vibrational problem [5]. We start with the Hamilto-
nian

—1d (, d)
H = —

i

r —
i
+ V,rr(r),2r2 dr ( dr)

(3.1)

Of course by increasing the value of N we recover the
whole Hilbert space of the wave function. As will be
demonstrated in the following sections, the advantage of
our approach is that, in general, we need only very small
basis sets for accurate results.

I

is quite arbitrary, these values are very impressive. We
can improve these results by including the corrections
from the truncated basis vectors around these ground
states as described in Sec. II. The numerical results are
presented in Table I. Notice the extremely fast rate of
convergence for all the cases with the angular momen-
tum t g 0. It is noteworthy that with only a 5 x 5 matrix
we obtain the energy level for the lowest state with an
error less than 0.5%%uo for l = 1 and with an error even
less than 0.02%%uo for l & 2. In general, the rate of conver-
gence of the series increases as the angular momentum
t increases. This is due to the effective repulsive angu-
lar potential that forces the wave function to stay away
from the origin r = 0, which corresponds to x = —oo for
the transformed variable. In principle one needs an infi-
nite number of harmonic basis functions, which are only
Hermite functions, with suitably chosen &equency and
origin, to effectively describe the behavior at z = —oo.
Another success of the method is that even for the case
of l = 0, which has a pure Coulomb potential with a
shape that does not resemble the harmonic potential at
all, we still obtain a series with an acceptable degree of
convergence.

where

V, (ar) =
—1 t(l+1)

(3.2)

IV. APPLICATION
TO THE VIBRATION-ROTATIONAL ENERGY

LEVELS OF THE Hg+ Zg STATE

Following the step taken in Sec. II, we insert in
Eq. (2.17)

and

G—1 —1

l(t + 1)
2

(3.3)

(3.4)

We now follow the steps described in Sec. II. We obtain
from variation conditions (2.20) the following values of ur

and w for each angular momentum:

l=0
0.8090169944
0.5031802721

l =1
1.770690633
1.566302861

l=2
2.762468905
2.303745890

&o
@exact

l=0
-0.4117617151
-0.5

l =1
-0.1202404016
-0.125

l =2
-0.05467250676
-0.05555555555

Considering the fact that the transformation

r=e

It is instructive to know that with these values of ~ and 7,
we obtain from (2.19) the following unperturbed ground-
state energies for different l:

In this section, we apply our method to calculate the
vibrational rotational energy levels of the H2+ Zg state.
We start by fitting the published adiabatic potential of
Bishop [6] with the following terms:

U(r) = 0.001 470 89r —0.025 732 87r

+0.168 192 2r —0.883 832 1
—0.231 036 3r + 0.698 371 2r
—0.183251 9r + 0.004 396 873r

The fitted function has error & 6.23 x 10 throughout
the published range in Ref. [6]. With this trial potential
we can then calculate the vibrational-rotational energy
levels following the steps described in Sec. II. Table II
gives the results calculated with our two-step method.
As can be seen in the table, a basis of 10 already yields
very accurate results. For comparison, we also list in
Table III the calculated result of Hunter and Pritchard
[7]. Our results are in good agreement with theirs. To
conclude this section we would like to point out that our
accuracy of the vibrational-rotational energies is really
limited by the accuracy of the published potential data
used which has only six digits of accuracy. Because of the
fast convergence of our approach we could turn the pro-
cedure around and give an accurate representation of the
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TABLE I. Energy levels of the H atom calculated with the two-step method (in atomic units).

State
J=o

Size of basis
1
5

10
20
30
40
50
60
?0

v=O
-0.4117617151
-0.4768172894
-0.4929293606
-0.4991402530
-0.4998214128
-0.4999523168
-0.4999850738
-0.4999947705
-0,4999980074

-0.1021400099
-0.1222993568
-0.1248449940
-Q.1249768894
-0.1249942691
-0.1249982031
-0.1249993617
-0.1249997538

-0.0486263492
-0.0549109917
-0.0555010067
-0.0555493683
-0.0555545030
-0.0555553001
-0.0555554724

1

5

10
20
30
40
50
60
?0

-0.1202404016
-0.1244728750
-0.1249578808
-0.1249993633
-0.1249999718
-0.1249999980
-0.1249999998
-0.1250000000
-0.1250000000

-0.0527994198
-0.0554628267
-0.0555545560
-0.0555555370
-0.0555555547
-0.0555555555
-0.0555555555
-0.0555555555

-0.0305459624
-0.0312350807
-0.0312497856
-0.0312499921
-Q.0312499997
-0.0312500000
-0.0312500000

1

5
10
20
30
40
50
60
70

-0.0546725068
-0.0554923201
-0.0555532731
-0.0555555457
-0.0555555554
-0.0555555555
-0.0555555555
-0.0555555556
-0.0555555556

-0.0305658262
-0.03123S2606
-0.0312499589
-0.0312499998
-0.0312500000
-0.0312500000
-0.0312500000
-0.0312500000

-0.0198625744
-0.0199989652
-0.0199999948
-0.0199999999
-0.0200000000
-0.0200000000
-0.0200000000

TABLE II. Vibrational-rotational eigenenergies of the H2+ Eg state calculated with the
two-step method (in atomic units).

