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Finite-element computation of perturbation energies for the two-electron atom
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Perturbation energies E2, E3, and E4 in the 1/Z expansion for the ground-state two-electron atom are
calculated using accurate representations of the partial waves L =0, 1,2, . . . of the first- and second-
order eigenfunctions. These are obtained by combining L-Hylleraas basis functions with a one-
dimensional finite-element procedure. The contribution to E„E3, and E4, made by partial waves
L &&1, can, with a surprising accuracy, be covered by numerical extrapolation with the help of a
Schwartz-type expression in powers of 1/(L + —,

' }.

PACS number(s): 31.10.+z

I. INTRODUCTION

This paper is concerned with the first- and second-
order functions of the 1/Z expansion for the two-electron
atom [1,2]. First-order pair functions (for different elec-
tronic states) are known to build up the entire first-order
wave function of an atom with N electrons [3] and thus
determine the second- and third-order energy of the
atom. We study a finite-element method that is to fur-
nish the individual partial waves L =0, 1,2, . . . of the
pair function. The two-electron ground state will be
treated. Finite-element (FE) methods [4,5] are known for
their versatility and numerical stability. They have al-
ready been applied to numerous quantum-mechanical
problems including the electronic structure of atoms
[6—8] and of diatomic molecules [8,9], and to reactive
scattering [10]. Recently, an accurate FE calculation of
the second-order energy (within Mit(lier-Plesset perturba-
tion theory) for the ten-electron atom has been reported
[11]. Our method makes use of the decoupling [12] of a
pair function in partial waves that holds in perturbation
theory. L-projected Hylleraas functions [13,14] will be
applied as local basis functions that represent a partial
wave within a particular finite element. A one-
dimensional discretization (for the coordinate s = r, + r2 )

is used. This appears to be more suitable for the problem
than a full two-dimensional discretization. The method
is outlined in Sec. II, results are given in Sec. III. Our
calculations provide values for the (previously not
known) L increments of the third- and fourth-order ener-
gies so that the numerical behavior of these at large L can
be studied (Sec. IV).

There are two principal reasons for the present investi-
gation. (i) The partial-wave method developed here can
likewise be applied within the Mufller-Plesset expansion.
(ii) Recent numerical results on the behavior of the (gen-
eralized) correlation energy along atomic isoelectronic se-
quences [15,16] indicate the function E„„(1/Z) to be
well approximated by the first two terms of its 1/Z ex-
pansion,

E„„(1/Z) = [E~ E2(HF')—]+[Eq —E3(HF') ] /Z

HF' refers to the single- or few-configurational Hartree-
Fock approximation (depending on the electronic state'„
Refs. [17,18]. Estimates of correlation energies from Eq.
(1) require reliable values of the occurring perturbation
energies. While E2, E2(HF') as well as E3(HF') can be
readily calculated for atoms with 2 —10 electrons
[3,19,20], the evaluation of E3 is more demanding for any
atom with three or more electrons.

II. METHOD

Perturbation theory, which offers the 1/Z expansion,
gives for the ground state of the two-electron atom [1,2]
the wave function

g( g) =go+ (Pi+ ' ', g = 1/Z

and the total energy

E(g)=Eo+(E, +g E~+g E3+

(2)

(3)

L=0

g, (L)=RL (r 1, I 2) I(COS'V

(4)

where v is the angle between the vectors r
&

and r2, and PL
in the Lth Legendre polynomial. The second- and third-
order perturbation energies take the form

E2= g bE~(L),
L=0

where DE&(L)= (go~ 1 /r, 2
—E~ 11itt(L) )

Atomic units are used and it is found that Eo= —1,
E, =

—,'. The unperturbed Hamiltonian Ho is the sum of
two hydrogenic Hamiltonians, the perturbation is the
electron-electron repulsion I& =1/r &2. The equation for
the first-order wave function g& reduces [12] to indepen-
dent equations for its "partial waves" g&(L)
(L =0, 1,2, . . . ),

+O(1/Z ) .
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(1) For each partial wave (5), RL (r, , r2) will be approximated
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F,i,
=u's fp, a, b E [0, 1,2, (8)

Here gp-exp( —s) is the zeroth-order function of the ls
pair. The L projection of (8) is to be denoted (F,b, L).

