
PHYSICAL REVIEW A VOLUME 49, NUMBER 6 JUNE 1994

Multichannel quantum-defect theory of double-minimum 'Xg states in H2.
I. Potential-energy curves
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Multichannel quantum-defect theory is applied to the highly accurate 'Xg ab initio excited-state
potential-energy curves calculated by Wolniewicz and Dressier [J. Chem. Phys. 82, 3262 (1985); and
(private communication)]. We show that the three double-minimum states, EF, GE, and HH, can be
represented to within 8 cm by a smooth R-dependent 3 X 3 nondiagonal quantum-defect matrix. This
quantum-defect matrix corresponds to a collision of the Rydberg electron with the H2+ target, which

may be in either the 1'~ or 1'�„state. Also discussed is the use of this quantum-defect matrix to calcu-
late diabatic states, more highly excited Born-Oppenheimer states, and the electronic ionization width of
the superexcited {lcd „)~doubly excited state.

PACS number(s): 33.10.Cs, 33.10.Lb, 34.10.+x, 34.80.Kw
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FIG. 1. The ab initio Born-Oppenheimer potentials for the
first five excited 'Xs+ states of H2 (sohd curves) [15],along with
the spectroscopic labels. The lug and 1'„states of H2+
(dashed curves), with horizontal lines indicating the lowest vi-
brational levels of 1ug H2+.

The excited 'Xg states of Hz are prototype examples of
molecular double-minimum states exhibiting eS'ects of
strong nonadiabatic coupling. Ever since Davidson [l]
recognized the double-minimum nature of the lowest ex-
cited electronic energy curve of H2, EI' 'X~, these states
have attracted the attention and inspired the imagination
of molecular theorists. For example, current models used
to explain certain types of persistent hole burning in
glasses invoke double-minimum potentials of the same
shape as those found in the manifold of excited 'Xg elec-
tronic states of Hz shown in Fig. l [2]. It is known since

Davidson's work that the humps and shoulders which
arise in these excited states are the result of avoided
crossings that occur between the singly excited Rydberg s
and d series and the doubly excited (lo „) state. In the
continuum it is this doubly excited configuration that is
largely responsible for the dissociative recombination
(DR} of Hz+ ions with electrons (see, for example, Ref.
[3]). DR is an inelastic-scattering process dominated by
resonances and proceeding through the temporary forma-
tion of Hz Rydberg states [3]. The strong interaction be-
tween the doubly excited state and the singly excited
series maintains its importance below threshold, where it
is the source of the very large (up to several hundreds of
cm ) non-Born-Oppenheimer efects on the rovibronic
levels of H2. Multichannel quantum-defect theory
(MQDT} forms an ideal theoretical description of reso-
nant continuum processes, such as DR [3], as well as of
the strongly interacting bound states. This paper is the
first in a series which will use MQDT to describe this in-
teraction between a doubly excited state and series of
Rydberg states in a unified manner, thus accounting for
the possibility of electronic excitation of the ion core
when the Rydberg electron collides with it. An early ver-
sion of this work [4] served as a "proof-of-principle, "giv-
ing confidence that a careful implementation would be
successful in describing the host of short-range interac-
tions that occur when a Rydberg electron collides with an
ion core.

It has recently become possible to calculate ab initio
the electronic energies of the excited states of H2 with al-
most spectroscopic accuracy, and also to calculate the
strongly perturbed rovibronic structure associated with
them. Wolniewicz, Dressier, and co-workers have per-
formed high quality ab initio calculations of the
2 'Xs (EF), 3 'X~+(GE}, and 4 'X+(HH ) states [5]. Their
calculation of the rovibronic level structures [6] starts out
from the Born-Oppenheimer approximation and intro-
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mary of the theory as we apply it.
We start with the simple intuitive picture of series of

crossing diabatic states such as those shown in Fig. 2.
Each series of diabatic states is considered as being
describable as a single configuration and thus by a single
quantum-defect function. In the present case, we label
the diabatic series as

s: (log)nsog, d: (Ias)ndos, p: (lrr„)npa„.

Thus, in this notation, we label the doubly excited
configuration (10„) as (Itr„)(2po„). Configuration in-
teraction between these diabatic series leads to the avoid-
ed crossings and thus to the complicated pattern of ener-

gy curves shown in Fig. 1. For each pair of series there is
an additional quantum-defect function corresponding to
their interaction. In our present problem we thus have to
determine three diagonal quantum-defect functions,
ri„(R), ridd(R), and ritz(R), describing the s, d, and p dia-
batic series, and three off-diagonal quantum-defect func-
tions, r),z(R), ri,~(R), and r)d~(R), describing the interac-
tions between these series.