State
J=O

Size of basis
5
10
15
20
25

v=0
-0.5971382158
-0.5971384753
-0.5971384758
-0.5971384758
-0.5971384758

v=1
-0.5871485934
-0.5871540411
-0.5871540672
-0.5871540672
-0.5871540672

v=2
-0 ' 5776161238
-0.5?77491563
-0,5777494212
-0.5?77494215
-0.5777494215

v=3
-0.5671315359
-0.5688995567
-0.5689037269
-0.5689037302
-0.5689037302

5

10
15
20
25

-0.5968728832
-0.5968731407
-0.5968731412
-0.5968731412
-0.5968731412

-0.5868972495
-0.5869026736
-0.5869026993
-0.5869026994
-0.5869026994

-0.5773790999
-0.5775112734
-0.5775115360
-0.5775115363
-0.5775115364

-0.5669098405
-0.5686747544
-0.5686788801
-0.5686788834
-0.5686788834

5

10
15
20
25

-0.5963443333
-0.5963445867
-0.5963445872
-0.5963445872
-0.5963445872

-0.5863965882
-0.5864019656
-0.5864019907
-0.5864019908
-0.5864019908

-0.576906975?
-0.5770374505
-0.5770377088
-0.5770377092
-0.5770377092

-0.5664682596
-0.5682270109
-0.5682310492
-0.5682310524
-0.5682310524

TABLE III. The nonadiabatic vibrational-rotational eigenenergy data of the Hq+ Z~ state from
Ref. [7] (in atomic units).

State
J=O

J=2

V=O
-0.59713873
-0.59687339
-0.59634483

V=1
-0.58715477
-0.58690341
-0.58640266

v=2
-0.57775080
-0.57751275
-0.57703894

v:3
-0.5689070
-0.56868221
-0.56823446
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TABLE IV. The ground-state eigenvalues for the effective potential V,u(r) = r + Ar with
a small basis of size n = 1, 2, 3, 4, 5 ~

1000
100
10
1

0.1
0.01
0.001

0

n=l
47.05216415
17.79206926
7.863260313
4.630565477
3.793859589
3.668123158
3.654648849
3.653140284

n=2
45.69872984
17.61000440
7.863260313
4.625574007
3.793474951
3.668117869
3.654648794
3.653140284

n=3
45.29296739
17.60401631
7.861584844
4.624185060
3.793379314
3.668116525
3.654648780
3.65140284

n=4
45.11745318
17.55931024
7.748053221
4.370980278
3.428807286
3.277929848
3.261504743
3.259662384

n=5
45.02872555
17.54614547
7.745459998
4.366055340
3.404993877
3.245566494
3.228025413
3.226055328

TABLE V. The energy levels for the effective potential V,e(r)
parentheses are the so-called exact values in Table I of Ref. [8].

2+ p
—5/2 The data in

Size of basis v=0 v=1 v=2

1000 10
20
30
40

44.95665329
44.95548513
44.95548479
44.95548479
(44.955485)

49.19695450
49.18637920
49.18637443
49.18637443

53.45488529
53.40678110
53.40674658
53.40674656

57.76290195
57.61773426
57.61756136
57.61756121

100 10
20
30
40

17.54198882
17.54189023
17.54189018
17.54189018
(17.541889)

21.75488562
21.75406316
21.75406266
21.75406266

25.94647158
25.94338634
25.94338402
25.94338402

30.13117606
30.11450465
30.11448618
30.11448614

10 10
20
30
40
50
60

7.735509397
7.735111823
7.735111107
7.735111104
7.735111103
7.735111103
(7.735111)

11.91621330
11.90635159
11.90629966
11.90629916
11.90629915
11.90629915

16.13766716
16.04242601
16.04155754
16.04154376
16.04154343
16.04154341

20.64985495
20.16855994
20.15415750
20.15377173
20.15375983
20.15375941

0.1

10
20
30
40
50
60
80
100

10
20
30
40
50
80
110

4.322657082
4.317394214
4.317314035
4.317311775
4.317311693
4.317311690
4.317311689
4.317311689
(4.317311)

3.306362789
3.271021203
3.267428695
3.266947599
3.266882416
3.266873037
3.266873026
(3.266873)