Any (F,b, L) is a global basis function in the sense that
it is defined in the full domain 0& r&, r2 ~ 00. We parti-
tion this domain in "elements" of the shape shown in Fig.
1. The restrictions of the (F,&,L) to a particular element
now form local basis functions. The procedure amounts
to a one-dimensional discretization with respect to the
coordinate s =r, + r2. Along the second coordinate (that
can be chosen as q =r( Ir ) ) the (F,b, L) functions con-
tinue to be used as global basis functions. There are two
reasons for using an s-only discretization: (i) The expan-
sion of RL in the form

RL =fp+(u, L )f&
+(u, L )f&+(u,L )f3+ (9)

wherein (,L) denotes L projection and fp,f„f2, . . . de-

pend only on the variable s turns out to converge rapidly,
in particular when L &&1. So, a few powers of u suffice
to obtain an adequate basis set provided that there is
enough flexibility to represent the f, (s). (ii) For large L,
RL (r „r2 ) becomes more and more concentrated [12]
along the diagonal r, =r2 and a two-dimensional grid
method might have some difticulty in treating high L par-
tial waves. Even with a suitable grid for each L (thus
providing an accurate second-order energy), the evalua-
tion of the third-order energy (where all partial waves
enter simultaneously) would still remain complicated.

It is noted that the local functions (8) include the
exp( —s) factor. Thus, within a give FE, some f; =f,(s)
in Eq. (9) is expressed by the product of a (fourth-order)
polynomial in s times exp( —s). For one and the same

in terms of a basis set using the variation-perturbation
principle [2]. The exact solution RL exhibits a finite
discontinuity of the third derivative at r&=rz. Orbital
products, f(r, )g(r2), do not represent this efficiently. A
more useful basis is obtained [13,14] by projecting
Hylleraas's functions (expressed in terms of u =r,2,
s=r, +r2, and t =r2 r, —

) onto PL(cosv). We refer to
these projections as "L-Hylleraas functions. " A satisfac-
tory set is obtained from projections of the set

grid, this form should do better than the customary pure
polynomial ansatz. Our basis functions lead to elementa-

ry integrations: All matrix elements can be expressed in
terms of the integrals

U „(s„sz)=a„(s„s2)U„(0,~), (10)

wherein U „(0,~ ) are the integrals of James and
Coolidge [21]. Descending recursion (Sec. III of Ref.
[14]) furnishes accurate values for the integrals. The fac-
tor a„(s&,s2) reads

+1aq(si, sp) s exp( 2s)dsn+I t si

=exp( —2s, )e„+,(2s, )

—exp( —2sz )e„+,(2s2 ), (12)

gi(L & Lp) =(—,
' )(u, L & Lp)fp, (13)

where (u, L &Lp) is the projection of r,2=u onto the
space of all L &Lo,

where e„(x)=1+x+ +x "/n!. The direct evaluation
of (12) is hindered for large n by cancellation of digits. It
is then helpful to rewrite (12) so that a continued-fraction
expression (formula 4.2.41 of Ref. [22]) for the difference
exp(x )

—e„+&
(I ) can be employed.

The main steps in the calculation of a partial wave are
the following. (i) Set up James-Coolidge integrals
U „(0,~ ). (ii) For each FE, evaluate the factors a„and
calculate matrix elements ( h ~Hp

—Ep ~h') for any pair of
(local) L-Hylleraas functions h and h', also calculate
right-hand sides ( gp~ I lr, 2 E, ~

k ) . (iii) —transform to
shape functions [4]. (iv) On the resulting block matrix
(one block corresponding to one FE) impose the condi-
tions that the wave function be continuous between adja-
cent elements and vanish at the boundary of the outer-
most element. (v) Solve the resulting (sparse-matrix)
linear system.

A dominant contribution to g, (L) at large L is
( —,')(u, L}fp [12]. Therefore, for sufficiently large Lp the
sum over partial waves Lo&L ao can be covered in
closed form [23] by

(u L &L }=u—(u 0)—(u 1)— —(u L ) (14)

g=con

Unless Lo is very large, accuracy can be gained by using,
rather than (13}, the two-parameter variational expres-
sion,

f~(L & Lp) = (ap+a &s )(u L & Lp )gp (15)

S =82

FIG. 1. Finite elements (in the range rl ~r2 of the radial
coordinates) arise by subdivision along the axis s =rl+r2.
Hatched area corresponds to the particular element sl & s ~s2.
No discretization is used for the q = r, /r2 coordinate.

where the parameters ao and a
&

are found by minimizing
Hylleraas's variational principle for E2(L &Lp). The
values of a0=0.499981 533, a& = —7.212 555X10 and
E2(L & 15)= —14.235 820X 10 follow for Lp= 15.

