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Quantum Monte Carlo calculation of the Fe atom
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Variational and fixed-node diffusion Monte Carlo calculations for several states of the iron atom are
presented. The Ne-core electrons are eliminated by accurate scalar relativistic pseudopotentials. Varia-
tional valence correlation energies are the largest obtained so far by any variational method including
the most extensive quantum chemistry calculations. The average difference between experiment and
diffusion Monte Carlo results for the s —d excitation energies, the ionization potential, and the electron

affinity is 0.15 eV.

PACS number(s): 31.10.+z, 02.70.Lq, 31.15.+q

Accurate electronic structure calculations of the late
3d transition-metal atoms such as Mn, Fe, Co, or Ni are
among the long-standing problems in atomic physics.
There are several factors which complicate the calcula-
tions [1-5]: (i) compactness and double occupancy of
the d shell, (ii) the semicore character of 3s and 3p shells
(they must be treated as valence shells in accurate calcu-
lations), (iii) the impact of relativistic effects on energy
differences, and (iv) the near degeneracy of 3d, 4s, and 4p
levels. The first two points are particularly significant
and imply unusually large correlation energies, typically
~20 eV or more.

The largest part of the 3s, 3p, and 3d correlation ener-
gy comes from a repulsive nonanalytic cusp in the wave
function whenever two electrons come close together.
This feature is difficult to describe within current corre-
lated approaches in quantum chemistry and is responsible
for a slow convergence of these methods [6]. This con-
trasts with the quantum Monte Carlo (QMC) approach
which enables us to include the exact electron-electron
cusp into the trial (variational) function in a straightfor-
ward and explicit way [7,8]. From this point of view the
transition elements are ideal systems to demonstrate com-
plementarity and competitiveness of QMC with the more
standard quantum chemistry methods like coupled clus-
ter or configuration interaction [9]. There has been re-
markable progress in QMC recently [10,11] and one of
the important achievements was the development of tech-
niques for dealing with core electrons which previously
hampered calculations beyond the first row because of
the enormous core energy fluctuations [12—14]. Also,
more general trial functions have significantly increased
the accuracy and efficiency of calculations [6,15]. For the
H+H,—H,+H reaction barrier, an accuracy record of
0.0004 eV has been established very recently [16]. Final-
ly, a wide range of applicability of QMC methods has
been demonstrated by successful solid-state calculations
with more than 200 valence electrons [17,18].

So far there have been very few attempts to apply
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QMC to transition metals. We can mention the calcula-
tions of Sc and Y atomic ionization potentials [19] and
QMC evaluation of CuH molecular properties [20]. We
have carried out calculations of several third-row transi-
tion elements (Sc, Ti, Mn, Fe, and Cu) [21] using less ac-
curate Ar-core pseudopotentials (so that 3s and 3p elec-
trons were omitted from the valence space). In general,
the obtained results were excellent with the exception of
Mn and Fe excited states for which =0.5 eV discrepan-
cies with experiment have been found. In this paper we
present a systematic calculation of the iron atom in
several states using accurate Ne-core pseudopotentials for
elimination of core electrons. Our variational Monte
Carlo (VMC) results give the largest amount of the
valence correlation energy obtained in a variational type
of calculation. The diffusion Monte Carlo (DMC) estima-
tions of the first ionization potential, the electron affinity,
and the s —d excitation energies agree with experiment
within 0.2 eV, which is the highest overall accuracy
achieved so far by any method.

Both variational and diffusion Monte Carlo have been
described in several excellent review articles [7,10,11];
thus, we will give only a brief description of these
methods. For a given Hamiltonian H and an optimized
trial function W(R), the VMC energy is given by

[ 1wR)P(HY /¥ ]dR
E =
e [ 1w(R)I%dR

(1)

where R denotes coordinates of electrons. The many-
body integral (1) is evaluated by Monte Carlo sampling of
the distribution

|W(R)I2/ [ |W(R)%dR

by the Metropolis algorithm.

The DMC technique is based on a stochastic simula-
tion of the imaginary-time Schrodinger equation. Using
the importance sampling by W(R), the Schrodinger equa-
tion can be arranged to the form

f(R,t+7-)=fG(R,R’,T)f(R’,t)dR’ ) ()

where
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f(R,;t)=W(R)D(R,t) , (3)
Y(R)
R.,R',7)= — :
G(R,R',T) VR (Rlexp(—TH)|R') . 4)

An accurate analytical expression for the propagator
G(R,R’,7) can be written down for a sufficiently small 7
[8,11]. The lowest energy solution with boundary condi-
tions prescribed by fermionic nodes or other symmetry
conditions is found by iteration of Eq. (2) to the large-t
limit. In the case of a fixed-node approximation for fer-
mions, which was used in this study, nodes of the solution
®(R,t) are kept identical with the nodes of the trial func-
tion W(R ).