The quantum-defect theory (QDT) description of an
electronically excited atom or molecule describes the
atom or molecule as an electron (the Rydberg electron) in
collision with a positively charged ion core. This is
reflected in the QDT wave functions, wherein the radial
motion of the colliding Rydberg electron is distinguished
from the other degrees of freedom of the molecule. Out-
side some finite radius ro, QDT assumes that the Rydberg
electron sees only the spherically symmetric Coulomb
force of the positively charged ion core and, thus, the ra-
dial part of the wave function corresponding to the Ryd-
berg electron can be written as a linear combination of a
base pair of energy-dependent Coulomb functions. In our
work, we choose the Coulomb base pair f,(r) (regular at
the origin) and h&(r) (irregular at the origin) [9], where!
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-0.60We consider the 2, 3, and 4 'X+ electronic states of H~,
which are also known as the EF, GK, and HH states.
The "clamped-nuclei" or Born-Oppenheimer potential-
energy curves of these states are shown in Fig. 1. This
figure presents a complicated pattern of avoided crossings
between the s and d Rydberg series on one hand, and the
(lo.„) doubly excited state on the other. The strength of
the interaction between these states can be seen to be con-
siderable. Our goal is to use multichannel quantum-
defect theory (MQDT) to obtain a theoretical description
of this system. Although detailed descriptions of MQDT
are available in several review papers [9—11], in the
current series of papers we shall present a concise surn-
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FIG. 2. Diabatic potential curves from the present MQDT
analysis (solid curves) along with results from Guberman [22]
(triangles connected by dashed line) and Hazi, Derkits, and
Bardsley [16] (thin dashed curve). Note that 3s and 4s lie above

3d and 4d, respectively. H2+ as in Fig. l.

duces adiabatic and nonadiabatic coupling terms on a
state-by-state basis. The quality of their results, in partic-
ular the unprecedented agreement with experiment of
their calculated rovibronic levels of Hz, is such that these
calculations form a benchmark against which any other
theoretical calculations must be compared. This we will
do in the following paper [25], where we calculate the
vibronic energies of 'Xg H2, and compare our results
with those of Wolniewicz and Dressier.

Our previous calculation accounted explicitly for the
strong electronic interaction between singly and doubly
excited channels [4]. It was based on a determination of
a partial quantum-defect matrix for 'X+ H2 using the ab
initio clamped-nuclei (i.e., Born-Oppenheimer) potential
curves of Ref. [5] as input data. The quantum-defect ma-
trix obtained there included terms describing the stronger
of the electronic channel interactions and correctly ac-
counted for the bulk of the molecular dynamics affecting
the vibronic-energy levels of the molecule. A special as-
pect of the approach we presented in Ref. [4] was that
molecular electronic channel interactions were included
in a nonperturbative fashion, whereas all previous
MQDT treatments (such as that presented in Ref. [3] for
DR) were based on a perturbation expansion. The non-
perturbative or "direct" feature of our treatment is cen-
tral to our project and its continuation.

The initial goal of the present work, and the object of
this paper, is the accurate representation of the improved
clamped-nuclei (i.e., Born-Oppenheimer) potential curves
[7) shown in Fig. 1 by a set of smooth quantum-defect
functions with a well-behaved energy dependence.
Jungen and Atabek [8] showed that in the absence of
electronic excitation of the core a set of R-dependent
quantum-defect functions contains all the information
necessary to describe the breakdown of the Born-
Oppenheimer approximation that occurs during the col-
lision of the Rydberg electron with the vibrating-rotating
H2+ ion core. In later papers in this series we shall show
that when electronic core excitation occurs it is the ma-
trix of quantum-defect functions that allows an essential-

ly complete description of the electron-ion collision, in-

cluding the coupling of nuclear and electronic motion.
The present paper is concerned with the determination
and evaluation of this matrix of quantum-defect func-
tions.
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is the angular-momentum quantum number of the Ryd-
berg electron and r is the distance from the center of the
H2 molecule to the Rydberg electron. In a one channel
problem the molecular QDT wave function for r & ro and
clamped nuclei involves a linear combination of f&(r) and
h&(r} and is written,

0= tan [~ri(R ) ]+ tan[n v(R ) ]
A( vR (4)

(1), then the asymptotic forms of the f~(r) and h&(r) func-

tions require [9]

0'(8,R, r) =f(8,R ) [f&(r)+ tan[a g(R ) ]h&(r) J . (1) where

e;(R)=E E,(R), — (2)

where i indexes the ion-core state. For negative e; the
"effective quantum number" v is given by

1
v;(R) =

2e, (R)

1/2

(3)

where v, like e, depends on the internuclear spacing R
and the state of the ion core.

