
PHYSICAL REVIEW A VOLUME 49, NUMBER 6 JUNE 1994

Multichannel quan«m-defect theory of double-minimum '&+ scrapes in H .
&&. Vibronic-energy levels

S. C. Ross
DePartment ofPhysics, Uniuersity ofNew Brunswick, P 0 B. o.x 4400, Fredericton, New Brunswick, Canada EJBF3

Ch. Jungen
Laboratoire Aime Cotton du CARS, Uniuersite de Paris —Sud, 91405 Orsay, France

(Received 11 November 1993)

In the preceding paper [Phys. Rev. A 49, 4353 (1994)] we obtained the quantum-defect matrix of the

strongly interacting double-minimum states of H2 by fitting to the ab initio clamped-nuclei electronic en-

ergies of Wolniewicz and Dressier [J. Chem. Phys. 82, 3292 (1985), and private communication]. Yu,
Dressier, and %"olniewicz have calculated the vibronic energies of the corresponding states using an ap-
proach involving the state-by-state evaluation of vibronic coupling, and the solution of a set of coupled
equations. Here we calculate the vibronic energies using our quantum-defect matrix in a version of
scattering theory known as multichannel quantum-defect theory (MQDT). This less traditional treat-
ment involves both singly and doubly excited channels and reproduces the vibronic energies to almost

the same precision as the coupled-equations approach. In addition, several refinements have been made

to MQDT.

PACS number(s): 33.10.Cs, 33.10.Lb, 34.10.+x, 34.80.Kw

I. INTRODUCTION

In the previous paper in this series [1] (which we refer
to as "RJ-I")we showed that the highly accurate ab initio
clamped-nuclei potential-energy curves of Wolniewicz
and Dressier [2,3] can be represented by a set of smooth
quantum-defect functions. In this paper, we further show
that these quantum-defect functions contain all of the in-
formation needed to calculate the energies of the vibra-
tional levels in the corresponding electronic states.

The study of the 'Xg+ electronic states of H2 using
more traditional molecular-dynamics techniques has been
pursued in greatest detail by Dressier and co-workers
(Ref. [4] and references therein, and, more recently, Refs.
[5] and [6]). Their investigations involve, as a first step,
performing highly accurate clamped-nuclei ab initio cal-
culations of those electronic states chosen for inclusion in
the calculations. Adiabatic corrections are then deter-
mined for each state and a set of nonadiabatic coupling
functions is determined for each pair of states. In the
'X+ states considered here the adiabatic corrections are
as large as 860 cm ' [2], and the vibrational levels are
shifted by nonadiabatic effects by up to 190 cm ' [4].
These strong interactions, and the resulting mixing in
character of the states involved, means that it is inap-
propriate to refer to these states as being vibrational lev-
els of particular electronic states. Instead we must refer
to them as "vibronic" states. The final step in the tradi-
tional treatment is to include these interactions in a single
global coupled-equations calculation.

These ab initio calculations have been very successful
in reproducing the known energy levels of the EF, GK,
and H states of H2 and thus serve as a benchmark against
which any other study of these levels must be compared.
An important feature of these calculations is that they
proceed on a state-by-state basis, explicitly accounting for

the interactions between each pair of states. For Rydberg
series, however, such an approach cannot be extended
indefinitely because the number of mutually interacting
states is infinite, with the density of states growing explo-
sively as the total energy approaches the ionization limit.

In multichannel quantum-defect theory (MQDT), how-

ever, the notion of distinct states is replaced by the con-
cept of a channel which incorporates an entire series of
electronic Rydberg states in one entity. The quantum-
mechanical functions describing the channels and their
evolution with internuclear spacing is specified by
quantum-defect functions. The quantum-defect functions
thus provide a single uniform description of all the states
in the channel, thereby allowing the theory to account for
effects arising from the entire Rydberg series and the con-
tinuum lying above. The fact that the quantum defects
describe the dependence of the electronic channel func-
tions on the vibrational coordinate leads to their account-
ing for the strong adiabatic effects, and for the nonadia-
batic interactions that occur between the vibrational lev-

els of diferent electronic states, with no further informa-
tion required. The vibronic energies that we obtain for
the 2, 3, and 4 'Xs electronic states using the MQDT
technique are of almost the same quality as those
Dressier and co-workers obtained using the full

molecular-dynamics apparatus. The MQDT results have
an rms error of 6.0 cm ' which compares very well to
the value of 3.0 cm ' obtained from the traditional ap-
proach [3,6].

II. THEORY

In 1977 Jungen and Atabek [7] (hereinafter referred to
as "JA") presented the MQDT theory for rovibronic
states of diatomic molecules, including provision for a
direct treatment of electronic interaction. Ten years were
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to pass until in 1987 we performed a calculation account-
ing for this interaction [8]. As described in RJ-I our 1987
calculation served as a "test of principle. " In the follow-
ing we show in detail how to use the quantum-defect ma-
trix determined in RJ-I to calculate the energies of the
first 39 vibronic levels of the excited 'X+ states H2,
adapting the treatment to account for the energy depen-
dence of the quantum-defect matrix. Many parts of the
following development have previously been given, but
are scattered throughout the literature. Our aim here is
to draw the various pieces together and present a con-
sistent overall picture of the method.

In MQDT the energy of the Rydberg electron is initial-

ly a free parameter so that rather than introducing basis
functions corresponding to particular eigenstates of a
molecule at specific bound-state energies, MQDT instead
introduces basis functions in which all properties of the
system are specified except the energy of the Rydberg
electron. The resulting energy-dependent basis functions
each correspond to what we call a "channel. " These
channel functions describe the asymptotic behavior of the
molecule when the Rydberg electron is far from the ion
core; they form a natural path to ionization and are
called the "long-range" or "asymptotic" channels. It is
only at the end of the theoretical development that
boundary conditions are imposed on the channel func-
tions and the energy eigenstates are obtained.

For a given total angular momentum, J, and Z-axis
projection, M, the asymptotic channels are labeled by the
electronic state of the combined ion+electron system i,
and the vibrational-rotational state v;+N;+ of the ion
core. Thus each molecular channel function contains a
factor ~iv;+N;+) describing the degrees of freedom of
the molecule other than the radial coordinator r, of the
Rydberg electron. The vibrational motion in the ion core
is assumed to be adiabatic, with nonadiabatic effects aris-
ing from interaction with the colliding Rydberg electron.
It is also assumed that once the Rydberg electron is fur-
ther than some finite distance from the core its motion
occurs on a simple Coulomb potential-energy surface
centered on the ion core and can, therefore, be described
by a linear combination of a base pair of Coulomb func-
tions. As in RJ-I we use the Coulomb base pair f (r) and
h (r) (Ref. [9]) with which unphysical states having
n & 1+1, such as Ip, ld, 2d, etc., can usually be avoided
in the MQDT. The Coulomb functions depend on the en-

ergy e of the Rydberg electron, as well as on its l value.
For a given total energy E of the molecule, the energy e
of the Rydberg electron is the difFerence between E and
the energy of the ion core, i.e., when the molecule is in
the channel ~iu;+N;+ ) we may write

+ g K, +~+ . +N+
jv- N.

