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Charged anisotropic harmonic oscillator and the hydrogen atom
in crossed fields
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We perform a gauge-independent pseudoseparation of the center-of-mass motion for neutral two-body

systems in crossed fields. The resulting Hamiltonian is investigated for two different cases of the interac-

tion. First, we reduce the Hamiltonian for a two-particle system with anisotropic harmonic interaction
in a magnetic field to the Hamiltonian of a charged anisotropic harmonic oscillator in a magnetic field.

For the latter we derive closed-form analytical expressions of its eigenenergies and wave functions.
Second, we investigate the hydrogen atom in crossed fields. The potential for the relative motion of elec-
tron and proton exhibits an outer potential well at large distances. We perform extensive numerical cal-
culations of a large number of eigenvalues and wave functions and compare these to the analytical re-

sults of a harmonic approximation of the potential well.

PACS number(s): 32.60.+i, 03.65.—w, 31.50.+w, 32.30.—r

I. INTRODUCTION

The hydrogen atom in strong external fields has been
the subject of intensive study during the past two de-
cades. The existence of huge magnetic fields in the vicini-
ty of neutron stars (confirmed by observations in the late
1970s) has led to an increasing interest in phenomena in
strong magnetic fields. Theoretical [1—3] and experimen-
tal [4,5] investigations have improved our knowledge
about the spectrum of the hydrogen atom in magnetic
fields enormously. In particular, the hydrogen atom in a
magnetic field is also one of the simplest physical systems
that shows both classically as well as quantum mechani-
cally a transition from regularity to chaos [6].

The subject of the present paper are the two-body
effects for the hydrogen atom in external fields that arise
due to the finite nuclear mass and the fact that the collec-
tive and internal motion of the atom cannot be separated
in the presence of a field. The first rigorous treatment of
the true two-particle nature of the problem has been pub-
lished by Avron, Herbst, and Simon [7]. They introduced
a new operator connected with the center-of-mass
motion, the so-called pseudomomentum, and showed that
it represents a conserved quantity for the system. It was
also shown that the center-of-mass motion cannot be
separated completely from the internal motion as in the
absence of external fields. For neutral systems, however,
it is possible to perform a so-called pseudoseparation of
the center-of-mass motion. This pseudoseparation leads
to a Hamiltonian that is connected to the center-of-mass
motion via the eigenvalue of the pseudomomentum.
Herold, Ruder, and Wunner [8] used the results of Av-
ron, Herbst, and Simon in order to calculate the energies
of a neutral two-particle system with isotropic harmonic
interaction in a magnetic field. In a number of publica-
tions [9—15] the pseudoseparation has been performed
using specific choices for the gauge of the vector poten-
tial. Recently, Schmelcher and Cederbaum [16] used
Newton's equations of motion to show that the kinetic

energy of the center-of-mass motion can be interpreted as
part of the effective potential for the internal motion of
the neutral two-particle system. In particular, in this
classical investigation it has been argued that this
effective potential is gauge independent thus offering a
potential picture for the internal motion. In the present
work we provide a rigorous proof of the claim made in
[16].

The paper is organized as follows. In the first part
(Sec. II) we present a complete analytical solution for
both the energies and eigenfunctions of a charged particle
in a magnetic field and an anisotropie harmonic potential.
In Sec. III we present a gauge-independent quantum-
mechanical pseudoseparation of the center-of-mass
motion for neutral two-body systems with translation-
invariant interaction. It is shown that the only gauge-
dependent term in the resulting Hamiltonian of the inter-
nal motion is that of the kinetic energy of the internal
motion. The remaining terms of this Hamiltonian are
gauge independent and represent a potential for the rela-
tive motion of the atom.

In Sec. IV we first discuss the effective potential of the
internal motion of the hydrogen atom in crossed fields.
An additional potential well exists for large separations of
the electron and the proton. We present and discuss our
exact numerical results obtained for two different values
of the pseudomomentum and compare them to the
analytical results obtained for the harmonic approxima-
tion of the we11. This will allow us to point out the effects
that are due to the anharmonicity of the potential.

II. A CHARGED PARTICLE IN A MAGNETIC
FIELD AND AN ANISOTROPIC HARMONIC

POTENTIAL

A. Formulation of the problem

Let us consider a charged particle with charge q in a
static homogeneous magnetic field B=Be, and an aniso-
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tropic harmonic potential V(r). One of the principal
axes of the harmonic potential is assumed to point along
the direction of the magnetic field. For the vector poten-
tial we choose the symmetric gauge A= —,'BXr. The
Hamiltonian of the system is given by

(p —
q A) + V(r)= 1

2p
2 B 2+2

(xp —yp„)+ (x +y )
2p 2p y 8p

+ p (N2x2+&2y +&2z )x y z

Obviously, the z direction can be separated from the x
and y directions, i.e., the Hamiltonian H is a sum of the
Hamiltonian H of the two-dimensional system in the
plane perpendicular to the magnetic field and the Hamil-
tonian H, of the one-dimensional harmonic oscillator in
the z direction. The eigenvalues of H are given by

where E„=(n,+1/2)co, and E„„arethe eigenvalues of"2 1 2

H
Accordingly, the eigenfunction of H are given by the

product of the eigenfunction of the one-dimensional har-
monic oscillator P„(z)and the eigenfunctions %„„(x,y)"z 1 2

of Hzy Both the eigenvalues and eigenfunctions of H y
will be calculated in the following.

B. Transformation of H y

Due to the existence of the angular momentum term
qB /2'(xp~ —yp„)in H„~ the solution of the correspond-
ing Schrodinger equation is a nontrivial task. Because of
the loss of symmetry caused by the anisotropic harmonic
potential the angular momentum is not a conserved quan-
tity. Therefore, its quantum number cannot be used to
reduce the two-dimensional problem to a one-
dimensional differential equation as in the case of an iso-
tropic potential [8]. We have to find a unitary transfor-
mation of the Hamiltonian that eliminates the angular
momentum term and the explicit dependence on the mag-
netic field in H„„.We will end up with a Hamiltonian
that has the usual form of the kinetic energy in the ab-

sence of a magnetic field, i.e., p /2m, and potential terms
that do not contain momentum operators. In fact, the
final Hamiltonian will describe two independent particles
in their individual one-dimensional harmonic potentials.
The corresponding eigenvalues and eigenfunction are we11

known.
Let us begin our considerations by introducing the

operators

J=xp +yp, , V=-,'(x +y ), T= ,'(p„+-p ),
L =xp —yp„, W= z(x —y ), S= z(p„—pz)

and the abbreviations

2
CO CO~

b — co +co +
2 2 x y 2

=1C= (ci)n co ), d=—
2 ' y '

p
'

where co, = qB Ip, i—s the cyclotron frequency. Then the
Hamiltonian H,y is given by

H =aL+bV+cW+dT .