If the bound-state boundary condition
%(8,R ~ ~ }=0,is imposed on the wave function of Eq.

Here, 8 represents all degrees of freedom of the molecule
other than the internuclear distance, R, and the radial
coordinate of the Rydberg electron, r. The quantum-
defect function ri(R}, is seen in Eq. (1) to represent the
linear combination of the f&(r) and h&(r) functions ap-
pearing in the wave function. If there are no electrons in
the ion core this function must be valid down to r=O
when R=O. Combined with the irregularity of h&(r) at
the origin this has the consequence that only the regular
function f&(r) can appear in the wave function. Thus, the
absence of core electrons forces g(R=0) to be zero. If
there are electrons in the ion core then the collision of the
Rydberg electron with them may result in some amount
of the irregular h&(r} functions appearing in the wave
function with the consequence that even at R=O the
quantum defect may be different from zero. The
quantum-defect function is thus seen to be a measure of
the interaction of the Rydberg electron with the core.
Because this interaction depends on the exact
configuration of the core, the quantum defect is a func-
tion of the internuclear distance, R.

A special feature of QDT is that the bound-state
boundary condition is not imposed on the radial function
of the Rydberg electron at the outset. Instead advantage
is taken of the fact that the Coulomb functions f&(r) and
h&(r) are defined at any energy, e, of the Rydberg elec-
tron. This naturally gives rise to the concept of a channel
wherein the discrete set of principal quantum numbers of
the diabatic series is replaced by the continuous variable
e. Thus, the three diabatic series of the current problem
are replaced by the three channels,

s: (los)@sos, d: (los)Edos, p: (lo„)vapo„.

Because the energy of the Rydberg electron is left
unspecified, each of these channels includes an entire dia-
batic Rydberg series along with the associated continuum
lying above. The relation between the total energy E of
the molecule, the energy E,+(R } of the ion core, and the
energy e; of the Rydberg electron in channel i is

1

A((v)= g 1—
j=0 v2

The kets in this expression represent all degrees of free-
dom of the molecule other than the radial motion of the
Rydberg electron. The E matrix,

K; (R)=tan[m. g; (R)],
is called the reaction matrix and it is this matrix that in-
troduces into MQDT the possibility of electronic interac-
tion between the various channels. The K xnatrix of
MQDT must be distinguished from the physical reaction
matrix K(E). The MQDT reaction matrix, K, may ex-'
plicitly include closed channels, whereas K(E) does not.
It is this that allows the MQDT K matrix to be a smooth
function of energy. The singularities that appear in K(E)
and also in the scattering matrix actually arise from the
elimination of the closed channels. In the energy range

A&(v) appears in Eq. (4) because of our use of the h&(r)
function and related g quantum defect, instead of the
more commonly used g&(r) Coulomb function and associ-
ated p quantum defect.

If the energy E;+(R) of the ion state and the quantum
defect ri(R ) are known for some value of R, then the total
energy E can be scanned to search for eigenvalues. This
is done by using Eqs. (3) and (5) to determine v and
A&(v}, respectively, and hence to evaluate the right-hand
side of Eq. (4}. Whenever the result is zero the trial total
energy E is indeed an eigenenergy of the molecule for R,
corresponding to a clamped-nuclei energy —in other
words a Born-Oppenheimer electronic energy for the in-
ternuclear spacing R. This procedure can be repeated on
a grid of R values and the resulting Born-Oppenheimer
potential-energy curves can then be pieced together. Be-
cause of the periodic nature of the tangent function there
is an infinite number of such curves. These curves are the
electronic energy curves of the Rydberg states of the sys-
tem under consideration.

As shown in Figs. 1 and 2, and as discussed above, the
'X+ system of H2 involves three channels closely coupled
by electronic interaction. It is, therefore, necessary to ap-
ply a multichannel QDT (MQDT) treatment. The gen-
eralization to a multichannel theory is done by starting
with a basis set [4, ] that, for each channel i, explicitly
allows for the admixture of h functions due to the in-
teraction with the ion core. This includes the admixture
of h functions from the other channels,

'I; =f;(r) ~i )+ g [tan[mqj(R)]]hj(r) ~j )
1

=f;(r)~i)+ QKJ(R)hj(r)~j) .
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that we consider in the present paper all of the channels
that we include are closed.