To make the calculations feasible [13,14] for heavier
atoms, we have used the ab initio pseudopotentials for el-
iminating the core electrons [22]. Hence, the valence
Hamiltonian has the form

| |
H==33Vi+ 3 -+ S oelr)+ 3 o) S Py
i i<jlij i il m

(5)

The last two terms represent the local and nonlocal parts
of the pseudopotential and P}) denotes the ith electron
projection operator on the spherical harmonic Y, (7;
denotes the distance of the electron from the nucleus; r;;
is the distance between two electrons).

For this study we have chosen the Ne-core (scalar rela-
tivistic)  pseudopotentials constructed within the
multiconfigurational Hartree-Fock approach with in-
clusion of relativistic effects [23] on the Cowan-Griffin
level. The pseudopotentials were tested in the limited
configuration interaction and for several states close to
the ground state the all-electron energy differences were
reproduced within =0.1 eV [23].

The diffusion Monte Carlo relies on the positivity of
the Green’s function involved in (4) and is problematic to
use with the nonlocal operators. The reason is that the
Green’s function (R |exp(—7H,)|R’) with nonlocal H,
is not guaranteed to be positive definite for arbitrary R,
R’, and 7. However, as has been proposed previously,
the nonlocal term can be evaluated with the trial function
[13,14]. In effect, the last term in (5) is replaced by a
many-body effective potential of the form
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il

zul(ri)zp;,;’w}/w.

Because the modified Hamiltonian is not identical to (5),
it is perhaps more appropriate to interpret the DMC en-
ergy as a perturbational correction to the variational es-
timation. This interpretation is supported by the fact
that if W(R) approaches to exact eigenstate, then the
DMC energy converges quadratically to the exact eigen-
value of the original Hamiltonian (5), as we have shown
elsewhere [14]. In practice, we have found that it is pos-
sible to exploit this convergence and construct sufficiently
accurate trial functions, producing excellent energy es-
timations. We will later discuss an additional test which
was carried out in order to check the errors from nonlo-
cal terms in DMC.

The trial function has a form similar to those used in
other studies [6,15]:

W(R)=Wp(R)exp | 3 ulr;,r;,r

i<j

), (6)

ij

where W, (R) is, in general, a linear combination of
Slater determinant products (for spin-up and -down elec-
trons):

¥,(R)=3e¢,D/D}, (7)

while u(r;,r;,r;) includes two-body (electron-nucleus,
electron-electron), and three-body (electron-electron-
nucleus) terms and is described in detail elsewhere [21].
This correlation part is parametrized by 21 variational
parameters which are optimized within VMC by minim-
izing the fluctuations of energy around its variational
value [6,14,15,21]. The orbitals for Slater determinants
were obtained by the numerical Hartree-Fock method
and were represented by cubic splines in actual simula-
tions. The trial function also included the excitation
452 —4p? for the cases when 4s orbital was doubly occu-
pied in order to take into account the near-degeneracy
effects [5].

The results for the total energies are summarized in
Table I. In its lower part there is a comparison of corre-
lation energies found by QMC and by the most extensive
configuration-interaction and coupled-cluster calcula-

TABLE 1. The valence total energies (a.u.) for the Fe atom in the restricted Hartree-Fock, variational, and diffusion Monte Carlo
calculations using Ne-core pseudopotentials (statistical errors are in parentheses). Comparison of the valence correlation energy ob-
tained by the coupled cluster [CCSD(T)] [3] with single, double, and perturbatively triple excitations, quadratic configuration interac-
tion [QCISD(T)] [1], configuration interaction (CISD) [2], and present calculations is given in the lower part of the table.