The time-independent Schrodinger equation for the Harn-
iltonian H,

(2)

can be rewritten in the form

H34n~n& En~n&Onion&

where we have introduced the eigenfunction g„„ofthe
1 2

Hamiltonian H3 = U 'H U defined by

4„„(x,y)=(UQ„„)(x,y) .

Let us consider the unitary operator

U =exp(iaxy )exp(iPp„p» ) .

The transforms of the operators J, L, V, 8', T, and S with
respect to the operators exp(iaxy) and exp(ipp„p~) are
given in the paper of Meyer, Kucar, and Cederbaum [17].
Transforming H „bythe operator U we obtain the new

Hamiltonian

H3=U H yU

=(ad P(b+a d ) }J—+(a —P(c+2aa ) }L

+(b+a d) V+(c —2aa)W+(d 2aPd+P (b+a —d))T+(2Pa —P (c+2aa))S .

For this operator to become a Hamiltonian of two in-
dependent particles in one-dimensional harmonic poten-
tials it is necessary that the coefficients of J and L vanish.
For BWO we find

I

and

p=+
Q( 2+ 2+ 2)2 4 2 2

2 2

a —+ + Q(co +co +ci) ) —4' co For B~0, we require n to vanish or at least to be finite.
Therefore, we have to choose the positive sign in a and P
for co„~co and the negative sign for co &co .



49 CHARGED ANISOTROPIC HARMONIC OSCILLATOR AND THE. . . 4417

2M) 2M~ 2 2
(8)

Now H3 is given in terms of squares of coordinate and
momentum operators only,

From the terms containing the momentum operators the
masses M& and Mz can be obtained in terms of the vari-
ables a, b, c, and d and the parameters cx and P. After
some algebra we arrive at

where

2p+(co+ +co&+co~ ) 4co+co&
1,2

sgn[co„—co ](co„—co +co, )+Q(co„+co+co, ) 4c—o„co

+1 for co„~co
sgn co„—co ]= ~

—1 otherwise .

With these masses we can calculate the frequencies co& and co2 using those terms of Eq. (8) that contain the squares of
the coordinates. The result is

1
co& 2= —[co„+co+co,+sgn[co„—co ]Q(co„+co+co, } —4co„co ]'

2

E„„=(n,+ ,')co, +—(n2+—,')co2 .

The eigenfunctions of H3 are products

(10)

of the one-dimensional eigenfunctions P„ofthe harmon-

ic oscillators with frequencies co; and masses M;.

Now, the original two-dimensional one-particle Hamil-
tonian H„„whichmixes the x and y directions via the an-
gular momentum term has been transformed into the sum
of two Hamiltonians of independent particles with masses
M& and Mz in one-dimensional harmonic potentials with
frequencies co& and coz, respectively. The new masses and
frequencies are given in terms of the original frequencies
cox, coy, and co, . Via co„there is an implicit dependence
of the Hamiltonian H3 on the magnetic field strength B.

The eigenvalues of H3, which are also those of H„,are
given by

C. Calculation of the wave functions

In order to obtain the eigenfunctions of H„„wehave to
apply the transformation operator U [Eq. (5)] to P„„ac-

1 2

cording to Eq. (4}. This is a nontrivial task. If the opera-
tor exp(iPp„p ) acts on a function of the coordinates x
and y, the result cannot be derived directly. It is very
simple, though, to get the result if the operator acts on a
function in momentum space.

Therefore, let us begin the transformation by taking
the Fourier transform P(g) of the eigenfunction g„„of

1 2

H3. P(P) is a function in momentum space. Then we ap-
ply the operator exp(imp„p ) to P(f) which means multi-

&PE„Py
plying P(g) by e ' ', where p„andp are now the cor-
responding eigenvalues. Next we take the inverse
Fourier transform of the result in order to obtain the
function f„„(x,y) in the coordinate space of H„„.In

1 2

this step we use the convolution theorem [18] for Fourier
transforms. The first steps of the transformation read

f„„(x,y) =(e " 'f„„)(yx)

I ~ 1f" f" —e ' O' — 'Nv —x'~g (x y )dx dy
2m. — — P 1 2

( —i}'
p+2mM2co2

I

e
—i/13(xy) i IP(x'y ) x

00 pM2co2

=N f e ' H„(Dz+F)H„(Gz+H)dz,
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1/2

M—, co,x 2—i PM, co,M2co~xy —M~cozy

2(P M(co(M2co, + 1)
1/2

X exp

2P M, co(M2coz

P M, co&M2co2+ 1

/M, co( x+iPM2co2y)F=
P M, co(M2co2+ 1

where
T

X= (
—i) ' QM, co,M2co~

Q2" +" +'„l„l P M, ,M2 2+1

The Hermite polynomials H„(az+b) in Eq. (11) can be
written as [19]

n

H„(az+b)= g H„k((/2az)Hk((/2b) .
&2" k=0

Using this formula, we are left with integrals of the form

I e ' Hk((/2Dz)H(((/26z)dz

which can be found in the table of Apelblat [20]. We ar-
rive at

2G= —sgn[co„—co ]
P M, co(M2 co&+ 1

' 1/2 1 2f„„(x,y) = g g ck, (n, , nz)H„k((/2F)
k =0 l=0

QM2coz(pM, co,x iy )—
H=

P M(colM2co2+ 1

XH„ l(&2H ),
where the coefficients are given by

(12)

ckl(n l, nz ) =

0 for k+l
n1

221+k
k

Qdd

n2
D lG l(2D 2

1 )((k —l)/2]

l 1 —l 1 —k —l 1 1 1
X 2F1 ——,

» 2
+

2 2 2
otherwise.' 2D2 262 4D262

Here 2F, denotes the hypergeometric function [18].
Finally, in order to obtain the eigenfunction 4„„(x,y)