The total wave function for the molecule is expressed
as a linear combination of the 4; basis functions of Eq.
(6),

The asymptotic forms of the f and h functions imply that
the bound-state boundary condition 4(r~ 00 ) =0 is only
satisfied if the following well-known determinantal equa-
tion is satisfied [9],

&+ tan(nv)
A (v) (9)

where E is given by Eq. (7) and tannv and A (v) are the
diagonal matrices

[tan(n v) ], =5;,tan(n v), ,

[A (v)];~ =5J AI (v;) .
(10)

III. DKTKRMINATIQN
OF THE QUANTUM-DEFECT MATRIX

The relevant high quality ab initio data available for
the determination of the elements of the quantum-defect
matrix only includes the three states: 2, 3, and 4'X+
[5,7]. The problem at each R value is, therefore, under-
determined at the outset since we have six quantum de-
fects to determine from only three items of data. Ab ini-
tio calculations for higher states would therefore be very
useful for the determination of the quantum-defect curves
and their energy dependence. Our approach has been to

Thus, the multichannel equation, Eq. (9), is identical in
form to that of the single channel given in Eq. (4).

If the quantum-defect matrix rl; (R) is known then the
Born-Oppenheimer potential-energy curves can be ob-
tained by the same procedure as was outlined above for
the single-channel case.

In this work we proceed in the opposite direction,
determining the quantum defects for 'X~ H2 from the
high quality H2 ab initio Born-Oppenheimer potential
curves of Wolniewicz and Dressier [5,7], combined with
those of I cr and Icr „H2+ from the work of Wind [12] and

Bates, Ledsham, and Stewart [13] respectively. Because
there are three channels involved in this system the sym-
metric I( and q matrices involve six independent ele-
ments.

One final point that should be mentioned is the reason
for the choice of the Coulomb basis pair f and h, rather
than the more common pair f and g. Seaton [9] devised
the h function so as to avoid the appearance of nonphysi-
cal states with n &I+1, such as 1p, 1d, 2d, etc. , that
show up when the f and g pair is used. This is particular-
ly important in the 'X~+ system of H2 because the non-

physical 2d state would cross through the region of the
double minimum of the EF state and hence would in-
teract with the physical states lying in its path, thus
rendering impossible the MQDT approach.

use the data that are available to determine the
quantum-defect matrix for al/ R values simu1taneously in
a least-squares fitting procedure. We are able to do this
because we impose the constraint that each element must
be a smooth function of the molecular bond length R.
Additional constraints were imposed on the individual
quantum-defect functions for the limits R ~0 and
R ~ oc. We now discuss in turn the diagonal elements
i);;(R), the off-diagonal elements i); (R), and the energy
dependence of these elements.

A. g;;(R )—diagonal quantum defects

Each diabatic Rydberg series i is described by the cor-
responding diagonal element of the quantum-defect ma-
trix, i);;(R). We force the g,;(R) to be smooth functions
by using their values at several widely spaced R values as
the parameters defining the function. Cubic spline inter-
polation is then used to determine the g;;(R ) between the
fitted points. In this way we represent the continuous
curve by a small number of parameters suitable for
fitting, at the same time ensuring a reasonable degree of
smoothness in the resulting quantum defects.

The following constraints were imposed on the i);;(R).
First, one of the parameters for each diagonal defect was
its value at R = ~, corresponding to the physical limit of
two separated hydrogen atoms. For the purpose of spline
interpolation the value of g;; at R =15 a.u. was set to this
known value and was not adjusted during the least-
squares fitting. Second, since R ~0 corresponds to the
physical limit of a helium atom, the parameters rl„(R =0)
and rldd(R=O) were set to values determined from a
QDT fitting to the observed s and d channel energies of
the helium atom. In helium, it is the state (2p) that cor-
responds to the (Icr „)(aper „)channel. This state, howev-

er, is embedded in the continuum of the s and d channels
and lies so high in energy that it is not relevant to the en-

ergy range being considered here. Because of this
(R =0) was not used as a parameter.