Xh& (r, e +. +)j~v~+Nj+) (2)

They describe a molecule initially in the channel
~iv;+N;+) which, upon the collision of the Rydberg
electron with the core, enters a state involving a mixture
of all channels j~v+Ni+) . (Note that J and M remain

good quantum numbers and are preserved in the collision
so that the problem for each JM state is independent. }
The collision induced admixture of channels in the
MQDT basis functions is given by the real and symmetric
full rovibronic reaction matrix K. In atomic MQDT the
K matrix is often determined by fitting to experimental
energy levels. For molecular problems the additional de-
gree of freedom introduced by the vibrational motion
means that such a fitting is not feasible due to the number
of independent elements in the matrix. In the calcula-
tions described in the present work, we use a 200X 200 K
matrix to calculate the first 39 vibronic levels of the excit-
ed electronic states of the 'Xg manifold. It is evident
that 39 experimental energies are not sufficient to deter-
mine the 20000 independent elements of the full K ma-
trix.

JA, following earlier work in Refs. [10-12], showed
that the solution to this problem lies in an examination of
the physics of the actual collision. As the Rydberg elec-
tron falls towards the ion core it accelerates under the
influence of the attractive Coulomb potential-energy
function of the positive H2+ ion core. The resulting
electron-ion collision is consequently very rapid with the
result that during the collision the Rydberg electron in-
teracts with a core that appears "frozen" at some particu-
lar configuration of the nuclei. The region wherein this is
true we call the Born-Oppenheimer region because once
the Rydberg electron is this close to the core the motion
of all the electrons (rather than just the ion-core elec-
trons) is separable from the vibrational-rotational motion.
This means that the vibrational quantum number v;+ ap-
propriate for the description of the asymptotic channels
is replaced in the Born-Oppenheimer region by the inter-
nuclear spacing R seen by the Rydberg electron at the
moment of collision. Similarly the total orbital angular
momentum A around the molecular axis becomes a good
quantum number, replacing the rotational angular
momentum of the ion core, 1V;+, appropriate in the
asymptotic region. The appropriate functions for
describing the molecule in the Born-Oppenheimer region
may, therefore, be written as ~iR A ), instead of
~iu,.+N,.+), in Eq. (2). These are referred to as "short-
range" or "Born-Oppenheimer" functions. The fact that
it is not necessary to introduce a strong energy (i.e., state)
dependence in the quantum-defect matrix validates this
picture and also validates the derivation in RJ-I of the
quantum-defect matrix from clamped-nuclei (or Born-
Oppenheimer) ab initio calculations.

By equating, in the Born-Oppenheimer region, the to-
tal wave function for the molecule expanded in asymptot-

h( (r, e +~~ }. .

The MQDT channel functions are now written as

Because the l value of the electron is part of the electron-
ic state i of the molecule we write it as I;, and thus
the Coulomb functions we use are f&(r, e ++) and.

i
'

IV,. Nl
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ic channel functions with its expansion in Born-
Oppenheimer channel functions, JA were able to deter-
mine the full K matrix of Eq. (2) in terms of the R
dependent electronic K (R ) matrix. This procedure
amounts to carrying out a transformation from the labo-
ratory to the molecular frame. A detailed discussion of
the concept of the vibrational frame transformation and
its relation to the energy dependence of the quantum de-
fects has been presented by Greene [13]. The electronic

quantum-defect matrix i) (R), determined in RJ-I for
A=O, is connected to K (R) via the relation between
their elements

K; (R)=tanmi), "(R) . (3)

The relationship between the electronic I%' matrices of
Eq. (3) and the full K rovibronic matrix of Eq. (2) is im-
plicit in Eq. (29) of JA, and is also given in Eq. (71) of
Greene and Jungen [14]. Here we write it as

K + + . + +=f dR ~(iu, +N;+~ g ~iRA) K;, (R) (jRA~ j~u,+X&+)
A

(4)

(The superscript A on the electronic K matrix distin-
guishes it from the full rovibronic matrix. )

Equation (4) directly refiects the physical picture un-

derlying the frame transformation. The left-hand factor
of the integrand corresponds to the system initially being
in the asymptotic channel ~iu;+N;+)™.When the elec-
tron is close enough to the core the collision state satisfies
the Born-Oppenheimer approximation and we enter the
part of Eq. (4) in parenthesis. In this region the collision
channels ~iR A) are appropriate for the description of
the molecule. The incoming state is projected over the
set of different collision channels states, as indicated by
the summation over A and the integration over R. Once
in this collision state the energy of the colliding Rydberg
electron can lead to electronic rearrangement in the core
via the off-diagonal elements of the electronic reaction
matrix K; (R), which connect different electronic states, i
and j. Because the details of this rearrangement depend
on the situation in the core at the moment of the collision
the K," elements are functions of R as well as of A. When
the Rydberg electron leaves the collision region the sys-
tern is projected on to the asymptotic channel

~

jv+N+ ),on the right of the integrand in Eq. (4). The
full rovibronic reaction matrix of Eq. (4} thus leads to and
accounts for a host of interactions between different rota-
tional, vibrational, and electronic channels. At energies
below threshold these interactions become apparent as
perturbations of the rovibronic levels. A source of the
power of MQDT resides in the fact that the limits corre-
sponding to a coupled and uncoupled Rydberg electron
are both directly and explicitly incorporated in the
theory. The transformation between these two limits is
embedded in the bra-kets (iv;+N, +~iRA) of Eq. (4)
which will be specified below.

Once Eq. (4) has been used to perform the transforma-
tion from the electronic reaction matrix to the full rovib-
ronic reaction matrix, the total MQDT wave function
may then be written as a linear combination of the
MQDT basis functions of Eq. (2)

@EM(E) y Z @JM

iv.+X.
I

An important aspect of this expansion for the total wave

function is that it only involves channel functions evalu-
ated "on the energy shell, " i.e., at the energy E. This is
possible because the channel functions of Eq. (2) are
defined at all energies and already account for interchan-
nel mixing Uia the incorporation of h Coulomb functions
in their definitions through the rovibronic E matrix. Im-
position of bound-state boundary conditions on the total
wave function 4' (E) of Eq. (5) results in the following
well-known [9] determinantal condition for the bound-
state energies

tan(m v)
A (v)

(6)

where v is the effective quantum number
1/2

&. + +=
iv,. N,.

tan(mv) and A (v) are the diagonal matrices

[tan(harv)]. +~+ . +~+ =5~J5 + ~5 + + tan(harv. + ~),
I I

(9)

iU iv 'U A' 'j U. U N+X+ i iU+iv

Equation (6) is just the rovibronic generalization of the
equivalent electronic Eq. (9) of RJ-I and it specifies the
rovibronic bound-state energies of the molecule. The
procedure is to first use Eq. (3) to calculate the electronic
E matrix from the electronic g quantum defect we ob-
tained in RJ-I. (For states involving values of J other
than 0 the appropriate g matrices for A other than 0 have
to be determined. This poses no problem. ) The electron-
ic K matrix is then substituted into Eq. (4) and the full ro-
vibronic K matrix is calculated as described in Sec. III.
With the full rovibronic E matrix the determinant in Eq.