1 2

of H„we apply the operator exp(iuxy) to f„„(x,y)
1 2

which means multiplying f„„(x,y) by e' " . The result

1S

ql„„(x,y) =Pe '"' g g ckl(n(, n2)H„k(v'2F)
k=o l=o

XH„ l(&2H ),

motion of a charged particle in a magnetic field and an
anisotropic potential. This will help us to understand the
appearance of the quantum-mechanical wave function.
In the following we denote the greater of the two frequen-
cies ~, and m2 by co+ and the corresponding quantum
number n+ and in analogy the smaller frequency ~ .
with the quantum number n

The classical equations of motion have been solved by
Schmelcher and Cederbaum [16]. The coordinates as
functions of time read as follows:

where

and

( —i) ' QM l co,M2co2

n, !n~!(PM, co,M2co~+1)

1/2

x(t) =a+ cosco+t+a cosco t,
y(t) =b+sinco+t+b sinco t,

where

$+$
b+ = —a+ 2

'2

COy CO+

(14)

M, co,x +2tPM(colM2co2xy+M2cozy
g(x,y) =iaxy—

2(P M, co,M2co~+1)

%„„(x,y) are the eigenfunctions of H„given in coordi-
1 2

nate space. They are finite sums of products of two Her-
mite polynomials with different complex arguments.

D. Trajectories of the classical motion

Before we discuss the form of the wave function

%„„(x,y) let us derive the trajectories of the classical
1 2

and

CO CO

b = —a
CO@

Ct)

We see that the classical motion is given as a superposi-
tion of two elliptical motions with different frequencies
co+ and co . To find the values of a+ and a we set the
quantum-mechanical energy E„„=(n + + —,

' )co+

+ (n + —,
' )co equal to the classical energy

E =(M /2(x +y )+]Lc/2(co„x +co y ). Note that in clas-
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FIG. 1. Square of the absolute values of the
wave functions of H„y and corresponding clas-
sical trajectories. Quantum numbers are indi-

cated in the plots. Parameters: 8 = 10 ',
co, =10, and coy=5X10 . All values are
given in atomic units.
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sical mechanics the kinetic energy IM/2(x +y ) contains
all the contributions from the magnetic field like the
paramagnetic and diamagnetic terms of the Hamiltonian.
That is why in the total energy the potential has the orig-
inal form with frequencies co„and ro . Using Eqs. (14)
and (15) in the classical energy expression the energy
equation can be transformed into

(n++ —,')co ++(n + —,')co =a+ c02++a2 c02

with the masses

2ILt+(co +co +co ) 4co co

and

2n +1

Having obtained the coefficients of the trajectories
given in Eqs. (14) and (15) we can plot the classical trajec-
tories and compare them to the quantum-mechanical
wave function.

E. Comparison of classical trajectories and quantum-mechanical
wave functions

and

2IM+(fox+co&+co~) 4co+co&

2 2 2++( 2+ 2+ 2)2 4 2 2
y x c x y c x y

Since the two frequencies co+ and co are independent we
can split this equation into two and solve them for a+
and a . We finally arrive at

2n+ +1
a+=

M+ co+

We have plotted numerous quantum-mechanical wave
functions (13) and compared them to the classical trajec-
tories. As an example, let us choose the mass' p=1, the
charge q = —1, the frequencies co = 10 and
coy=5X10, and the magnetic field B=10 . These
parameters lead to the frequencies co+ =1.00X10 and
co =5.00X10 . In Figs. 1 and 2 we have plotted the

Throughout the paper we will use atomic units.
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FIG. 2. Square of the absolute values of the
wave functions of H„~and corresponding clas-
sical trajectories. Quantum numbers are indi-
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square of the absolute value of the wave functions and
their corresponding classical trajectories for different
combinations of quantum numbers n+ and n . For the
plots of the trajectories the frequencies co+ and co have
been scaled independently for reasons of illustration.

The form of the ground-state wave function is that of a
Gaussian function. The other states shown in Fig. 1 ex-
hibit an elliptic ring of high probability density that en-
closes a region of low intensity. These features can be ex-
plained by the form of the classical motion that consists
of an elliptical motion with high frequency co+ that itself
is moving on an elliptical path with smaller frequency.
Depending on the sizes of the semiaxes which are deter-
mined by the quantum numbers the classical motion ei-
ther completely fills the corresponding area of coordinate
space around the origin or leaves an inner ellipse un-
covered leading to an elliptical ring in space that is
covered by the motion. In general, we observe the ten-
dency that the quantum-mechanical probability density is
enhanced in regions of coordinate space that are fre-
quently visited by the classical trajectories. However,
this correspondence should not be overemphasized. For
example, as we see in Fig. 2 for the state n+ =3, n =2
the quantum-mechanical peak structures cannot be ex-
plained in detail by the classical path.

III. A NEUTRAL TWO-PARTICLE SYSTEM
IN EXTERNAL FIELDS

A. Gauge-independent pseudoseparation
of the center-of-mass motion

For many-body systems with translation invariant in-
teraction without external fields it is possible completely
separate the motion of the center of mass from the inter-
nal degrees of freedom. In general, if there is an external
field this separation is no longer possible. For neutral
systems in static homogeneous magnetic and electronic
fields, however, one can perform a so-called "pseu-
doseparation, " which results in an effective Hamiltonian
for the relative motion. This Hamiltonian depends
parametrically on the eigenvalue of the so-called "pseu-
domomentum" which is a conserved quantity connected
to the center-of-mass motion of the system.

In the literature [7—12,16,21,22] this pseudoseparation
has always been performed using specific choices of the
gauge for the vector potential. %e shall perform the
pseudoseparation for a neutral two-body system in a
magnetic and electric field without restricting ourselves
to a specific gauge. As a consequence in the resulting
effective Hamiltonian we will obtain terms that depend
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+&EI2+ I (rl 12) (16)

where m; are the masses, +e the charges, and r; and p;
(i =1,2) the operators of the coordinates and momenta of

I

on a vector potential and terms that are gauge indepen-
dent. We will be able to identify the terms representing
the kinetic energy of the relative motion. The remaining
terms will be gauge independent and can therefore be as-
signed to an effective potential of the relative motion.