B. g;~, (R )—o8'-diagonal quantum defects

The off-diagonal elements of the g matrix describe the
interchannel coupling and are related to the avoided
crossings of Fig. l. In our previous work [4], we only
determined the two strongest coupling elements, g, and

In that work, these elements were forced to zero
outside the region of the avoided crossings of Fig. 1, and
we determined their values at many points from R=2.5

to 3.5 a.u. In the current work, initial fittings of q, and

Qdp in the interaction region showed these functions to be
almost constant. We have taken advantage of this by
modeling these coupling elements as exactly constant
over this interval. Since neither the Born-Oppenheimer
potential-energy curves nor any experimental data yet
available supply information about the values of these in-
teractions for values of R ~ 2 a.u. , we have simply extend-
ed the constant values of g, and gd down to R =0. This
may have some consequences for the use of the fitted
quantum defects to predict higher states. This
simplification of the modeling of q, and qd has allowed
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us to include the weaker g,& mixing element in the least-
squares fitting as well.

It is known (see Mulliken [14]) that for large R values
further complications arise in that avoided crossings ad-
ditional to those shown in Figs. 1 and 2 occur on the way
to dissociation. One of these is considered in the Discus-
sion. For our current purposes, however, we have re-
stricted our treatment to the region of strong interactions
near R, and have, therefore, not maintained the channel
interactions out to R —+00. Instead we assume that for
R ~ 7 a.u. the molecule moves adiabatically, with no elec-
tronic mixing between the channels. We arbitrarily chose
to turn off the constant g, and g& interactions beyond
this distance by smoothly matching them to zero between
R=5 and 7 a.u. , and by then continuing them as zero
from R =7 to 00 a.u. This was done by using a cubic in-
terpolation between their fitted constant nonzero values
for R 5 a.u. and the constant value of zero for R ~7
a.u. Because of this simple modeling g, and g&~ were,
therefore, each described by a single parameter, their
constant values in the region R =0—5 a.u. , which were
determined in the simultaneous least-squares fitting.

With these constraints on g,~ and g& it was then pos-
sible to fit the smaller sd mixing term ri,z. Again there is
a physical constraint to be imposed. In the limit R —+0,
the system becomes that of the spherically symmetric
helium atom. Because spherical symmetry is not
preserved in a one electron interaction, the fact that the s
and d channels are built on the same core means that we
must set ri,&(R=0)=0. The p channel, however, is built
on a different core, so that the interactions between it and
the s and d channels are two electron interactions, which
can preserve spherical symmetry. Thus, neither g, nor

g&~ were forced to zero for R =0. Additionally, we force
g,& to zero for R & 6, almost the same arbitrary region as
we used for g,~ and g&~. For R & 6 a.u. , g,& was modeled
by a cubic spline function in the same way as were the di-
agonal quantum defects. We chose four points in the in-
terval r =1.4-4.0 a.u. for which g,& was determined in
the least-squares-fitting procedure.

It must be stressed that forcing the off-diagonal quan-
tum defects to zero at large R has consequences for the
physical meaning of the fitted quantum-defect matrix. In
particular, it must be remembered that a partial wave ex-
pansion based on the quantum defects determined here
would not be physical for R greater than about 5 a.u.

C. Energy dependence
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where this energy dependence and; thus, the two
coefficients of Eq. (11), ri,', ' and. rt,',", are, in principle,
functions of the internuclear distance, R.

During the preparation of this manuscript new ab ini-
tio data [15], including yet higher 'X+ states, were com-
municated to us. The earlier ab initio potential-energy
curves [5,7] corresponding to the 2s and 3s diabatic states
had already indicated clearly that the energy dependence
of g„ is strikingly R independent for small values of R.
With the curves of Ref. 15, which were not available at
the time this work was performed, this constant energy
dependence of g„ is now seen to extend over the region
R =1.1-2.4 a.u. , and to extend to higher energy to in-
clude the 4s state. This is most clearly illustrated by cal-
culating rt„(R = 1.1 —2.4 a.u. ) from the E ( =2s) ab initio
data, and then using this quantum defect to predict the
higher s potentials, setting all interactions to zero in both
steps. Over this range, the resulting predictions for the H
( =3s) potential-energy curve lie in the narrow window of
54.2-58.4 cm ' below the actual potential-energy curve
of the H state. This occurs despite the fact that the po-
tential of the H state varies by more than 20000 cm

The ab initio data available only supported the deter-
mination of the energy dependence of the g„element of
the g matrix. This determination was possible because ab
initio Born-Oppenheimer curves were available for both
the E and H states which, for values of R smaller than
those in the region of the avoided crossings, may be ap-
proximately identified as the 2s and 3s states, respective-
ly. With only two states available the obvious choice was
to model the energy dependence by choosing the g„de-
fect to be a linear function of the energy e of the Rydberg
electron,

-0.6

-0.8
0 1 2 3 4 5 6 7 8

R (a.u.)