(see Sec. III C 2 for the slight modification of this relation
actually used in our calculations), and A (v) arises from
our use of the h Coulomb function [9]

I,.

A (v,.„+~+}=g
j=0
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(6) may be calculated for any given total energy E by use
of Eqs. (7) to (9), with the energy e of the Rydberg elec-
tron as seen in each channel given by Eq. (1}. If the
determinant is zero then the trial energy E corresponds
to the energy of a rovibronic bound state of the molecule.
If it differs from zero then the energy does not corre-
spond to a rovibronic bound state and another energy
may be tried. This search procedure is automated in the
computer program.

The energy search procedure was guided by experi-
mental results, using a grid spacing of several wave-
number units in the region of each experimental energy.
Because it is possible to miss levels care must be taken.
Two independent formulations of the problem were used,
one in terms of the tangent function, the other in terms of
sine and cosine functions as in JA. These have different
behaviors around the eigenenergies and facilitate the
search for problematic levels. Occasionally "false" levels

corresponding to high lying vibrational states of the un-
physical 2d state appear. This is presumably due in part
to the finite basis set used in the calculations. The false
levels, however, are easily identified by examination of
the eigenvectors, and are then discarded.

III. CALCULATION
OF THE ROVIBRONIC-ENERGY LEVELS

In this section we describe the details of the procedure
used to calculate the full rovibronic IC matrix of Eq. (4)
and subsequently the rovibronic bound-state energies us-
ing Eq. (6)

A. Frame transformation

We begin by specifying the channel factors that appear
in Eq. (2). These are given by

~iv;+N;+ &
= ~n;+I',+A,+ & ~u;+;iN;+ & g (N;+M m, l;m~ —JM)~N;+A,+M —m & ~l;m &' .

Here ~n, +I +A,+ &is. the electronic core state, with n;+
numbering core states of angular-momentum projection
A,

+ and of symmetry I,+. Thus, n;+, I,+, and A,+, along
with I;, are contained in the compound index i In the.
present example, the core states involved are the 1crg and
Io„states of H2+. ~v,+;iN,+& are the adiabatic vibra-
tional core wave functions which depend on both the
electronic state implicit in the index i and on the core ro-
tational quantum number N;+. Finally, the angular mo-
menta of the ion core and of the Rydberg electron are
coupled by standard Clebsch-Gordon coefBcients to yield
a given J and M. The ion-core rotational functions
~N,+A,+. M;+ & correspond to the isomorphic linear mole-
cule Hamiltonian [15], whereas the Rydberg electron is
described by standard spherical harmonics ~l, m &'. The
prime denotes quantization with respect to the space-
fixed Z axis.

The short-range functions that appear in Eq. (4) for the
rovibronic E matrix are given by

Ii«&'~=In, +r+A+&IB. &Ii;A A+&IJA—i&& .

Here 8 is the internuclear distance as before and
~
JAM &

is a rotational wave function which now describes the ro-
tational of the whole molecule, including the Rydberg
electron. Correspondingly the spherical harmonic
~/, A —A,+ & refers to quantization in the molecular frame,
and A is the total angular-momentum component along
the molecular axis. The core electronic wave functions in
Eq. (11) are the same as in the asymptotic expression Eq.
(10).

The two expressions, Eqs. (10) and (11),must now each
be combined to yield states of definite total parity. Let-
tingp represent the parity (+ } of the total wave function
and p+ the electronic parity of the core ( —1 for X
states, + 1 otherwise}, the symmetric combinations for
the asymptotic region are found to be symmetrized

asymptotic basis functions,

~ iv,+N,+;p &'~= 1 g (N;+M —m, i;m~ JM)+2(1+5 + )

X [ ln, 'I,'A, '& IN, 'A,'M —m &+PP+( —1) ' '~n,+r,+A,+ & ~N, +A,+M m&) ~
1. nt &—'~U,.+;iN,+ &,

(12)

where all quantum numbers other than m and M are nonnegative, and A,+. = —A,+. .
For the Born-Oppenheimer region there are two distinct types of symmetrized basis functions as follows: sym-

rnetnzed Born Oppenheirner b-asis functions,

f In;+I',+A,+ & Ii A —A,+ & I
JAM &+pp+( —1)'In;+I,+A,+ & li A —A,

+
& I

JAM &) I& &,+2(1+5 + 5~0)

(13)
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RA;e~&' = [l~;+I+A &li A+A,+&IJAM&+sr+( —I)'I;+r A+&[i A+A, '&~JAM&][R &.
1

+2(1+5 + 5~o)

Here, the functions correspond to parallel angular-momentum projections of the ion core and the Rydberg electron,
while the 6 functions correspond to antiparallel projections. The 8 functions only occur for non-X cores combined
with non-0. electrons and, thus, do not play a role in the current work.

Using these expressions the evaluation of the rotational frame transformation required for the ful1 IC matrix of Eq.
(4}, is performed following the procedure of Chang and Fano [16]. The resulting elements of the frame transformation
are

'M&iu, +N, + p~iRA;ep)'M

1

Q(1+5 )(1+5 5„)
'M&iu+N+;p ~iR A;ep &'M

1

Q(1+5 + )(1+5 + 5~v)
I l

1/2
2)V;++ 1 N++I

[1+5 +~P+( —1) ' '](N;+A;+, l;A —A,+~JA)(u, +;iN;+~R ),
l

(14)

' 1/2+ 1 N++I
[5~+0+p/i+( —1) ' '](N,+A,+, i;A A;+~JA—)(u;+;iN;+~R ) .2J+1 I

This frame transformation is diagonal in i, J, M, and&,
and corresponds to that given by Child and Jungen [17].
Note that these authors corrected an error in the original
derivation by Chang and Pano.

B. Evaluation of full rovibronic reaction matrix

In order to evaluate the full rovibronic K matrix of Eq.
(4) one must substitute the frame transformation of Eqs.
(14) into (4). Factoring out the terms that do not depend
on the internuclear distance R and using Eq. (3} we find
that the integral to be performed is

J(u;+;iN;+~R )K; (R)(R~u+;jN+)dR

=(v,+;iN, +~tanmri; (R)~u+;jN,+) . (15)

A difhculty arises in the evaluation of these elements be-
cause of the appearance of the tangent function. Since
the ri defects can, and in the present ease do, cross half
integer values the integrand is singular. In the case of a
single electronic channel, Du and Greene [18]use a tech-
nique of evaluation based on the spectral decomposition
of the ri(R) operator which results in the evaluation of in-
tegrals involving ri(R), instead of tanmq(R). Because of
the smoothness with R of the quantum defects [see, for
example, Fig. 2 of JA or Fig. 3(a) of RJ-I] these integrals
pose no numerical difBculty. In this work, we generalize
Du and Greene's technique to additionally account for
electronic channel mixing. Derived in Appendix A, this
technique involves the following three steps.