The Hamiltonian of a neutral two-body system in
homogeneous static magnetic and electric fields reads

1 2 1
(p, —e A, ) + (pz+e Az) —eErl

2ml '
2m2 A, =

—,'BXr, +V,A(r, ) . (17)

Let us now introduce the center-of-mass vector R and the
relative coordinate vector r. In these coordinates the
Hamiltonian in Eq. (16) with the vector potential given in
Eq. (17}reads

the two particles. A, = A(r, ) is the operator of the vec-
tor potential and V(ri —rz) the operator of the transla-
tion invariant interaction potential. The magnetic field is
given by B(r)=V X A(r). Therefore, the vector potential
is not uniquely defined but can be gauged using the gra-
dient of a scalar field A: A,

' = A;+ V, A(r; ). As a result,
the vector potential in an arbitrary gauge is given by, for
example,

mI e m2 mi
P+p ——BX R+ r —e V++V„A~

2m& M 2 M M

2

2
m2 e ml m2+ P —p+ —BX R— r +e Vz —V„A, +V(r) —eE r,

2m2 M 2 M M (18)

where A, =A(R —(mi/M)r) and A&=A(R+(mz/M)r).
The Hamiltonian & possesses a constant of motion, the so-called pseudomomentum, which is given by [10,21,23,24],

K'=pl —e AI+eBXri+p2+e A2 —eBXr2 —MvD=K —MvD

e m2 m&=P+ BX—r+e Vz —V, A&
—e V++V, Az MvD, —

%(r,R)=U(r, R)%0(r) . (19)

The center-of-mass coordinate dependency is, therefore,
solely given by the unitarian U, which will in the follow-
ing be determined by the condition that 4 must be an
eigenfunction to the operator K', i.e., K'%=K'%', where
K' and K denote the corresponding eigenvalues. Togeth-
er with the ansatz

. eU=exp iK.R—i—(BXr) R+iy(r, R)
2

(20)

where K' and K denote the operator of the pseu-
domomentum with and without the electric field, respec-
tively. M =m

&
+m 2 is the total mass and

vD =(EXB)/B the drift velocity of charged particles in
crossed fields. The latter is independent of the charge
and mass of the particle [25]. For a physical interpreta-
tion of the pseudomomentum we refer the reader to Av-
ron, Herbst, and Simon [7], Johnson, Hirschfelder, and
Yang [10], or Schmelcher, Cederbaum, and Kappes
[23,24]. In static magnetic fields the components of the
pseudomomentum commute with the Hamiltonian. For
neutral systems the components of the pseudomomentum
commute with each other. Therefore, the eigenfunctions
of the corresponding Schrodinger equation can be chosen
as simultaneous eigenfunctions to the pseudomomentum.
As a consequence of the discussed properties of & it is
possible to decompose the total wave function 4 in the
following way:

we arrive at the following differential equation for the un-
known function y:

m2 ml
V ya(r, R)=e Va —V„A,+e Va+V„A~ .

M

This equation has the solution

y(r, R}=—e(A, A~}+f(r) . — (21)

Note that the integration constant f(r) is a function of
the internal coordinate r only. Now, knowing y we use
the unitary operator U in order to transform & and final-
ly arrive at the following effective Hamiltonian for the
system:

2

H = p ——+BXr+V„f(r}1 e

2p 2 p

+ (K—eBXr} + V(r}—eE r .1 2

2M
(22}

Here, we have introduced the reduced masses
@=mime/M and P, =mlmz/(mz —m&) with m& (mz.
The only gauge-dependent term of the Hamiltonian (22)
is the first term on its rhs. Schmelcher and Cederbaum
[16] used Newton's equations of motion to show that this

Noticing that V„A,= (m, /M )V—a A, and V„Az
=(mz/M)V+Az, we rewrite this equation as

Vay(r, R)= —eVa(AI —Aq) .
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term can be associated with the kinetic energy of the
internal motion. With the charge q =ep/JM and the vec-
tor potential A(r)= —,'(BXr)+I/qV„f(r), the operator
of the kinetic energy of the internal relative motion can
be written as

ing the ansatz

+o(r)=exp i (a K,x+a K y) @(r')

for the eigenfunction where

(27)

T= (p —
q A(r))1

(23)
2p

The term 1/2M(K —eBXr) represents the kinetic ener-

gy of the center-of-mass motion. It depends only
parametrically on the eigenvalue K of the pseudomomen-
tum. This kinetic energy and the remaining terms of H
are according to Eq. (22) gauge independent. Therefore,
they represent an effective potential for the internal
motion,

pMco
„1+

e 8
for n=x, y

and r'=r —aro with ro=(KXB)/(eB )

=(1/eB)(K, —K,O) and a=(a„,a,O). In the follow-

ing we omit the primes on the coordinates. For the wave
function 4(r) we get the Schrodinger equation in the
form

V= (K—eBXr) + V(r) —eE r .
1

2M

If E is perpendicular to B we get with K'= K —MvD

(24)
H, 4(r)=

2p 2 " 4
(xp —yp„)+ co„+ x

p

V= (K' —eBXr) + V(r)+ v +K' v= 1 2 M
2M D D (25)

CO++ co + y ++co z +C 4(r)
2 4 2

Here, the electric field appears only in K' and the con-
stant (M /2)vD +K' vD. The Hamiltonian now reads

=E4(r) .

Here we used the abbreviations

(28)

H=T+V . (26)

This is an effective one-particle Hamiltonian for the inter-
nal motion of the two-particle system. It depends only on
operators of the relative coordinates and mornenta but it
is linked to the center-of-mass motion via the eigenvalue
K' of the total pseudomomentum.

We were able to identify an effective potential for the
internal motion containing the interaction potential, the
potential due to the electric field, and the kinetic energy
of the center-of-mass motion. In order to identify the
latter term as a part of the effective potential we per-
formed a gauge-independent pseudoseparation to make
sure that it does not depend on the initial choice of the
gauge.