Partial-wave separation holds also in higher perturba-
tion orders. The (Hp-Ep) matrix remains unchanged un-
less a new basis is introduced. The vector of right-hand
sides is new. We have computed second-order partial
waves fz(L) together with their fourth-order energies
bE4(L).
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III. RESULTS

Each of the partial waves P&(L) (L =0, 1, . . ., 20) and
lt2(L) (L =0, 1, . . . , 12) has been treated by applying one
and the same grid of four finite elements along the
s =r, +r2 coordinate (cf. Fig. 1) covering the range
O~s ~30 bohrs. Mesh points have been chosen as a
geometric progression,

s=2, 4.93, 12. 1, 30 bohrs .

Changing the grid with L could improve the accuracy for
some of the partial waves; it would, however, complicate
the E3 and E4 evaluations. Fourth-degree shape func-
tions have been used throughout. For any L, the basis set
used arises by L projection from the same set
[F,b, a ~8, b ~4] of Hylleraas functions (8). The number
of powers of u having a nonzero projection diminishes
with increasing L, as given in Table I. Dimensions of
final FE matrices vary between 144 (at L =0) and 64 (at
any L ~5). The resulting second-order partial-wave en-

ergies (Table I) are more accurate than previous values
[14,23,25]. Our overall E2 perturbation energy compares
well with some accurate results of the previous literature
(see Table I). Our result does not reach the accuracy of
the very large (not L separated) calculation of Baker,
Freund, Hill, and Morgan [26].

For evaluating the third-order energy (7) the partial-
wave vectors (first emerging as sums over L-Hylleraas
functions) have been rewritten as sums over simple
powers of r & and r &. One uses the L expansion of
1/r, 2 and the 3j symbols [27] to obtain the partial waves
of the product (llr, 2)g~ and, finally, the value of F,
The first set of results (Table II, column I) refers to the
"L-truncated case" where the expansion of g, [Eq. (4)] is
cut off after angular momentum Lo. When the large L
are added through Eq. (15) the numbers in column II of
Table II are obtained. As expected, approximation (15)
improves rapidly with Lo. At the level of Lo =S, 10, and
15, the errors of the overall E3 amount to 380, 7, and 0.7
( X 10 a.u. ), respectively. Some, presumably small, por-

TABLE I. Second-order partial-wave energies AE2(L) (in 10 charge-scaled atomic units). Param-
eters of FE calculation are n (number of projections of u powers contained in basis set) and the overall
matrix dimension. The same grid of four FE s is used for all L.

0
1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

Dimension

144
128
112
96
80
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

AE2(L)

—125 333.831 218
—26 495.162 363
—3906.133970
—1077.728 858
—406.098 264
—184.995 357
—95.789 185
—54.396 022
—33.119686
—21.294 1314
—14.302 920 6
—9.957 945 2
—7.143 737 2
—5.256 643 2
—3.953 266 0
—3.029 807 1
—2.360 833 03
—1.866 661 41
—1.495 249 83
—1.211 764 00
—0.992 372 78

Sum (0&L &20)
Closed sum (20(L & ~)'
Total

—157 660.120 259
—6.309 085

—157 666.429 34

Scherr and Knight
Midtdal'
"Exact," Baker et al.

—157 666.405
—157 666.428
—157 666.429 469 14

'Variational upper bound resulting from Eq. (15).
bReference [2]. Basis set of 100 Kinoshita functions.
'Reference [24]. Extrapolated value, based on calculations in terms of 203 Hylleraas functions.
Reference [26]. Basis set of dimension 476 consists of generalized Hylleraas functions with inclusion

of logarithmic terms. Implementation in terms of quadruple-precision arithmetics.
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0
1

2
3
4
5

6
7
8

9
10
11
12
13
14
15

—5214.847 877'
2893.454 630
6394.190373
7598.400017
8097.620 850
8337.215 532
8465.354 587
8539.723 499
8585.713425
8615.627 245
8635.900418
8650.115428
8660.371 948
8667.955 020
8673.680 637
8678.083 665

5144.30
8493.80
8673.92
8694.25
8697.81
8698.64
8698.890
8698.973
8699.004
8699.018
8699.024
8699.027 55
8699.029 15
8699.03001
8699.030 52
8699.030 81

Scherr and Knight
Midtdal'
"Exact," Baker et al.