(1) For each A, the electronic matrix
K,i (R ) =tannrgz(R ) is diagonali'zed on a relatively coarse
grid of R values by the matrix V (R ). The arctangent of
the resulting diagonal matrix is calculated (equivalent, for
a diagonal matrix, to taking the arctangent of each diago-
nal element), thereby removing the poles that occur in
the electronic reaction matrix K (R), and the result is di-

= V (R ) arcta—n( V (R )K"(R) V"(R ) )
1 A

x V'(R), (16)

which is splined onto a fine grid of R values in prepara-
tion for numerical integration in step 2.

(2) The smoothness with R of the M (R) matrix allows
the straightforward Simpson's rule evaluation of the ma-
trix elements of M (R) in terms of the adiabatic ionic vi-
brational functions ~v;+;iN;+ &. The matrix elements are
multiplied by the appropriate rotational parts of the
frame transformation of Eq. (14) and summed over A to
yield the complete rovibronic quantum-defect matrix M
(where for clarity we neglect symmetry)

y JMi(N+ ~A )JMi

X(u,+;iN; IMi(R)lu, +;jN,+)

x JMj ( A ~N
+ )JMj

J (17)

(3) The full rovibronic K matrix of Eq. (4) is then
recovered by diagonalizing M with the unitary matrix U,
taking tangent+ of the diagonal result, and then applying
the inverse transformation

K = U tan(n. U MU}U (18)

The appearance of the tangents in this step is a formal

vided by ~ to yield the diagonal matrix of "eigenquantum
defects" ri . Care is taken in evaluating the arctangent to
ensure continuity with R of the diagonal elements ri, .
The inverse transformation is applied to the matrix of
eigenquantum defects to yield the smooth electronic ma-
trix

M (R)= V (R)[ri (R }]V (R)
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reversal of the I/marctangent of step 1, and is therefore
what returns us to the K matrix.

Thus, the integration in Eq. (15) of the possibly ill-

behaved tanmq(R) functions is replaced by Eq. (17) by in-

tegrals involving well behaved R dependent functions.
The price paid for this simplification is the diagonaliza-
tion in Eq. (18) of the large (200X200 here} rovibronic
quantum-defect matrix of Eq. (17), a step not needed in a
direct evaluation of the integrals involving the tangent
function.

The quantum-defect matrix determined in RJ-I, and
which we use here, involves a linear dependence on ener-

gy of the g defect. A particular advantage of the evalu-

ation technique just described is that if the energy depen-
dence of the quantum defects is smooth then this smooth-
ness carries through to the M matrix evaluated in step 2
[Eq. (17)]. The energy dependence can, therefore, be ac-
counted for by performing a preparatory calculation of M
on a coarse grid of Rydberg electron energies, e. Because
this matrix is a smooth function of energy, interpolation
to determine its elements at other energies is straightfor-
ward and accurate. Thus, in the energy search calcula-
tion, each element of M is determined by interpolating
between its precalculated values. Following Gao and
Greene [19], we use the energy-modified vibrational
frame transformation, i.e., we use the arithmetic mean,

e=(e;+ej)I2, of the channel energies in evaluating
MA(R }when performing the integrals of Eq. (17). In this

way steps 1 and 2, which include the numerical integra-
tions, only need to be performed on the coarse energy
grid. In the current work of a grid of three points over
the energy range e= —0.25-0.00 a.u. combined with
quadratic interpolation resulted in essentially identical re-
sults as obtained by a cubic spline interpolation over five

points. Note, however, that in the case of an energy
dependence the disadvantage of having to diagonalize the
large M matrix in Eq. (18) is repeated for each energy.

Our results show that this method of accounting for
the energy dependence of the quantum-defect matrix
represents a significant improvement over that used in
our proof of principle calculation [8], wherein the g„
quantum defect was taken as a step function of energy,
having a single step between the 2s and 3s diabatic states.
The linear energy dependence of the quantum defect used
here is also more appropriate than the step energy depen-
dence used there. This better treatment, combined with
the improvement in the fitted quantum-defect functions
obtained in RJ-I, is the origin of the significant improve-
ment in the vibronic results obtained below.

C. Remaining effects

In their paper on the use of MQDT to account for ro-
vibronic interaction in H2, JA begin their development of
the theory by partitioning the molecular Hamiltonian in
a manner different from that of the traditional quantum-
mechanical treatment [see Eq. (3) of JA]. Their partition-
ing involved identifying the parts of the Hamiltonian re-
lating to the H2+ ion core, the Rydberg electron, and to
the interaction between the ion core and the Rydberg
electron. MQDT, applied without correction, accounts

for the most important of the terms in each of these parts
of the Hamiltonian. The remaining terms can generally
be accounted for by slight modifications of the MQDT
procedure. Using the notation of JA, we may identify the
terms neglecting in the "pure" MQDT for homonuclear

Hz as the following (in a.u.):

Ion +2 21 1
H missing V~ e@ V

LP 8p

H Rydberg V21
missing 8 1 ~

HInteraction =1
missing 4 1 2 &

(19)

where the subscripts "1"and "2" represent the Rydberg
electron and the core electron, respectively, and p is the
reduced mass of the H2 molecule. Because these "miss-
ing" terms are all relatively small we consider them in a
diagonal (or adiabatic} approximation by accounting for
their expectation values. In Secs. III C1-IIIC3 we dis-

cuss each of these terms in turn, and how they are ac-
counted for in the MQDT treatment. Finally, we discuss
the consequences of the neglect of / mixing at large R and
of relativistic effects in the H2+ ion in Secs. III C4 and
III C 5, respectively.

~Rydberl
~ msssing

This term, the "normal mass efFect," is clearly propor-
tional to the kinetic-energy operator for the Rydberg

Ion+missing

As described in JA, the elements missing from the
ionic part of the MQDT procedure, and given above
as H";"„;„g, can be accounted for by a standard adi-
abatic approximation in which the expectation value
(H";"„;„s(R))is determined for each electronic state of
the ion as a function of R, neglecting coupling with other
states. These expectation values are the R-dependent adi-
abatic corrections which are added to the ionic potential
curves for the determination of the adiabatically correct-
ed vibrational wave functions and energies of the ion. It
is these adiabatic vibrational wave functions which were
used in JA and which we use to calculate the full rovib-
ronic E matrix of Eq. (4), using the procedure of Sec.
III B. The adiabatic vibrational energies are used in Eq.
(1).

The present problem involves two electronic states of
the H2+ ionic core, the 1og and the lcm'„states. Al-

though the adiabatic corrections we use for the 1o
g state

are well known [20], those of the Itr„state of the Hz+ ion
core are apparently not available in tabular form in the
literature and we calculated them ourselves as described
in Appendix B.