B. Elimination of the pseudomomentum

for anisotropic harmonic interaction

H+o(r) =EVO(r)

we follow an idea of Herold, Ruder, and Wunner I8] us-

We shall now apply another unitary transformation to
the Hamiltonian (26) with an anisotropic harmonic in-
teraction potential V(r) =p/2(co „x+co~y +co,z ).
The goal of this unitary transformation will be to elirni-
nate the pseudomornentum dependent terms from the
Hamiltonian by using shifted relative coordinates. We
choose the magnetic field B=(O,O, B) and the symmetric
gauge A= —,'B X r. It is sufficient to consider the case of a
vanishing electric field. To transfer the results of the fol-
lowing to cases with nonvanishing electric field we only
need to replace K by K'=K —Mv~ and to add the con-
stant (M/2)v D+K'.vD to the energy [see Eqs. (24) and
(25)].

Starting with the time-independent Schrodinger equa-
tion

and co„=
1/2

e 2g 2

+co„(n=x,y)
Mp

and the constant

(29)

K 1C= — (K„a+K a, ) .

Introducing the charge q=ep/P the Hamiltonian H, is

apart from the constant C identical to the Hamiltonian H
of one particle in a magnetic field and an anisotropic har-
monic potential given in Eq. (1). Therefore, all results ob-
tained in Sec. II can be applied to the case of a neutral
two-body system with anisotropic harmonic interaction
in a magnetic field.

IV. THE HYDROGEN ATOM IN CROSSED FIELDS

A. The potential of the internal motion

The interaction potential of the hydrogen atom is given

by V(r)= —e /~r~. We choose e= —1, B=(0,0,8), and
K=(O, K, O) orthogonal to B since all components of K
parallel to the magnetic field result in an energy shift only

Having determined the eigenvalues and eigenfunctions
of a two-particle system with anisotropic harmonic in-
teraction in a magnetic field we now proceed considering
a real physical system, the hydrogen atom. We will see
that for the relative motion of electrons and protons in a
magnetic field there is a potential well besides the
Coulomb singularity. This well is approximately an an-
isotropic harmonic potential in the vicinity of its
minimum. Accordingly, we can use the results of the
preceding sections and compare them to the numerically
calculated eigenstates of the hydrogen atom in the well.
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approximation formula for the minimum coordinate:
xo= K—/B+KM/(K —2MB ). Hence, for laboratory
field strengths (B—10 a.u. ) and pseudomomenta of the
order of 1 a.u. the minimum is located at a distance of
about 10 a.u. from the Coulomb singularity. Therefore,
for states in the well the electron and proton are separat-
ed about 100000 times as much as they are in the ground
state of the hydrogen atom without external fields, i.e.,
we encounter a strongly delocalized atom of almost mac-
roscopic size. Since the well exists only for negative
values of x the separation is fixed in a certain direction of
space resulting in a large permanent dipol moment of the
atom in contrast to the well-known Rydberg states with
vanishing pseudomomentum in a magnetic field that do
not exhibit a permanent dipol moment.

In the following we will investigate the quantum-
mechanical states in the outer potential well. In the
literature there are investigations on strongly delocalized
states of the hydrogen atom by Baye, Clerbaux, and
Vincke [26], Dzyaloshinskii [27], Schmelcher and Ceder-
baum [16], and Vincke, LeDourneuf, and Baye [28]. In
Refs. [26], [27], and [16] the spectrum of the low-lying
states in the potential well has been derived in a harrnon-
ic approximation using difFerent methods. In Ref. [28]
the spectrum and wave functions for states with energies
above the saddle-point energy, i.e., above our potential
well, have been calculated. The techniques used in Ref.
[28] are only applicable for astrophysical field strengths
B ~ 10 a.u. which corresponds roughly to 2 X 10 T.

In [16] the potential picture has been given. Here, we
present the results of exact numerical calculations of the
spectrum and the corresponding wave functions in the
well for laboratory field strengths. Many states up to a
very high degree of excitation will be considered. We will
compare both the numerically obtained eigenvalues and
eigenfunctions of the atom to those of the harmonic oscil-
lator approximation for which we presented the closed
analytical form of the wave functions in Sec. II C.

as can be seen from the potential operator in Eq. (25).
The electric field is again assumed to vanish. To transfer
the results of the following to the case of a nonvanishing
electric field orthogonal to the magnetic field we only
have to redefine K as K'=K —MvD and add the con-
stant (M/2)vD+K' vD to the energy. The operator of
the potential of the relative motion [16] now reads [see
Eq. (25)]

B2 BE 1 EV= (x+y )+ x — +
2M M Irl 2M

' (30)

In Fig. 3 we have plotted this potential for B=10
a.u. =2.35 T with E=1 and 0.6. From the condition for
a potential minimum (d V/dr, =0) we calculate the y and
z coordinates of the minimum, yo=z0=0, and get an
equation for the x coordinate,

x + x — =0,E'
2 M

0 B 0

where

(31)xo&0 .

In order to get both a minirnurn and a saddle point the
cubic equation must have three real zeros. From the
form of the discriminant follows

(32)E') —"BM
4

as a necessary condition for the existence of a minimum.
Schmelcher and Cederbaum [16] have given an explicit

200—

1 00—

B. Approximation of the potential well
I

—1 00
—1 00

—200 In order to interpret the full numerical results for the
energies and wave functions of the hydrogen atom in a
magnetic field to be presented in Sec. IV D we use an ex-
pansion of the Coulomb potential 1/lrl around the
minimum of the potential well. Including only terms up
to xo we get the approximated potential [16]

0 x10~

x1 0-6
10

I

I

I

I

I
I
I

I
/

I
/

C3

CO

C3

V =+~'x'++~' '++~'z'+C
h 2' 2 yy 2N, Z (33)

where we used new coordinates with the origin at the
minirnurn of the well. The frequencies are given by

20—

1/2
2 B 1

p 2M

1 B 1

p M

1
' ' 1/2

30—1 OQ —50

1/2FIG. 3. Potentials of the internal motion of a hydrogen atom
in a magnetic field. Solid line, exact potential; dashed line, ex-
panded potential used in the numerical calculations; dotted line,
harmonically approximated potential; horizontal line, ground-
state energy. Parameters: (a) B=10 ', EC=1.0; (b) B=10
E=0.6.