FIG. 3. The elements of the quantum-defect matrix as func-
tions of R (diagonal elements: solid lines, off-diagonal elements:
dashed lines). g„ is shown for a=0. (a) 'Xg defects. Note that
g,q(R =0)=0. g» defects are shown shifted down by 1 to avoid
congestion. Values derived from Guberman's [22] calculations
of the 2p and 3p states are shown by triangles and boxes, respec-
tively. (b) X+ defects.
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over this range. The same procedure applied to the heli-
um atom results in a prediction for the 3s state that is
56.0 cm ' below the experimental value, consistent with
the value in the H2 molecule. The E ( =2s) based predic-
tion for the 0 ( =4s) state lies below the ab initio curve in
the narrow window of 29.5—34.1 cm ', and in the helium
atom the 2s prediction of 4s is too low by 29.5 cm
Thus, the R independence of the energy dependence of
g„extends to higher energy. In Sec. IV we shall see that
the linear energy dependence is sufBcient to describe g„
from 2s to 4s, an energy range of more than 18000 cm
In addition to providing evidence of the convergence of
the new ab initio results for the 0 state, the uniform ener-

gy dependence indicates that for small R values it is
reasonable to choose the energy-dependence parameter

g,'," as independent of R. We do this over the range
R =0-2 a.u.

Beyond this distance the 2s diabatic curve enters the
region of strong configuration interaction. At values of R
beyond the region of the strong avoided crossings the
only high-quality ab initio potential-energy curve avail-
able involving the s diabatic series was that of the K state,
which we may identify for our purposes as the 2s state.
This lack of information means that it was not possible to
determine the long-range form of g„energy dependence
with the available ab initio results. However, in the limit
of very large R the system resolves into two hydrogen
atoms, in which case the quantum defect does not depend
on energy. We therefore forced the linear coeScient of
the energy dependence g,',"to zero for large R by smooth-

ly matching the constant value of g,'," in the region
R =0-2 a.u. , to the zero value for the region R =3—ac

a.u. This was done using a cubic function in the interval
R =2—3 a.u. in the same way that g,~ and g&~ were
turned off at large R. This "turning-off" zone of the ener-

gy dependence was chosen more or less arbitrarily. In
Sec. IV, however, we shall show that the newly available
ab initio results [15] indicate that this procedure was, in

fact, appropriate.
The energy dependence of all the other quantum-defect

functions was not determinable with the ab initio data
available at the time we performed this work. Because of
this they were all taken as independent of energy.

D. Least-squares fitting

In our "proof-of-principle" calculation the fitting was
neither complete (g,d was fixed to zero) nor simultaneous

(a sequence of partial fittings of various subsets of the pa-
rameters was performed [4]). In the present work, we

performed a simultaneous least-squares fitting of the pa-
rameters defining the quantum-defect matrix and its ener-

gy dependence. These parameters were fit to improved
versions [7] of the ab initio potential-energy curves of
Wolniewicz and Dressier [5] for the EF, GE, and HH
states for R ~ 1.4 a.u. Figure 3(a) shows the elements of
the resulting quantum-defect matrix, with g„shown for
a=0 and g shifted down by 1 to avoid congestion. Be-
cause we neglect the energy dependence of the other de-

fects the curves shown for them in Fig. 3(a} correspond
to their values at electron energies corresponding to the

EF, GK, and HH states. The quantum-defect matrix will

be considered in more detail in the Discussion below.
The quality of the fitting is shown by a comparison of

the input ab initio and the calculated MQDT energies for
R from 1.4 to 7.0 a.u. In this region, the rms error over
all three potential curves is 1.7 cm, with no point
worse than 8.0 cm '. This represents a significant im-
provement over our previous work wherein the rms error
was 4.8 cm ', and the worst points were as far as 20.7
cm ' from the ab initio. For each state the largest
discrepancies (in cm ') in the present work and in our
previous work are, respectively, EI' (8.0, 20.7}, GE (3.4,
15.7), and HH (4.4, 18.6).