This term is responsible for quite uniform increases in
the energies of the calculated ionic levels, of the order of
roughly 60 cm ' around equilibrium for the log state,
and around 120 cm ' at the same R =2 a.u. value for the
1o.„state. These increases carry through to the calculat-
ed molecular levels.
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electron,

0Rydberg
missing

1 1 1p2- g2
AM

'
4tM 2(m, = 1)

1

4p
T1 (2o)

We account for this term in essentially the same way as
we did for H ';"„;ng, by including its expectation value in
the MQDT treatment. In the present work, we do this in
a more complete way than has previously been done. In
JA, for example, the expectation value (H i'„;;gg ) was
determined using the virial theorem for the electron
alone, as is done for atoms [21]. Here the fact that our
MQDT determination of the quantum defects in RJ-I re-
lied on the Born-Oppenheimer approximation, in which
the nuclei are held "clamped, " is also taken into account
in the calculation of the electronic expectation value of
( H Rydberg )missing

The virial theorem and its application to the clamped-
nuclei approximation is well known from standard texts
[22]. Using the virial theorem the expectation value of
the kinetic-energy operator is given by

a difference of just under 30 cm ' for H2.
The second term of Eq. (24) is not simply proportional

to e and can therefore not be absorbed into the Rydberg
constant. Instead, we adjust the energies obtained in the
MQDT by changing the quantum defects. In Appendix
C we show that this small electronic correction can be
treated in a diagonal approximation by correcting the di-
agonal quantum defects ri(R) according to

Corrected +g R 9a
4p BR

(26)

In this work, the derivative correction of Eq. (26) is ap-
plied. Its effect on the calculated rovibronic energies was
determined by comparing the results of including or not
including it. Such a comparison shows that this correc-
tion improves the results for the lowest levels of the F
state by up to 9 cm '. The overall rms error of the cal-
culated levels is only slightly improved by the inclusion of
this correction, but the average error decreases from 3.9
toO. 3cm '.

0Interaction
missing(T)= E(R)——R

dR
(21)

where E (R) is the electronic energy of the state. We may
also apply this result to the H2+ ion core, denoting the
related core quantities with a superscript "+,"

( T+ ) = E(R )
—R—

dR
(22)

Subtracting this equation from the previous one,
remembering that Rydberg electron has total energy e
and is indicated by the index "1,"we obtain,

(T, &=(T&—(T+ &

= —[E(R) E+(R)]—R— [E(R) E+(R)]-
dR

(R)+R
dR

(23)

This term is called the "specific mass effect" and is dis-
cussed in some detail in JA. The integrand in H ",",;„""'"
involves a coupling between the wave function of the core
electron and that of the Rydberg electron. For Rydberg
states, these wave functions only overlap slightly and,
thus, this term is expected to be small. Wolniewicz and
Dressier [2] refer to this term as H3 and have calculated
it for the EF, GE, and HH electronic states and even for
these low Rydberg states it is quite small (absolute values
&2.3 cm ' for the EF state, &7.2 cm ' for the GK
state, and ( l.9 cm ' for the HH state). This term is,
therefore, of approximately the same size as the precision
of the fitting to the Born-Oppenheimer potentials in RJ-I.
At higher energy the overlap between the core and Ryd-
berg electron wave functions becomes even smaller and,
therefore, this term will rapidly become even less impor-
tant. We therefore neglect it.

and hence, in atomic units (m, = 1), 4. Neglect of l mjxirtg at large R

(H t "g ) = — e(R ) +Rmissing 4 dR
(24)

&corrected( R )
1

4p
(25)

It is accounted for in the usual manner by decreasing the
Rydberg energy by a factor of (1—1/4p) throughout the
rovibronic treatment [7]. This amounts to shifting the
Rydberg constant in Eq. (7) from the value —,

' a.u. , ap-
propriate for infinite mass, to the value —,'(1 —I/4p) a.u. ,

This quantity represents the amount by which the calcu-
lated energies must be increased. Due to the different
forms of the two terms appearing in Eq. (24) their incor-
poration into our MQDT treatment is handled in
different ways and so discussed separately.

The first term, —e(R)/4p, corresponds to a propor-
tional change in the energy of the Rydberg electron

Another shortcoming of the present treatment is the
restriction of the partial wave expansion to I 2 which
clearly becomes inadequate as R becomes large. JA have
shown that because the quantum defects still reproduce
the accurate Born-Oppenheimer potential-energy func-
tions at large R, the consequences of this restriction are
limited to the adiabatic corrections. However, the physi-
cal content of the quantum-defect functions as represent-
ing the partial-wave expansion is lost to some extent.
Another feature at large R is that the physically ap-
propriate description of the Rydberg electron is that it
orbits one or the other of the dissociating atoms, rather
than an H2+ ion core. Thus, in this region, the mass ap-
pearing in Eq. (25) should now be that of the H nucleus,
rather than that of the united atom (He). In the limit of
large R this corresponds to a missing correction
—'(% —%H ) to the energy, where A is the Rydberg

constant for infinite mass and AH that corrected for the
2
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finite mass of H2. JA showed that for n =2 this causes

levels near dissociation, and thus sampling large R
geometries, to be calculated 7.5 cm ' too low. They
indeed found this to be the case in the 2pm C 'H„state
(cf. Fig. 6 of JA). This same behavior occurs here for

high lying vibrational levels of the I 'X~ state, as will be

discussed in the Discussion of Results.

5. &elativistic sects in Ht+

Relativistic effects in the H2+ ion core can be account-
ed for by simply using vibrational energies incorporating
these effects when evaluating Eq. (1) for use in Eq. (7).
Such energies, however, are only available for the physi-
cal vibrational levels, which form only a small subset of
the 200 vibrational levels used in our calculation. Fur-
thermore, these relativistic corrections are small [23] and
their inclusion or noninclusion has only a small effect on
the energies obtained in our calculations. The results
quoted in Table I do not include the relativistic effects of
the ion.

D. Computational details

The determination of the full rovibronic reaction ma-
trix of Eq. (4), by the procedure of Sec. III B, requires vi-
brational wave functions for the log and lo„states of
the Hz+ ion. These we determine using Numerov-Cooley
numerical integration [24] over the range R =0.1-12.0

a.u. , on a grid of 999 points, incorporating the adiabatic
corrections corresponding to (H;"„;„s) in the ionic
potential-energy curves. For the 1crg state, this pro-
cedure is straightforward and in our calculations we have
included the levels v =0-44 for both the s and d channels
built on this ionic state. The p channel, however, is built
on the repulsive 1o„state which does not support bound

vibrational levels in the region in which we require vibra-

tional basis functions. We handle this situation as before

[8], by fixing the logarithmic derivative of the vibrational
functions to some constant value at the outer R value.
This results in an orthonormal vibrational basis set that
samples the vibrational continuum over a finite range of
R and at discrete energies. We chose to include those vi-

brational functions that are zero at the R value forming
the outer bound for our calculation and have included
the levels v =0-109. These vibrational basis sets ensure
a complete coverage of the R range important for the
states considered in this work.