(34)

CO

P xo
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and the constant reads C3 =2/xo —(B xo )/2M
+K /2M+ME /2B +KE/B. With this potential the
Hamiltonian of the hydrogen atom takes on the form of
the Hamiltonian of a charged particle in a magnetic field
with anisotropic interaction [see Eq. (1)]. Therefore, we
can use the analytical results of Sec. II as an approxima-
tion for the low-lying energies and wave functions of the
hydrogen atom in the well. The approximate energies are
given by

E„„„=(n++,' )co—++(n + —,
' )co +(n, + —,

'
)cu, +C3

(35)

with the frequencies

1
Co+ — —[COX +CO& + CO~

2

yQ( 2+ 2+ 2)2 4 2 2]1/2

The quantum numbers n+, n, and n, apply to the
eigenstates of the Hamiltonian with the harmonic poten-
tial Vz only. However, we will also use them as labels for
the states of the hydrogen atom. For all calculated cases
co+ will be much larger than co, therefore n+ will al-

ways be zero. An increase of the value of the label n

will correspond to an increase of the extension of the
wave function in the x and y directions, and an increase
of the value of the label n, wi11 correspond to an increase
of the extension of the wave function in the z direction.

In a second step, in order to determine the influence of
the anharmonicity in the exact potential, we will expand
the 1/~ r

~
term up to higher powers of the components of

r and treat them as small perturbations to the harmonic
approximation of the Hamiltonian by means of first-order
perturbation theory. These perturbative calculations
offer insight into the effects of the anharmonic parts of
the potential onto the energies and the form of the wave
functions.

C. Numerical calculation of the exact eigenenergies
and eigenfunctions in the outer potential well

In the following section we introduce the basis set and
the computational techniques used for the numerical cal-
culation of the eigenenergies and eigenfunctions in the
outer potential well. Since the frequencies co„and co in

Eq. (33) differ only by a few percent for the values of the
magnetic field strengths and pseudomomenta considered
here the potential well of the atom has approximately cy-
lindrical symmetry in the vicinity of its minimum. That
is why we will express the Hamiltonian in cylindric coor-
dinates and use the eigenfunctions of a charged particle
in a magnetic field in cylindric coordinates [29] as basis
functions in the plane perpendicular to the magnetic field.

Using the constant C4=((B xo)/2M+BK/M
+E)xo+K /2M and again taking the minimum of the
well as the origin of the new coordinate system the Ham-
iltonian is now given as

B 2
B &o BEH=Ho+- p +

2M I M
+ +E p cosP

1 +C4,
Qp +z +xo+2xop cosP

(36)

. ~c 8 B p
2 ill 8p

2

For our calculations we used the basis functions

img

(p, P, z ) =R„(p) P„(z),
277

where P„(z)are the eigenfunctions of the harmonic oscil-
"z

lator in z with the frequency co, defined in Eq. (34) and
the radial functions R„(p)are given by

1/2
1 (~m~+n )!

&
l~ +& 2 ml&!( m/!)&

J

2

exp
4a~

2

Xp F —n [mi+1, z2aB
(38)

Here a~ = (1/pro, )
' is the cyclotron radius and

F(a, l3, y) denotes the confluent hypergeometric function
which for negative integers a = —n and positive integers
@=~m~+1, apart from a factor, equals the generalized
Laguerre polynomial L„(y).The p and P parts of the
basis functions are eigenfunctions of Ho [29] with the ei-

gen values

/m/+m+1E„—n+
2 c (39)

where n =0, 1,2, . . . and m =0,+1,+2, . . . . In order to
calculate the matrix elements of the Hamiltonian H given
in Eq. (36) we expand the Coulomb term and use the
discrete variable representation [30—34] for the z direc-
tion. The expansion is performed up to terms of very
high powers (=20) of the components of r. Neglecting
higher terms of the Coulomb potential does not result in

any significant deviation of the approximated potential
from the exact potential in the relevant regions of the
well where the calculated wave functions are localized.
The remaining integrals over powers of p and cosP can be
calculated analytically. The free parameters of the calcu-
lation are the upper bound X of the quantum number n,
the lower (M;„)and upper (M,„)bound of m, and the

upper bound X, of n, . For our calculations we used IBM
RS/6000 model 580 workstations. On these machines the
diagonalization of a real 10000X10000 matrix needs
about 10 h of CPU time.

where Ho is the Hamiltonian of a free charged particle
with charge q

= —p/p in the magnetic field B:

1 8 1 d 1

2p Bp p ~)p p BP i}z
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D. Results

In the following we discuss the results of our calcula-
tions of eigenenergies and wave functions of the hydrogen
atom in a magnetic field B=10 for the values K =1.0
and 0.6. One-dimensional intersections along the x axis
of the exact potential for these two cases are plotted in
Fig. 3 together with the harmonic approximated poten-
tial and the expanded potential we used in our calcula-
tions. In these plots we have also drawn a dashed hor-
izontal line corresponding to the ground-state energy.

3 -0.5—

hhhflhh

1. %=1

Let us first discuss the case B=10 and E=1.0. The
results have been calculated using the parameters N =3,
M;„=—126, M,„=10,and N, =25 for the basis set.
By comparison with calculations using smaller basis sets
we can safely assume that about 700 eigenvalues and
eigenfunction are converged. The accuracy of the ener-
gies is at least 10 digits.

The energy of the ground state in the potential well is
Ep = —5.0765 X 10 a.u. = —0. 138 meV; the energy

gap between the ground and first excited state is
hE =5.38 X 10 a.u. = 1.46 X 10 meV. The frequency
corresponding to this energy is 35.3 MHz. The ground-
state energy Ez of the completely separated, ionized, sys-
tem, i.e., free electron and proton in the magnetic field, is
given by the sum of the cyclotron energies of electrons
and protons respectively. That is,

N NeE = +
2 2 2p

For B= 10 this energy has the value

Ez =5.0027 X 10 a.u. Therefore, the binding energy of
the ground state in the potential well is
Eg =Eg Ep = 1 ~ 0079 X 10 a.u. =0.274 meV. Even
though the binding of the states in the well is relatively
weak they should be stable as long as collisional interac-
tion is prevented.