8698.991
8699.029
8699.031 528

'Third-order perturbation energy of the "radial approxima-
tion"; an older estimate [28] is —5215.41.
bReference [2].
'Reference [24], extrapolated vlaue.
dReference [26].

tion of these errors is due to the residual inaccuracy in
the low-L partial waves. An E3 evaluation similar to that
of the scheme II has been done for a one-parameter

g, (L & Lo), where the a& term is dropped from Eq. (15).
The resulting E3 values (at Lo =5, 10, and 15) are 8697.2,
8698.95, and 8699.020 (10 a.u. ), respectively. They
stay noticeably behind the values from Eq. (15). Con-
versely, one may conclude that a better approximation
for g&(L & Lo) than (15) would be useful since, in effect, it
would lower the number of partial waves that need expli-
cit calculation.

Second-order partial waves have been computed for
the "L-truncated case" only, that is, on the basis of a f,
that contains angular momenta up to Lo, but no asymp-
totic term like (15). Denote these partial waves by
Pp(L Lo) ~ For given Lo, $2(Lo,L ) and its energy
KE4(Lo, L ) are of interest for L =0, . . . , Lo. The sum

Lo

E4(Lo)= g bE4(Lo L)
L=0

(16)

represents the fourth-order energy coefficient of a
configuration-interaction (CI) -like variational calculation
comprising angular momenta up to Lo. As Lo~ ~, (16)
reaches the full 1/Z perturbation energy E4. (Numerical
results for Lo =0, 1,. .., 12 are collected in Table V.)

On the occasion of the present publication, a small er-
ror is to be noted that occurs in the paper by Schmidt

TABLE II. Third-order energy E3 evaluated in terms of par-
tial waves. Column I: Wave function truncated after partial
wave Lo. Column II: Asymptotic partial waves represented by
closed sum (15). Energies in 10 charge scaled atomic units.

E3
Lo

[14]. A summation of the asymptotic formula for the
second-order partial-wave energies furnishes (rather than
—14.2481 as given in Table V [14]), the value of
—14.2358 (10 6 a.u. ). This means that the best E2 result

obtained in the paper (Table VI [14])deteriorates slightly

to

E2(Ref. [14])= —157 666.413X 10 (17)

IV. EXTRAPOLATING "L-TRUNCATED
ENERGIES"

bE(L)=Aors, +Ail, +O(A, ) (18)

with Ao = —0.074 and A t
= —0.031. Hill [32] has

demonstrated the coeScients in (18) to be connected to
integrals over the restriction of the helium eigenfunction
f(r„r2, r,2) to the line (r, =r2=r, r, 2=0). Accurate nu-

merical evaluation yielded 30
= —0.074 225 7 and

A i
= —0.030989.

We refer to

EEk(L) =Ek(L) Ek(L —1), k =—2, 3,4, ...,

as the L increment [29,31] of the "truncated perturbation
energy" Ek(L) that results when wave functions

are cut off after angular momentum L. [For
L =0, let BEk(0)=Ek(0).] Clearly, the L increment of
Ez is identical to the partial-wave energy DER(L) Eq. (6).
We use the following five-parameter Schwartz-type ex-

The cleanest way of calculating the third-order energy
E3 is to use a complete wave function g& that encom-

passes the asymptotic partial waves L))1. These are
covered in closed form by an expression like (13) or (15)
in which the first power of the interelectronic coordinate
r, 2 appears. The resulting integrations over r&2 are easy
as long as the two-electron atom is treated. In processing
pair functions into the E3 of a larger atom, however, the
problem of difficult integrals emerges that generally limits
the usefulness of basis functions with explicit r," depen-
dence. On the other hand, "L-truncated" pair functions
(containing low Lpartial -waves only) do not introduce
difficult integrals of this type.

Angular extrapolation (L~~ ) on the basis of L
truncated calculations has been applied already with
some success. Third-order calculations for the ten-
electron atom by Jankowski, Rutkowska, and Rutkowski
[29] and, very recently, second-order calculations by
Flores [11] indicate angular extrapolation can do well,
provided that L-truncated results are available that are
"radially" well converged. For the two-electron atom,
extrapolation in powers of k= 1 /(L+ 1/2) with a leading
fourth power for singlet states has its origin in Schwartz's
analytical result [12] on the L asymptotics of the E2 per-
turbation energy. Kutzelnigg and Morgan [30] have re-
cently generalized Schwartz's finding to pair functions of
many electronic states. Total energies of ls helium (ob-
tained from CI wave functions reaching to L =11) have
been analyzed by Carroll, Silverstone, and Metzger [31]
to obtain the following fit for the L increments of the CI
energy.
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TABLE III. Extrapolation of E2 perturbation energy by fitting partial-wave energies AE2(L} to
Schwartz-type expression (20). Energies in 10 charge scaled atomic units.