In RJ-I we determined the g matrix for A=O. In the
present work, we restrict our attention to J=O levels
with the consequence that the summation over A in Eq.
(4) collapses to this single value. In addition, we have re-
stricted the treatment of / ~2. Higher / states are non-
penetrating and, thus, are not normally strongly involved
in configuration mixing for moderate values of R. Under
these circumstances the symmetrized Born-Oppenheimer
and asymptotic basis functions of Eqs. (12) and (13) are

Born Oppen/teim-er

litrs) IJ=0 A=O M) I/ =«): lltrs) g (N+=0 M —m,

Asymptotic

/ =0 m)~N+ =0 0 M —m ) ~/=0 m )',

)lo )[J=0 A=O M))/=2 tr): (los) g(N+=2 M —m, /=2 m)[N+=2 0 M —m)(/=2 m)',

iitr„)iJ=O A=O M)i/=I o ): bio„) g(N+=1 M —m, /=1 m))N+=10M —m)(/=1 m)'.
(27)

Because the rotational frame transformation is diago-
nal in / it reduces for J =0 to the value unity and there is,
therefore, a one-to-one correspondence between the
Born-Oppenheimer and asymptotic basis functions as in-
dicated in Eq. (27). Thus, the incoming asymptotic chan-
nels each project onto a single Born-Oppenheimer chan-
nel in the present case. In the core region, the nondiago-
nal quantum-defect matrix leads to configuration mixing
between different Born-Oppenheimer states with A=O
via the full rovibronic reaction matrix of Eq. (4). For
JAO the one-to-one correspondence between asymptotic
and Born-Oppenheimer rotational channels is lost and
further mixing due to the rotational part of the frame
transformation becomes possible as will be discussed with
regard to the 3d complex in the next paper in this series.

Physical constants used are from Ref. [25]. The
quantum-defect calculations yield vibronic energies rela-
tive to the v+ =0, N+ =0, 1' level of H2+. We convert

these to energies above the v =0, J=0, level of neutral
H2 by adding the theoretical ionization potential of H2 of
Ko/'os, Szalewicz, and Monkhorst, viz. , 124417.512 cm
[26]. The los and Icr„potential-energy curves of Hz+
are from the work of Wind [27] and Bates, Ledsham, and
Stewart [28], respectively.

IV. DISCUSSION OF RESULTS

The comparison with experiment of the J=0 vibronic
energies that we have calculated is presented in Table I.
For comparison this table also includes results obtained
by Yu, Dressier, and Wolniewicz [3,6] using the coupled
equations technique. Both calculations are seen to be in
extremely good agreement with experiment. The com-
parison is illustrated by Fig. 1. In each part of this figure
we show the observed minus calculated energies in wave
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numbers of the first 39 vibrational levels of the excited
electronic states of 'Xg symmetry as functions of the to-
tal energy of the vibrational state relative to the J =0,
v =0 level of the X 'X+ ground state. This is done for
different theoretical approaches and approximations.
Only the first 39 states are considered because the 40th
state is not observed experimentally, and higher states in-
volve large values of R and were not appropriate to con-
sider here.

Figure 1(a) compares the results obtained in the Born-
Oppenheimer calculation and those obtained from the
present vibronic MQDT calculations. Remember that
both of these calculations are based on the same ab initio
Born-Oppenheimer (or "clamped-nuclei" ) potential-
energy curves. In the Born-Oppenheimer calculation the

Vibronic state
Vibronic
energy' MQDT

Coupled
equations'

EO

E1

E2

EF9
EF10
EF11
EF12
EF13
EF14
EF15
EF16
EF17
EF18

EF19
EF20

EF21
EF22

EF23
EF24

EF25
EF26

EF27
EF28

FO
Fl

F2
F3

F4
F5

GKO
GK1

GK2

99 164.782
99 363.92

100 558.92
101494.749
101 698.93
102 778.28
103 559.59
103 838.54
104 730.61
105 384.90
105 966.16
106713.07
107 425.87
108 098.56
108 793.55
109493.90
110 163.38
110794.19
111370.69
111628.81
111812.665
112 106.09
112711.80

HO 112957.57
113258.24
113393.50
113861.40
114044.66
114510.539
115024.834
115099.84

0 1 115251.52
115563.70
116041.59
116 164.81
116508.24
116915.36
117081.43

H2 117297.02

44
1.3
0.1

5.0
0.3

—1.2
—2.3

0.0
—3.1

—0.1

3.0
2.6
4.8
6.1

5.7
6.3
7.3
6.2

—4.6
—7.5

1.1
7.2
5.2

—10.3
2.7
2.5
4.7

—1.3
4.6
1.3

—16.0
5.1

—1.4
—1.4

1.7
—5.2

—16.8
11.4
6.7

—0.5
—0.4
—0.4
—1.0
—0.5
—0.4
—1.4
—0.8
—0.9
—2.1
—1.8
—1.7
—2.0
—2.1

—2.4
—2.3
—1.5
—1.1
—4.7
—3.6
—2.9
—1.6
—3.6
—1.0
—7.0
—2.0
—1.7

—10.2
—5.5
—1.3
—9.2
—6.2
—5.8
—6.5
—78
—4.5
—98

—10.4
—8.0

'Values from Ref. 3.

TABLE I. Comparison of observed and calculated vibronic
energies of H2 (cm ').
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FIG. 1. Comparison of observed minus calculated vibronic
energies as a function of the total vibronic energy relative to the
J=0, v =0 level of the X 'Xg ground state. (a) Comparison of
the Born-Oppenheimer ("8"),Adiabatic ("A"), and MQDT (~)

results. (b) Comparison of the coupled equations (Ref. [3]) (C3)

and MQDT (~) results. (c) Comparison of our "proof of princi-
ple" results (Ref. [8]) (o ) and the present results (~).
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wave functions and energies are obtained by numerical
integration of the vibrational Schrodinger equation. The
size of the non-Born-Oppenheimeg effects in these states
of Hz is readily apparent in this figure. The root-mean-
square error of the Born-Oppenheimer calculated ener-
gies for these states is about 110 cm ', compared to 6.0
cm ' for the MQDT calculations. Indeed, one of the
Born-Oppenheirner levels is wrong by over 500 cm
Quadrelli, Dressier, and Wolniewicz [3,4] calculated adia-
batic corrections to the potential-energy curves for these
states. These corrections were as large as 800 cm ' and
result in a significant improvement in the calculated vib-
ronic energies as is also seen in Fig. 1(a). However, even
taking these adiabatic corrections into account resulted
in an rms error of 58 cm ', with the energies of some lev-
els calculated more than 180 cm ' away from the experi-
mental values. It is clear from this figure that the MQDT
results are very much superior to those obtained in either
the simple Born-Oppenheimer approximation, or in an
adiabatic approximation.

Figure 1(b} compares results of nonadiabatic coupled-
equations calculations performed by Yu, Dressier, and
Wolniewicz [3,6] with the current MQDT results. Note
the twentyfold increase in scale in Fig. 1(b) compared to
1(a). The coupled-equations results are in better agree-
ment with experiment than are the MQDT results, how-
ever not overwhelmingly so. The rms errors are 6.0 cm
for the MQDT results Uersus 3.0 cm ' for the coupled-
equations results. The ranges of observed minus calculat-
ed values are —16.8-+7.3 cm ' for the MQDT results
and —10.4- —0.4 crn ' for the coupled-equations re-
sults. In comparing these calculations, it must be remem-
bered that the MQDT results are based on the quantum-
defect matrix obtained in RJ-I, which reproduces the
Born-Oppenheimer potential-energy curves to within
several wave-number units. We do not expect our vib-
ronic results to be any better than this.