Calculation SD(3d%s) F(3d%) *F(3d74s) *D(3d°s?) *F(3d74s?)
HF —122.8812 —122.8226 —123.0388 —123.1144 —123.0278
vMC —123.434(2) —123.538(2) —123.682(1) —123.713(1) —123.686(2)
DMC —123.500(2) —123.626(3) —123.751(2) —123.783(1) —123.782(3)
CCSD(T) 0478 0.563 0.534 0.603
QCISD(T) 0.564 0.528

CISD 0.598 0.560

VMC 0.554(2) 0.713(2) 0.644(1) 0.599(1) 0.650(2)
DMC 0.619(2) 0.803(3) 0.712(2) 0.668(1) 0.754(3)
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TABLE II. VMC and DMC ionization potential (IP), electron affinity (EA), and excitation energies
(eV) compared with experiment and with other calculations. CCSD(T) denotes coupled-cluster calcula-
tions of Urban, Bartlett, and Alexander [3]. QCISD(T) corresponds to quadratic configuration interac-
tion of Raghavachari and Trucks [1], and CISD represents configuration interaction of Bauschlischer
[2]. (Relativistic corrections were added to the results of nonrelativistic calculations from Refs. [1] and
[3] so that they can be compared directly with experiment [25].)

Method IP *D—’F D—°F EA
HF 6.35 7.94 2.06 ~2.36
CCSD(T) 7.9 1.07 —0.16
QCISD(T) 1.07
CISD 1.06
VMC 7.61(6) 4.73(6) 0.84(4) —0.72(6)
DMC 7.67(6) 4.24(9) 0.84(6) —0.03(9)
Expt. 7.87 4.07 0.87 0.15

tions [1-3]. Although the valence correlation energies
from the frozen-core approaches [1-3] and from our
pseudopotential calculations are not exactly the same,
one expects that they are very close because of the small
size of the Ne core and also because of the small core-
valence overlap. Thus, apart from small ambiguities be-
cause of the core treatment, it is evident that VMC calcu-
lations have already recovered more correlation energy
than the quantum chemistry approaches. The largest
part of the valence correlation energy (=~85%) comes
from the correlation factor with a relatively small num-
ber of variational parameters and a very compact form of
the trial function. Obviously, the description of correla-
tion effects by the optimized electron-electron cusp and
“average backflow” [15] represented by three-body terms
in (6) is very efficient when compared with slowly con-
verging [2] configuration-interaction expansions for the
wave function.

The energy differences, corresponding experimental
values, and results of several other calculations are listed
in Table II. In comparing our results with the previous
calculations, one should keep in mind that a part of the
differences can be caused by the different treatment of the
core and relativistic effects [25]. The table shows that
VMC gives the largest improvement, reducing
significantly large Hartree-Fock errors. It is also interest-
ing to observe that the variational bias is very small for
the ionization potential and for >D —3F excitation ener-
gy, while it is significant for the other two energy
differences. This implies lower accuracy of the trial func-
tion for the negative ion and 3F state. The DMC corrects
most of the remaining errors, achieving agreement with
experiment within 0.2 eV, while the typical statistical er-
ror bar is 0.07 eV. Obviously, small systematic errors
remain; the three most significant sources of them are the
following: error already built in the pseudopotentials
(=0.1 eV) [23] which combines with a nonrigorous treat-
ment of relativistic effects, error from evaluation of the
nonlocal term, and the fixed-node error. In order to
make the impact of the nonrigorous treatment of the
nonlocal terms in the valence Hamiltonian (5) more
transparent, we have carried out another set of DMC cal-
culations where for the pseudopotential evaluation only

V¥, (R ) was used instead of the W(R) (i.e., the last term in
H, was replaced by [3;,v,(r)3,Pii¥,]1/¥,). We
have found that the total energies were higher but only
by =0.1 eV, which we consider to be very small on the
scale of total correlation energies. In addition, this small
increase was very similar for all states so that the energy
differences were unaffected within the error bars. This in-
dicates that the impact of the nonlocal terms on the
DMC simulations was small essentially because 3s and 3p
electrons were in the valence space so that the radial
range of pseudopotentials was rather restricted (less than
1 bohr). Thus we believe that the results represent excel-
lent estimations of fixed-node energies of the valence
Hamiltonian (5). Consequently, we consider our valence
correlation energies to be the most accurate ab initio es-
timations to date. It is also interesting to estimate the
all-electron correlation energy for the ground state (using
an approximate value of 0.15 a.u. for the core-core and
core-valence correlation from the all-electron calculations
[3]). This gives 0.818 a.u. which compares favorably with
the empirical value 0.831 a.u. of Szasz [24].

In conclusion, we have carried out high-accuracy
quantum Monte Carlo calculations of the iron atom with
Ne-core pseudopotentials. Using optimized trial func-
tions, the diffusion Monte Carlo results reproduce the ex-
perimental affinity, the ionization potentials, and the ex-
citation energies with the mean error 0.15 eV. The calcu-
lations demonstrate an increasing applicability and accu-
racy of quantum Monte Carlo calculations for systems
with strong correlation effects and offer a promising alter-
native to traditional quantum chemistry methods.
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