Hazi, Derkits, and Bardsley [16] have also performed a
quantum-defect parametrization of ttvo of these same
potential-energy curves (EF and GE) in the narrow re-
gion R =2.5-3.5 a.u. Our present result, involving the
simultaneous fitting of three of these curves to better than
8.0 cm ', compares very favorably with their largest
discrepancy of approximately 120 cm

IV. DISCUSSION

The quantum-defect matrix shown in Fig. 3(a) repro-
duces the ab initio Born-Oppenheimer potential curves
for the EF, GK, and HH states to within 8.0 cm '. On
the scale of the energies involved in these states this
agreement represents an extremely good fitting. It must,
however, be remembered that parameter values deter-
minined in a fitting process are, at least to some extent,
"effective" values. In other words the fitted values for
the parameters may be different from the "true" physical
ones, due to the fact that the fitted parameters must ac-
count for any effects or terms neglected in the model.
Thus the fact that the ri matrix of Fig. 3(a) reproduces
the Born-Oppenheimer potential curves so well does not,
in itself, indicate that this matrix has the physical
significance implied by its appearance in the
configuration mixed basis functions of Eq. (6). With no
further evidence our g matrix serves merely as a parame-
trization, albeit extremely concise and precise, of the ab
initio Born-Oppenheimer potential-energy curves.

One important point, however, concerns the ambiguity
of the signs of the off-diagonal elements of the K matrix.
Because of the nature of the determinant function, Eq. (9)
is insensitive to certain changes of sign of the off-diagonal
elements of the K matrix. As a consequence the sign of
the single off-diagonal element of the 2X2 K matrix
determined below for the triplet state [Fig. 3(b)] is in-

determinate, while the signs of any pairs of off-diagonal
elements of the 3 X 3 K matrix used for the singlet state
[Fig. 3(a)] can be negated without changing the results.
This has no consequence vis a vis the calculation of vib-

ronic and rovibronic energies, but will play a role in any
calculation of intensities.

In the following paper, we present results of calcula-
tions of the vibronic levels of the 'X~ states of Hz using
the g matrix determined here. These calculations involve
the complicated dynamics of non-Born-Oppenheimer in-
teractions and rely on the representation of the electronic
wave functions in terms of the R-dependent g matrix as
given in Eqs. (6) and (8). The results we obtain there are
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in excellent agreement with experiment, approaching the
quality of the best direct state-by-state calculations per-
formed by Dressier and co-workers [6,17]. This is power-
ful evidence for the physical content of our quantum-
defect matrix.

In the remainder of this section we present arguments
demonstrating the physicality of our quantum-defect rna-

trix.

A. Triplet Xg states

We expect the "true" quantum defects of the triplet
Xg system of H2 to be similar to those of the singlet 'Xg

system. To investigate whether our fitted defects satisfy
this we determined the q matrix for the triplet X+ sys-
tem using the same procedure as described above for the
singlet 'X+ system. The only major difference anticipat-
ed between the two systems is due to the fact that the
Pauli principle forbids the (lo „)(2pa „)=(lo„) state in
the triplet system. Thus, the lowest 2p triplet state is

(lo„)3po„, which lies well above the energy range we
consider in the current work, that of the EF, GK, and
HH singlet states. Therefore, in this energy range the
strong electronic interactions with the (lo „)(2ptr „)state
do not play a role in the triplet system and as a conse-
quence the strong avoided crossings and double minima
due to sp and dp mixing do not occur here. This permits
us to neglect the p channel in the triplet system which in
turn allows us to clearly determine the relatively small

q,d(R} defect. The smallness of the sd interaction in the
triplet system meant that it was only possible to deter-
mine one parameter for this quantity. Because g,d must
be zero at R =0, we have modeled it as a rising quadratic
function for R =0—4 a.u. (chosen arbitrarily}, smoothly
matched by a cubic function to zero for R ~ 6 a.u. (also
chosen arbitrarily}. Figure 3(b) shows the elements of the
resulting two-by-two quantum-defect matrix determined
by fitting to the ab initio Born-Oppenheimer potential
curves of Refs. [18]and [19] for the triplet system. Com-
parison of Figs. 3(a) and 3(b) shows that those defects
shared by both the singlet and triplet systems have quite
similar forms, indicating that it is not unreasonable to as-
sume that they may indeed have physical content.