Figure 1(b) also shows that the MQDT results scatter
more or less uniformly above and below the observed en-
ergies. This is not true of the coupled-equations results
which must lie to higher energy than the observed levels
[and so below the axis in Fig. 1(b)]. Indeed the average of
the observed minus calculated energies is only +0.3
cm ' for the MQDT results, as opposed to —3.5 cm
for the coupled-equations calculations. Examination of
the figure shows that the quality of the coupled-equations
results degrades more dramatically at higher energy than
do the MQDT results. Dividing the results into two re-
gions at 111000 cm ' the rms error of the MQDT de-
grades by a factor of only 2.2 in the higher-energy range,
whereas the coupled-equations results degrade by a factor
of 4.3. Indeed based on the same division of the energy
range the average error improves from 2.6——1.6 cm
for the MQDT results, but for the coupled-equations ap-
proach degrades by a factor of 4, from —1.3 to —5.4
cm '. This is possibly due to the fact that the MQDT re-
sults take into account the effect of the entire Rydberg
series lying to higher energy, whereas the coupled-
equations results only take into account the first five ex-
cited 'Xg+ electronic states.

Figure 1(b) and Table I further show that the levels be-

tween 106000 and 111000cm ', which sample large R
values corresponding to the outer limb of the F state are
systematically calculated about 7 cm ' too low. This
clearly reflects the missing correction —,'(A„—%H ) dis-

cussed in Sec. III C4.
In the preceding paper, we discussed how our g matrix

results in a good prediction for the 4s diabatic state, but a
much poorer one for the 4d state. This is also refiected in
our vibronic calculations for the U =0 levels of the 0
( =4s} and P ( =4d) 'Xs (J=0) states wherein our pre-
diction for the 0 state is in much better agreement with
the recent unpublished assignments of Dressier [3] than is
that for the P state. As described in RJ-I this is attribut-
able to our present neglect of the energy dependence of
Qdd '

V. CONCLUSION

The results displayed in the three parts of Fig. 1

demonstrate how two entirely different methods of treat-
ing strong vibronic coupling, both starting out from the
same Born-Oppenheimer clamped-nuclei potential-energy
curves, reproduce an extended set of experimental level
energies with near-spectroscopic accuracy. The recent
coupled-equations calculations by Yu, Dressier, and Wol-
niewicz [6] represent a significant improvement over
those performed by Quadrelli, Dressier, and Wolniewicz
[4]. The improvement in the Born-Oppenheimer poten-
tial curves is responsible for some of the improvement in
both methods. However, for the coupled-equations
method the improvement is most striking for the higher
lying vibronic levels and is due to the fact that the 5 'X+
and 6 'Xg electronic states are now included, which was
not possible in the earlier work. The previous MQDT
calculations of Ross and Jungen [8] already implicitly
contained all of the 'X+ levels, including the electronic
continuum lying above. The improvement obtained in
the MQDT calculations, evident in Fig. 1(c), is due in-
stead to the more carefu1 treatment of the energy depen-
dence of the ri„defect, and possibly also due to the in-
clusion of the g,d defect. The possibility for further im-
provement of the current MQDT results lies in using the
new ab initio calculations of Wolniewicz and Dressier [5]
to determine the energy dependence of the gdd defect and
possibly also that of the q~~ defect, as discussed in RJ-I.

For a more fundamental point of view, the present
MQDT calculations are a striking demonstration of the
power of the frame-transformation method, which has al-
lowed us to produce the tens of thousands of elements of
the rovibrational reaction matrix from the clamped-
nuclei electronic quantum-defect matrix which is corn-
posed of only six smooth functions g; (R). This success
indicates that the physical picture underlying our treat-
ment is basically correct:

(i) The doubly excited repulsive state which is usually
considered as arising from the ( I cr „) electronic
configuration can be viewed realistically as the lowest
member of the ( lo „)(npo „)series.

(ii) The collision between the Rydberg electron and the
core is fast, that is, there is no trapping of the electron in-
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side the core region. This behavior contrasts with that
found in electron-molecule collisions, such as in e +N2,
which are often dominated by shape resonances whereby
the incident electron is temporarily trapped within a po-
tential barrier.

Our immediate goal is to use the quantum-defect ma-
trix of RJ-I in calculations for states having J other than
0, and to continue our calculations to higher energy
where the coupled-equations approach becomes more
difficult to implement. The calculations for JAO will
form the subject of the next paper in this series.
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APPENDIX A

f(A)= y f(a)~a)(al . (A 1)

In this appendix we derive the three-step technique of
Sec. III 8 for the calculation of the full rovibronic E ma-
trix. This technique is based on the standard spectral
representation of the function of an operator A, with ei-
genvalues a and eigenfunctions i a ),

Letting [M] denote the matrix representation of the
operator M then the matrix representation [f(M)], of a
function of M can be expressed by

U unitary =[f(M)] = Uf ( U [M] U) U

Equation (A4) gives rise to the technique of Sec. III B,
allowing the evaluation of the full rovibronic K matrix,
while bypassing the problematic integrals involving the
tangent function in Eq. (15}. Thus, instead of evaluating
the matrix elements of f (M) on the left-hand side of the
equality in Eq. (A4), the matrix elements of the "bare"
operator M appearing on the right-hand side of the equal-
ity are evaluated. The resulting matrix [M] is then diag-
onalized by the unitary matrix U and the function f is ap-
plied to the diagonal matrix U [M]U (achieved by simply
evaluating the function of the diagonal elements). The
final step is to use U to transform back.

In situations involving molecular vibration the MQDT
reaction matrix is nothing other than the matrix repre-
sentation in the appropriate basis of the function,
f(M)=tanmM, of an operator of the form
M = g~ P„A~. That is IC =[f(M)], where the operator
M depends on the particular problem. Once M has been
identified application of Eq. (A4) allows the evaluation of
the matrix elements of f(M) and thus of E. In the
remainder of this section we consider three particular
cases, in order of increasing complexity, so as to more
clearly illustrate the technique. We give M for each case,
and verify that it satisfies E =[f(M)].

Case (a). Pure vibronic interaction (no rotation, no elec
tronic interaction). In this case M = rt (R },so that Pz =I
and Az =ri (R), where A only takes on one value. The
basis set here consists of the vibrational wave functions
iv;+ ) of the ion core, so that the matrix representation of
tangent m.M is

[f(M)]=[f(ri (R))]=[tanmrl (R)],

From the spectral representation it is straightforward to
show that

which has elements (A5)

P = g ~i ) ( ii, f (0)=0,

P and A operate in different spaces
(A2)

—f (PA) =Pf (A),

where the ii ) are orthonormal. For particular applica-
tion to electronic channel mixing the following result,
also based on the spectral representation, is used to han-
dle the summation over A in Eq. (4)

These are indeed the elements of the pure vibronic E ma-
trix, verifying that M has been correctly chosen.