Lp

5

10
15
20

—157403.950033
—157 622. 851 979
—157 652. 193 378
—157 660. 120 259

Support points
(L values)

1,2,3,4,5

2,4,6,8, 10
7,9,11,13,15
12,14,16,18,20

E, (extrap}'

—157 666.423'
—157 666.4274'
—157 666.429 34'
—157 666.429 36'

"Exact," Ref. [26] —157 666.429 469 14

'Sum (0~L &Lp) of calculated AE2(L) from Table I.
Partial-wave energies for Lp+1 ~L ~ taken from fit.

'Coefficients to Eq. {20) read: La=5: ao= —0. 175530, a, = —0.007, a, = —0.296, a, = —0.41;
Lp=10: ap= —0. 175658, a, = —0.0041, a, =0.274, a3= —0.34; Lp=15: ap= —0. 175773,
a& = —0.0004, a2=0.229, a, = —0. 10; Lp =20: ap = —0. 175 780, a, = —0.00008, a, =0.222,
a& = —0.038. Exact expansion coefficients, known from theory [12,30] read
ap = 45/256= 0. 175 781 25 a l

=0 a2 = (5/4)ap =0.219 72. . . , a3 =0.

pression for fitting energy increments of both E2, E3, and
E4.

bEk(L)=A, [ac+aii, +a2A. +a3A, +a4A, ] . (20)

Results for the second-order energy (based on the data of
Table I) are given in Table III. We note that the full ex-
pansion of b,E2(L) in powers of A, is expected to be an
asymptotic (semiconvergent) series [23]. The leading four
coefficients of b,Ez (belonging to k through A, ) are
known exactly [12,23,30]. The fit is seen to furnish a
good value for ao and to show a steady behavior for the
higher coeScients as the support for the 6t moves to
higher L Summing . (20) over the range Lti+1 &L ~ ~

TABLE IV. Extrapolation of E3 perturbation energy by
fitting energy increments EE3(L) to Schwartz-type expression
(20). Energies in 10 charge scaled atomic units.

Lp E3(Lp)' Support points E, (extrap)
(L values)

5

9
10
11
12
13
14
15

8337.215 532
8615.627 245
8635.900418
8650.115428
8660.371 948
8667.955 020
8673.680 637
8678.083 665

1,2,3,4,5
1,3,5,7,9

2,4,6,8, 10
3,5,7,9,11

4,6,8,10,12
5,7,9,11,13

6,8,10,12,14
7,9,11,13,15

8699.145'
8699.018'
8699.023
8699.0280
8699.0300'
8699.0307'
8699.030 95'
8699.031 14'

"Exact," Ref. [26] 8699.031 528

'Explicitly calculated values from Table II.
Incl.ements fog Lp+1 &L ~ oo obtained through fit.

'Coe%cients to Eq. (20) read: Lp =5: ap =0.266 18,
al = 0. 125 a2 = 0.98 a3 = 1.5 Lp =9: ap =0.265 36
al = 0. 1138 a2= 1 04 a3=1 6 Lp=12: ap=026583
a& = —0. 1270, a2= —0.912, a3=1 ~ 1; Lp=15: ap=0. 26595,
a, = —0. 1315, a~ = —0.845, a3 =0.68. Exact expansion
coefficient a, , known from theory [30] is a, = —0.134 287.

and adding the sum to the "truncated energy" [sum of
Ez(L) over L =0, . . . , Lo] furnishes extrapolated values
of good quality (last column of Table III). These esti-
mates are, in fact, not inferior to E2 values from the ex-
plicit calculation using the wave function (15) for

Q, {L)L ).o
Corresponding results (Tables IV and V) for E3 and E4

exhibit a suSciently steady behavior of the fit. Inspection
reveals somewhat poorer stability than in the E2 case.
The cause may lie in the numerical E3(LO) and E4(LO)
increments, the errors of which arise by superposition of
the residual errors of all partial waves of fi and (for the
E4) of 1t2. The E3 (extrap) are found to be of similar
quality as the "explicitly calculated" values of Table II.
Altogether, extrapolation using (20) is able to reduce the
errors of the truncated Ez, E3, and E4 (at the level of
LO =10) by factors between 0.4X10 and 3X10,that
is by three or four orders of magnitude.