8.499250773
8.423344741
8.421255664
8.421170909
8.421165219
8.421164658
8.421164603
8.421164603

7.491640507
7.317164096
7.305347000
7.304173016
7.304040190
7.304022879
7.304022836

13.10098094
12.53023946
12.49580192
12.49305495
12.49282232
12.49280197
12.49279875
12.49279869

12.37487900
11.42823441
11.33916454
11.32948122
11.32837644
11.32812008
11.32811848

18.77358554
16.79978596
16.57759398
16.55208019
16.54860468
16.54803999
16.54795329
16.54795056

18.67913170
15.87062046
15.45101857
15.36919740
15.35043123
15.34625652
15.34621351

0.01 10
20
30
40
50
100

3.122071712
3.057625399
3.043650310
3.039278980
3.037715675
3.036737565

7.307492494
7.082862071
7.054453505
7.047379639
7.045039695
7.043574404

12.21570500
11.18103966
11.07016757
11.05402752
11.05027337
11.04803915

18.61258869
15.64737355
15.18671733
15.08536075
15.05913723
15.05142854
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TABLE V. (Continued).

Size of basis

150 3.036729497
(3.036729)

7.043562198 11.04802339

v:3
15.G5140499

0.001 10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

3.101099879
3.031550554
3.014839465
3.008904488
3.006417517
3.005263579
3.004689097
3.004388407
3.004225253
3.004134344
3.004082668
3.004052866
3.004035513
3.004025358
3.004019406
(3.004022)

7.286498114
7.053954469
7.021468576
7.012104231
7.008416661
7.006710346
7.005848549
7.005394776
7.005149327
7.005013020
7.004935509
7.004890744
7.004864682
7.004849438
7.004840503

12.19626428
11.14976131
11.03426336
11.01563477
11.01028735
11.00783769
11.00665477
11.0G607171
11.00576853
11.00559946
11.0055018G

11.00544552
11.00541301
11.00539398
11.00538278

18.60289292
15.61816566
15.15096915
15.04549559
15.01683363
15.00966413
15.00744213
15.00665412
15.00627958
15.00605704
15.00593576
15.00587069
15.00583323
15.00581061
15.00579742

10
20
30
40
50
60
70
80
90
100
110
150

3.098734060
3.028576680
3.011518609
3.005369231
3.002742931
3.001494954
3.000855120
3.G00507991
3.000311277
3.000195799
3.000125955
3.000025632

7.284129392
7.050654014
7.017655474
7.007978710
7.004088431
7.002244038
7.001285245
7.000762166
7.000466600
7.000293610
7.000188944
7.000038447

12.19405285
11.14617892
11.03010423
11.01113424
11.00554697
11.00292390
11.00161752
11.00094766
11.00058255
11.00036798
11.00023637
11.00004806

18.60177089
15.61480736
15.14682101
15.04081810
15.01180966
15.00440882
15.00203997
15.00115758
15.00071304
15.00043624
15.00027472
15.00005597

If we look carefully at the derivation in Sec. II we can
easily see that in our prototype of the potential

a„r"
in Eq. (2.2), the exponent n need not be restricted to
either positive or negative integers. In fact, the whole
derivation and formulas in Sec. II can be repeated with-
out change for exponents with any real values of n. In
this section we apply our method to the so-called spiked
harmonic oscillator with the effective potential

V,s(r) = r + Ar
i(I+ j.&

r2 (5.1)

which has been studied by several authors [8, S]. We
present in Table IV the calculated results with basis size
& 5 and in Table V results &om a larger basis. As can be
seen &om the tables, the rate of convergence is very fast
for large and moderate values of the coupling constant A.

For very small values of the coupling constant the rate of

potential curve by fitting the very accurate experimental
energy levels if they were available.

V. APPLICATION OF THE TWO-STEP METHOD
TO THE CASE OF A SPIKED OSCILLATOR

convergence is much slower. But throughout the whole
range of values of A, the result from one basis function,
the "bare ground state, " always gives a very respectable
approximation. It is instructive to compare our results
with the work in Ref. [8], which used unmodified Her-
mite polynomials with odd degree in order to satisfy the
Dirichlet boundary condition

at the origin r = 0. This selection of the basis func-
tions accounts for the fact that for a very small value
of A, the value in Table I of Ref. [8] gives the wrong
impression that the variational method behaves properly
in that work. As pointed out in Refs. [8] and [S], the
energy eigenvalues in that approach decrease very slowly
when increasing the number of basis states. For moderate
and large values of A, we obtain in general a faster rate
of convergence. The "exact" value can easily be read
off &om the table. In our approach the slower rate of
convergence for the small coupling constant A shows up
explicitly. We can always be certain about how close our
calculated result is to the exact value by looking at the
rate of convergence as the size of the basis is increased.
There is no abnormal behavior that we can detect. The
slow convergence for very small A is due to the fact that
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TABLE VI. The ground-state and first-excited-state
eigenvalues of the potential form V, s(r) = r + 0.4r . We
compare our results with those of Ref. [11].