Case (b) Rovibronic i.nteraction (no electronic interac-
tion) This is the .case for which Du and Greene [18] in-
troduced this technique. Here M= g~iA)g (R)(Ai,
and thus P„=iA)(Ai and A~=q (R). The basis func-
tions now include a rotational part and are i v,.+N,.+ ). Be-
cause P„P~ =0 if A%A', Eq. (A3) may be applied to M.
Then, using Eq. (A2), the matrix representation of
tangent m.M is

f (0)=0, P~P~. =0 for A%A'
(A3)

(A6)
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which has elements

&u,+N,+I y IA& tan~q'(R)&AI Iu,'N,+)

= g &N+ I A& & u+;N+ It»~qA(R)I v+;NJ+ & «IN+&

+N+ +~+' J J

which are indeed those of the rovibronic K matrix of Eq.
(5} of Du and Greene [18] [equivalent to Eq. (29} of JA],
verifying the choice of M.

Case (c). Rouibronic interaction with electronic in
teraction (present work). In this case
M= gA IA) [ g la)"ri, (R) (al I(AI, so that P„
=IA)(AI and AA= g Ia) vg (R)(al, where Ia)"
are the eigenfunctions and g the related eigenquantum
defects of the electronic K matrix obtained in Eq. (16).
The basis functions now additionally include an electron-
ic part and are liu;+N;+). Again, because PAP„=O
when A%A', Eqs. (A3) and (A2} may be applied
to M, resulting in an expression containing f(AA}.
The special feature here is that A A itself has the
form AA= g P rt (R), where P =la) (al, and
thus Eqs. (A3) and (A2} can be applied once more, this
time to f ( A A ). Doing this the matrix representation of
tangent n.M is

[f(M)]= f +PARA
'

Xf(PA~A) = QPAf(~
A

y p f @PA~'A
'

A a
which has elements

A A

I I

g p g pAf (~A}
A a

&iu,+N,+I y IA& y la)'tan~~'(R)'(al &Allju, +N,'&
A a

= &&iu,+N,+IIA&li& & &ila& tan~q (R) &alj& &jl& Allj ,u+
N,

+
&

A a

= & &tv;+N;+IIA&li&&;, (R)&jl&Allju, +Nj+&

R iv;+N, + iRA K,. - R jRA jv+N+

=E.
I'I).+X+ qU+X+

J J
(A7)

which are indeed those of the full rovibronic IC matrix of Eq. (4) for arbitrary JM values, thereby verifying that M has
been correctly chosen. (The introduction of Ii ) (i I and

Ij ) (jl in the second step is valid due to the presence of (i I
and

Ij) in (iv;+N;+I and jlvj+NJ+ ). ) (ila) is the ia element of the diagonalizing transformation V of Eq. (16}.
Having determined M for each of these cases the evaluation of the rovibronic E matrix proceeds using Eq. (A4),

K =[f (M)]=Uf (U [M]U)U

where [M] has elements

case (a) (v,+Iri (R)lv+),

case (b) g (N;+IA)(u;+;N;+Irt (R)luj+;Nj+)(AINJ+), (A8)

case (c) g (N,+IA)(u, +;iN,+.
I g (i la) .rt (R) (alj) Ivt+;jN +)(Ale+). ,

A a
('

and U is chosen in each case so that Ut[M] U is diagonal.
The right-hand side of the equality in Eq. (A8} is used to
evaluate the vibronic X matrix. This is done by first
evaluating the elements of the matrix representation of
M. The result is the matrix [M] in Eq. (A8), which, for
case (c) is also given by Eq. (17}. This is step 2 of the
three-step process of Sec. III B. Step 3 is then to diago-

I

nalize [M] by the unitary matrix U, take tangents of
each element of the resulting diagonal matrix U [M]U,
and finally to transform back with the U matrix again, as
shown at the top of Eq. (A8) and in Eq. (18). In this way
the K matrix may be evaluated without having to in-
tegrate over the tangent function.
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APPENDIX 8

In this appendix we briefly describe our ab initio calcu-
lation of the adiabatic corrections for the 10.„state of
H2 . Because of the modest nature of our requirements
vis a vis precision (the order of a wave-number unit is sa-
tisfactory) we did not implement the procedure of Po-
nornarev, Puzynina, and Truskova [29], and instead pro-
ceeded by Simpson's rule integration, using the H2+ elec-
tronic wave functions of Bates, Ledsham, and Stewart
[28] in Eqs. (4) and (6) of Bishop et al. [30] [with the
correction that the sum on j in their expression for M(p)
should be from A+l and not from A. This correction is
needed in order to obtain equal adiabatic corrections for
the 10. and 1o.„states at R = ~, expected as these two
steps converge to the same H(ls)+H(2s) limit]. In this
integration the B/B)M derivatives were evaluated numeri-
cally and the B/M, derivatives analytically. The calcula-
tion was done on a coarse grid of R values from 0.8-8.0
a.u. , with other values obtained by splining, as was done
for the 10. state. The number of points and the range of
integration over A. were adjusted to achieve reasonable
numerical convergence. As a check we used the same
program to calculate the adiabatic corrections for the
1o state to compare with the values obtained by Bishop
and Wetmore [20]. In the range R =0.6—6.0 a.u. our
calculations agree with theirs to within better than 1

p a.u. (0.2 cm '), thus providing some confidence in our
calculations for the 1o „state. The R ~~ value of the
adiabatic correction for both states, m, E(ao )/—M~ (Mz
denotes mass of proton), was used to fix the adiabatic
corrections at large R. For the purposes of splining the
asymptotic value was used to fix the corrections at
R =100 a.u.

The expectation values of the two terms of H";"„;„ in
the limit R ~ 00 provides another check on the precision
of our adiabatic corrections. JA point out that since the
work of Van Vleck [21] it is known that in this limit the
expectation values of these two terms become equal, and
thus each becomes equal to half of the total asymptotic
value. For the 10. and 10„states, the asymptotic limit

for each of these terms is thus 136 pa.u. At R =8 a.u.
Bishop et al. [30] obtain 135 and 133 )M a.u. , whereas our
more approximate calculations give 137 and 134 pa.u.
This comparison serves to indicate both the precision of
our calculations at large R and also roughly how close to
equality the two terms should be. Thus, our results of
131 and 136 pa. u. for these two terms for the lo„state
at R =8 a.u. are seen to be quite reasonable.

O=tannv+ A (v) tannri, (Cl)

establishes the relationship between the energies e
[through v in Eq. (3) of RJ-I] and the quantum defects ri.
To effect a change of b,e on an energy satisfying Eq. (Cl)
would require a change of g of approximately

an be,
Be

(C2)

where Bri/Be does not refer to any energy dependence of
the quantum defects (which we neglect here), but instead
to the relation between il and e implicit in Eq. (Cl). The
change desired in e is that given by the second term of
Eq. (24),

1 e

4p BR
(C3)

and, thus, the correction to the diagonal quantum defects
is given by

B~ B~ 1 B~

4p Be BR 4p BR
(C4)

APPENDIX C

The derivative correction to the quantum defect, form-
ing part of (H~yiss, „'ss ), is obtained in an electronically di-
agonal approximation. Additionally putting aside any
energy dependence of the quantum defects, the single
electronic channel Eq. (4) of RJ-I
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