Let us consider now the deviation of the exact energies
from those of the harmonic approximation as a function
of the level number. In Fig. 4 we have plotted the energy
difference between the harmonic approximation and the
exact energies of the hydrogen atom in units of co . We
see that the difference grows stepwise while neighboring
states show very different deviations from the harmonic
approximation. To explain these features let us look at

100 200 300 I+00 500 600 700

level
FIG. 4. Difference between harmonic approximated and ex-

act energies of a hydrogen atom in a magnetic field in units of
the frequency co as a function of the energy level. Parameters:
B=10,If =1.0.

the energy level 331. We see that the difference between
exact and approximated energies for this level is much
larger than for the levels below 331. The level 331 has
the quantum numbers n+ =n =0 and n, =10, i.e., the
quantum number n, = 10 appears for the first time.
Looking at higher levels there are maxima of energy
difFerences hE/co every 11th level above 331 up to level
397. For these levels (342,353, etc.) the quantum number
n, is 10 and n =1,2, . . . . Between two levels with

n, =10 there are levels with n, (10, and apparently the
energy difference for these is smaller. That is, the
difference between harmonic and exact energies is mostly
determined by the quantum number n, . Hence, the
anharmonicity of the exact potential is most pronounced
in the z direction. This can also be seen in perturbation
theory for higher terms of the expansion of the Coulomb
potential where the major contributions to the energy
corrections are due to those terms containing high
powers of z.

Let us now turn to the wave functions of the hydrogen
atom in the well. In Table I we have listed the expecta-
tion value of x and the rms in x, y, and z for some states
with either n, =0 or n =0. The expectation values of y
and z are zero for all these states. We see that for n, =0
the wave function is centered near the minimum of the
well. For increasing n, the center of the wave function is

TABLE I. Expectation value x and root mean square in x, y, and z for the wave functions of several
states of the hydrogen atom in a magnetic field. Parameters: B= 10 ', E= 1.0. All values are given in
atomic units.

Level

1

6
8

259
331
603
704

0
5
0

52
0

81
0

0
0
1

0
10
0

15

—4.71095
—4.503 34

—14.17108
—2.549 88

—97.104 53
—1.342 76

—141.503 04

318.580 00
785.13007
318.565 84

2336.01108
318.442 77

2905.81473
318.377 72

313.93060
764.237 82
313.944 88

2268.857 75
314.11091

2821.965 46
314.231 78

3907.192 93
3907.30007
6775.215 16
3908.306 98

17 679.040 28
3908.928 10

21 061.144 29
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shifted towards negative values of x. This is due to the
increasing extension of the wave function in z which
makes these states be affected by the potential in regions
of larger z where the minimum of the well is shifted to
negative x values. In Table I we also see that the exten-
sion of the wave functions in x and y is the same for
states with the same n+ and n and that the extension in
z is the same for states with the same n, . This shows that
excitations in the plane perpendicular to the magnetic
field are almost independent from those in the z direction.
Furthermore, in general, the extension of the wave func-
tions in the x-y plane is much smaller than parallel to the
field. Note that the extension of the wave functions in
the x-y plane is also much smaller than it would be in the
same potential without the presence of a magnetic field.
Apparently, the form of the wave function is determined
substantially by the field-dependent kinetic energy.

Looking at the form of the wave functions we restrict
ourselves to intersections perpendicular to the field. In

level

5000

000

-5CGO

i eve 1 259

the z direction the form of the wave function is almost
that of a harmonic oscillator changed only sli htl bg y
small corrections due to higher terms of the 1/~ r

~
expan-

sion. Figure 5 shows the square of the absolute value of
the wave functions of three states of the hydrogen atom
in the well. They look almost the same as the corre-
sponding wave function of the harmonic approximation.
The small changes of the wave function due to the slight-
ly anharmonic form of the potential well are only vern y very
hardly visible on the scale given in Fig. 5. This is
different for smaller values of the pseudomomentum as
will be seen in the following section.

2. X=0.06

Let us now investigate the eigenvalues and wave func-
tions of the hydrogen atom in the magnetic field 8 = 10
with pseudomomentum I|'=0.6. As can be seen in Fig. 3
the deviation of the exact potential from the harmonic
approximation is larger than for K=1.0. Therefore, we

expect larger energy differences and differences between
the wave functions of the exact and approximated states.

In the following we discuss results of a calculation with
parameters N =3, M;„=—190, M,„=10, a d N, = 17.
By comparison with calculations with smaller basis sets
we can assume that at least 400 energies and wave func-
tions are converged. The energies are given in at least ten
significant digits. The ground-state energy in the well is

Eo = —1.2499 X 10 a.u. = —0.3399 meV. Since the
ground-state energy of the free electron and proton, E~,
is the same as in the case E = 1, the binding energy of the
ground state in the well E~ =E~ Eo = 1.75 X 10

— -'

a.u. =0.476 meV is larger than for K =1.
Figure 6 illustrates the difference between the exact

and approximated energies. We see the same features as
in the case K=1. However, the differences are larger
than in the above case.

Also the size and location of the wave functions, given
for some states in Table II, show similar features as those
in the case K =1. However, the shift in the x direction of

000

-5000

'evel 6C3

-0.5—

5"OG

000

—1.0—

r

100 200 300 400

FIG. 5. Square of the absolute value of the wave functions of
the hydrogen atom in a magnetic field. Shown are intersections
in the plane perpendicular to the magnetic field. Parameters:
8=10,K=1.0.

FIG. 6. Di6'erence between harmonic approximated and ex-

act energies of a hydrogen atom in a magnetic field in units of
the frequency co as a function of the energy level. Parameters:
8=10,K=0.6.
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TABLE II. Expectation value x and root mean square in x, y, and z for the wave functions of several

states of the hydrogen atom in a magnetic field. Parameters: B=10,K =0.6. All values are given in

atomic units.