Size of basis
1
10
20
30
40
50
60
70
80
90
100

Ref. [11]

4.248960615
4.033245178
4.031984855
4.031971811
4.031971457
4.031971440
4.031971440
4.031971440
4.031971440
4.031971440
4.031971440
4.03197134

8.364117224
8.315811300
8.314610746
8.314566572
8.314564429
8.314564228
8.314564274
8.314564272
8.314564272
8.314564272
8.31456538

we need many basis functions to access effectively the
region z = —oo for the transformed variable, which cor-
responds to r = 0. Related to this behavior is the fact
that in our approach, the Dirichlet boundary condition
at the origin r = 0 is automatically taken care of by this
transformation.

VI. CONCLUSION AND COMMENTS

In this paper we have described a powerful two-step
method to solve the diatomic vibrational-rotational prob-
lem with a potential of the form (2.2)

V(r) = ) a„r",

where the exponents n can be any real numbers. As
mentioned in Refs. [2] and [4], the physics of the fast
convergence of the numerically calculated results is due
to the fact that we have, in the first step, used an op-
erator formalism to carry through analytically the vari-
ation principle for the "bare" ground state. Any "large
coherent" effect is believed to have been taken care of
by this first variational step. The remaining corrections
are believed to be small. Notice that in addition to
the ground state, we also obtained from the diagonal-
ization process accurate results for the low-lying excited
states. As demonstrated in Ref. [4], since we have also
obtained converged eigenstates in terms of a harmonic
basis, we can easily obtain accurate Frank-Condon fac-
tors for rotational-vibrational transitions.

Our method is expected to be very eKcient for any
potential that has only one minimum. For the more dif-
ficult case of tunneling where the potential has two or
more deep minima, the rate of convergence is expected
to be slower. However, as has been shown in Ref. [2], a
modified version of our method can easily furnish accu-
rate results even in this case.

To conclude this paper, we would like to point out that
a class of problems called singular anharmonicities, with
the effective potential

V,g(r) = ar + br + cr

which have been discussed by several authors recently,
coincides with our prototype potentials. Our method
provides a uniformly simple, straightforward and very
efficient way of yielding accurate energies (Tables VI and
VII). We can easily detect some of the numerical errors
&om the Runge-Kutta method, which was used for the

TABLE VII. The ground-state and first-excited-state eigenvalues of the potential V,a(r) = r +br +0.8r . We compare
our results with Table I of Ref. [12].

State
ground state

Ref. [12]

ground state

State

first excited state

Ref. [12]

first excited state 0.3
0.25
0.2

3.5
4.0
4.5

No. of basis
1

10
20
30
40
50

rp

0.3 3.5
0.25 4.0
0.2 4.5
No. of basis

10
20
30
40
50

rp

6=1.00
5.027246147
4.934905169
4.934720931
4.934719669
4.934719655
4.934719654

6=1.00

4.87670
4.87598
4.87593
6=1.00

9.468702927
9.449604002
9.449471368
9.449469378
9.449469325

6=1.00

9.4414
9.3787
9.3736

6=1.02
5.033808881
4.941459452
4.941276026
4.941274776
4.941274762
4.941274761

6=1.02

4.88368
4.88295
4.88294
6=1.02

9.475079026
9.456067353
9.455935682
9.455933714
9.455933661

6=1.02

9.4487
9.3857
9.3806

6=1.04
5.040343902
4.947987153
4.947804530
4.947803293
4.947803279
4.947803279

6=1.04

4.89063
4.88989
4.88986
6=1.04

9.481432857
9.462507935
9.462377220
9.462375273
9.462375221

6=1.04

9.4560
9.3926
9.3875

6=1.06
5.046851456
4.954488501
4.954306675
4.954305450
4.954305436
4.954305436

6=1.06

4.89754
4.89680
4.89677
6=1.06

9.487764583
9.468925909
9.468796142
9.468794216
9.468794165

6=1.06

9.4631
9.3995
9.3944
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"reference" exact energies in Refs. [11—13]. By its very
nature, the Runge-Kutta method is well known to be dif-

ficult in providing extremely accurate results. Details of
this work will be presented in a future publication.

The generalization of our two-step method to systems
with two or more degrees of &eedom is straightforward.
In that case, the first step of carrying out the variation
principle analytically also eliminates the need of a very

time-consuming selection of basis sets by numerical trial-
and-error methodology.
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