The coeScients of the leading terms of the asymptotic
expansion can be estimated as follows:

5E,(L)=0.2660k, '—0. 133K,' —0.81k,'+O(k'),

b E~ ( L }—0. 1397)i, —0. 18K,'+ 1.0)t, +0 ( A, ) .

(21)

(22)

The exact value of the k coeScient of AE3 has recently
been deduced from theory [30] to be —0. 134 287.

Extending Eq. (20}by two more powers of A, is found to
slightly improve the extrapolated energies. Yet, as to be
expected, the fit become more sensitive to inaccuracies of
the input data. %'e have, in addition, tested the seven-
parameter Pade-type quotient

1+p)A, +p2A, +p3A,
P(A, ) =aors. (23)

1+q&A. +q2A, +q3A,

on the same data as above. The overall Pade results difFer
little from those of the seven-parameter polynomial fit.
Taylor coefficients ao, a, , a2, . . . extracted from (23) turn
out to be more stable than those resulting from the poly-
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TABLE V. Fourth-order energy calculated in terms of partial waves. E4(Lo) results when both g,
and $2 are truncated after L =La. Extrapolation by fitting E4(LO) increments to Schwartz-type expres-

sion (20) furnishes the values of the last column. Energies in 10 charge scaled atomic units.

Lp

0
1

2
3
4
5

6
7
8
9

10
11
12

Z4(Lp)

—3009.8307'
66.4394

—185.1562
—477.2226
—640.5218
—730.6115
—782.7864
—814.6491
—835.0554
—848.6698
—858.0749
—864.7684
—869.6556

Support points
(L values)

1,2,3,4,5

1,3,5,7,9
2,4,6,8,10
3,5,7,9,11

4,6,8,10,12

E4 (extrap)

—889.287'

—888.703'
—888.698'
—888.702'
—888.705'

Scherr and Knight"
Midtdal'
"Exact," Baker et al.

—888.587
—888.7045
—888.707 284 2

'Fourth-order perturbation energy of the "radial approximation"; an older estimate [28] is —3010.07.
bReference [2].
'Reference [24], extrapolated value.
dReference [26].
Coefficients to Eq. (20) read: La=5: ao= —0.1436, a, =0.230, a, =0.93, a, = —2. 1; La=9:

up = —0.1392, u& =0.163, a2 =1.30, a3 = —2.9; Lp =10: Qp= 0.1390 Q] =0.158 Qp =1.35,
a3= —3.2' Lp=11: Qp= 0. 1392 a] =0.163 82=1~ 30 03= 2.9' Lp=12' ap= 0. 1394 Q~ =0.168,
a2 =1.24, a3 = —2.6.

nomial fit (20). The values of the coefficients given in
(21},(22) have been obtained in this way.

Finally, for the L increment of the total energy of heli-
um (Z=2), using coefficients from Table III, Eqs. (21}
and (22), and disregarding perturbation orders k & 4, one
obtains the following large L behavior that is not too
different from the known result (18):

AE2(L)+ ,'EE3(L)+ ,'AE—4(L)—
= —0.0777K, —0.021K, +0.06K, . (24)

V. CONCLUSION

Individual partial waves of the first- and second-order
1s wave function have been calculated with high accura-
cy. We have applied a finite-element procedure that uses
L-projected Hylleraas functions as local basis functions
for a one-dimensional sequence of finite elements.
Asymptotic partial waves L &&1 have been covered by a
closed expression as in Kutzelnigg's method [23], now us-
ing the two-parameter variational form (15).

The calculations have furnished I increments for the
third- and fourth-order energies E3 and E4 that were not
available previously. Fitting the increments to the

Schwartz-type expression (20) leads to extrapolated E3
and E4 values that are by three to four orders of magni-
tude more accurate than the underlying "L-truncated"
values. L extrapolation works well also for the second-
order energy. The steadiness of the extrapolation is
found to depend crucially on the accuracy of the explicit-
ly calculated partial waves L ~La. Extrapolation in L
[11,12,29] is of interest for applications to larger atoms
since L-truncated energies are accessible without difficult
integration s.

According to Carroll, Silverstone, and Metzger (Ref.
[31]), total energies of the helium atom can be L extrapo-
lated with fair success, provided that L-truncated ener-
gies of good quality are available. The CI wave functions
of Ref. [31] are composed of products f(r, )g(r2}. By
employing basis functions written in terms of r ( and
r & (also the present finite-element form of such func-
tions) one could try to enhance the accuracy of L-
truncated variational energies of atoms and, thus, further
explore L extrapolation.
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