Level

1

17
108
204
238
306

0
0

50
72
0

90

—26.497 73
—80.215 99

9.81008
26.027 74

—288.591 24
39.409 60

332.505 94
332.304 20

2484.797 75
2974.39946
331.534 17

3322.071 03

0'y

302.149 89
302.304 03

2053.088 07
2454.927 62

302.928 65
2739.965 62

2479.887 90
4304.264 09
2480.842 26
2481.254 15
8196.028 81
2481.587 40

the center of the wave functions is more pronounced for
E=0.6 than for E= 1.

A major difference between the states for K =0.6 and 1

appears in the form of the wave functions. In Fig. 7 we
have plotted the square of the absolute value of the wave
functions of two states that are highly excited in the
plane perpendicular to the field. The ground state and
less highly excited states are not shown since they do not
exhibit major differences to the harmonic approximation.
Shown are the results in the harmonic approximation,
this approximation plus corrections from first-order per-
turbation theory for higher terms of the I/~r~ expansion,
and the numerical results for the exact wave functions.
We see that the harmonic approximation leads to a wave

function whose intensity is evenly distributed over an el-

liptic ring surrounding the minimum of the well. In con-
trast, due to corrections from anharmonic terms the in-

tensity of the wave functions of the hydrogen atom for
states that are highly excited in the plane perpendicular
to the magnetic field is largely reduced close to the x axis
both in the perturbation calculation and the exact results.
Apparently, this deviation from the wave functions of the
harmonic approximation is due to the anharmonicity of
the potential. In the perturbation calculation we includ-
ed only a few terms of the I/~r~ expansion. That is why
the decrease of intensity of the wave functions appears on
the level of perturbation theory for even smaller values of
the label n than in the exact calculation.

n =0 fl =72 n =0 fl =72 1 eve l 204

5000 5000 5000

000 000 000

-5000 -5000 -5000

n =0 n =90 n =0 n =90 level 306

5000 5000 5000

000 000 QQQ

-5000 -5000 -5000

FIG. 7. Square of the absolute value of the wave functions of the hydrogen atom in a magnetic field. Shown are intersections in
the plane perpendicular to the magnetic field for the harmonic approximation, for perturbation theory, and for the exact Hamiltonian
(from left to right). Parameters: B=10,K =0.6.
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E. Summary and conclusions

In the present paper we have performed a gauge-
independent pseudoseparation of the center-of-mass
motion for a neutral two-body system with translation-
invariant interaction in crossed fields. In the resulting
Hamiltonian we were able to identify terms that depend
on a (gauge-dependent) vector potential and belong to the
kinetic energy of the internal motion. The complementa-
ry terms of the Hamiltonian are gauge independent and
can, therefore, be assigned to an effective potential of the
internal motion of the atom. The transformed Hamil-
tonian has been investigated for two different cases of in-
teraction between the two particles. First, the Hamiltoni-
an of a two-particle system with anisotropic harmonic in-
teraction was further transformed to the form of a one-
particle Hamiltonian of a charged harmonic particle in a
magnetic field. We have calculated the eigenenergies and
presented a complete analytical solution for the eigen-
functions of this charged particle in a magnetic field and
an anisotropic harmonic potential.

The second two-particle system in a magnetic field
which we investigated was the hydrogen atom in crossed
fields. We were able to present a potential picture for the
relative motion of the electron and proton. Due to the
inhuence of the center-of-mass motion there is a potential
well for large separations (typically several 10000 A) of
the electron and proton. A method has been introduced
to numerically compute the eigenvalues and the corre-
sponding wave functions in this potential well. These cal-
culations proved to be very efficient allowing us to calcu-
late several hundred eigenstates to a very high accuracy
even though the energy spacing between neighboring
states is extremely small (of the order of a few MHz) and
consequently the density of states is very high. Due to
the large separation of the well from the Coulomb singu-
larity the hydrogen atom in the well has a very large di-

pole moment. For laboratory field strengths we investi-
gated two different cases (K = 1.0 and 0.6 a.u. ) for which
the density of states and the anharmonicity of the poten-
tial are different. We compared the states in the well to
those of a harmonic approximated potential. It became
apparent that, in particular for the case K =0.6, both the
energies and the form of the wave functions of the hydro-
gen atom exhibit major differences to those of the har-
monic approximated potential. First-order perturbation
theory for the leading anharmonic terms of the expansion
of the exact Hamiltonian proved that the differences be-
tween the energies and wave functions of the exact and
the harmonic Hamiltonian are due to the lowest anhar-
monic terms. We remark that the pseudomomentum I(

emerges either from the induced electric field due to the
motion of the center of mass of the hydrogen atom
or/and an external electric field which is oriented perpen-
dicular to the magnetic one. the values of K=1.0, 0.6
a.u. used above correspond to an external electric field
strength of 2.8 X 10 and 1.7 X 10 V/m, respectively.

For an experimental verification of the existence of the
states in the well, for which the separation of the electron
and the proton is extremely large, there are, in principle,
two possibilities of investigation. The first one is the
spectroscopical observation of the state-to-state transi-
tions which belong to the radio-frequency regime. A
second, probably more promising, approach to experi-
mental verification of the existence of states in the well is
the measurement of their dipole moment. The distance
between the electron and proton is much larger than the
extension of the wave function in the well. Therefore, to
calculate the dipole moment of the hydrogen atom for
states in the well we approximate the distance between
the electron and proton by the distance between the
minimum of the well and the Coulomb singularity which
is approximately given by xo= —K/B. Using this ex-

pression for the separation of the electron and proton the
dipole moment is d = ~xo ~. For typical laboratory condi-
tions 8 = 10 a.u. and E= 1 a.u. we get d = 10'
a.u. =2.4X10 D. For comparison, the dipole moment
of NaCl is only about 9 D. The unanswered question
and experimental challenge in both methods is the
preparation of states in the well, i.e., with a defined value
of the pseudomomentum.

There have been experiments that indicate the ex-
istence of atoms with very large dipole moments in mag-
netic fields [36,37] for energies above the saddle-point en-

ergy. Fauth, Walter, and Werner [36] published results
of experiments with Rydberg atoms in magnetic fields
(B=0. 1 X 10 a.u. ). Their rough estimate for the dipole
moment of these atoms is 1.9X10 D. This value of the
dipole moment is roughly of the order of magnitude to be
expected.
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