[Note that the agreement in form of the singlet and
triplet ri,d(R) functions for R&2 a.u. is fortuitous. It
was possible to obtain an equally good fitting for the trip-
let state in which g,d was allowed to rise quadratically to
R=2 a.u. , instead of R=4 a.u. , and then forced to de-
crease to zero for R &4 a.u. , instead of for R ~6 a.u.
This results in a triplet q,d(R) quantum-defect function
that for values of R greater than 2 a.u. is different in form
from that shown in Fig. 3(b). The single parameter used
to define rt,d, g,d(R=2 a.u.), however, had identical
values in both fittings. ]

B. Higher Born-Oppenheimer states

The quantum-defect matrix we have determined allows
the prediction of both diabatic (crossing) and Born-
Oppenheimer (noncrossing) potential-energy curves for
higher states. The diabatic curves of Fig. 2 were obtained

following the same procedure as used for obtaining the
Born-Oppenheimer curves, but with the off-diagonal
quantum defects set to zero. Two facts, however, should
be remembered. First, the available ab initio data only al-
lowed us to determine the energy dependence of the g„
function. A11 of the other quantum-defect functions were
assumed to be independent of energy. Second, we used
simple forms for the g, and gd off-diagonal quantum-
defect functions, forcing them to be constant from R=0
to 5 a.u. , and then to drop smoothly to zero for R ~ 7 a.u.
These two constraints must clearly have consequences on
the fitted values of the quantum-defect functions, as any
resulting error must be subsumed by alterations in the
fitted values of the other defects. Despite this it is still
possible to make useful predictions of higher states and of
the diabatic states, particularly since the consequence in
terms of energy of any error in the quantum defects
should become progressively smaller with increasing
principal quantum number.

Our fitted quantum-defect functions are based on ab in-
itio potential-energy curves for the EF, GE, HH (2, 3, and
4'Xg ) states calculated by Wolniewicz and Dressier
[5,7]. Their calculations also included preliminary ab ini
tio Born-Oppenheimer potential-energy curves for the P
and 0 (5 and 6 'Xg+ } states. For certain values of the in-

ternuclear spacing these preliminary P and 0 state ab ini-
tio potentials lay to significantly higher energies than pre-
dicted by our quantum-defect matrix which was deter-
mined from the lower states. It was in part our MQDT
predictions that indicated that the ab initio calculations
for the P and 0 states had not yet converged, and lead to
improved ab initio calculations. In the course of the
preparation of this manuscript Wolniewicz and Dressier
communicated to us the results of their new ab initio cal-
culations for the P and 0 states [15]. These potentials,
which we have already mentioned in Sec. III C, are be-
lieved to be well converged. In the future, they may serve
as extremely useful input for further improvement of our
electronic K matrix. In particular, we anticipate that
their clamped-nuclei curves may allow the determination
of the energy dependence of the qdd defect. Here we re-
strict ourselves to comparing the preliminary and the
new ab initio results with our MQDT predictions.

For the P state the preliminary ab initio potential-
energy curve [7] was up to 350 cm ' above the
quantum-defect prediction in the region R=1.4 to 3.0
a.u. , but in almost exact agreement with the MQDT pre-
diction for R =3.5 to 5.0 a.u. (within 6 cm ' over most of
this region, and only 12 cm ' o6' at R=3.5 a.u.). The
new ab initio potential-energy curve [15] for the P state is
as much as 200 cm ' below the preliminary results, but
despite this significant change never lies more than 2
cm ' below the MQDT prediction and also maintains
the agreement with the MQDT prediction in the higher
R region. In fact this agreement has improved, with the
calculated ab initio and the predicted MQDT potentials
agreeing to within 2 cm ' over most of the region
R =3.5—5.0 a.u. , and still only 12 cm ' off at R =3.5 a.u.
For these R values the P state can be identified as the 3s
state, and it is also in this region that we have modeled
the g„defect as energy independent. The fact that
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the quantum-defect prediction for the P state for
R =3.5—5.0 a.u. , is in such excellent agreement with ab
initio indicates that our modeling the q„quantum-defect
function as energy independent for R ~ 3 a.u. is not un-
reasonable.

For the 0 state the situation is similar, although the re-
gions are reversed. The preliminary ab initio results [7]
agreed with the MQDT predictions to within 14 cm ' in
the region R = 1.4—2.3 a.u. , while lying above the
MQDT results by up to 750 cm ' in the region
R =2.8-5.0 a.u. The potential-energy curve lowered by
as much as 500 cm ' in the new ab initio calculations
[15],but despite this change never lies below the MQDT
prediction, and in the region R =1.4—2.3 a.u. the agree-
ment has actually improved, with the calculated ab initio
and the predicted MQDT curves agreeing to within 2
cm '. The 0 state in the region R =1.4—2.3 a.u. may be
identified as 4s. The excellent agreement between the
MQDT prediction and the ab initio calculation for the 0
state potential-energy curve in this region thus indicates
that the simple linear energy dependence determined for
the g„quantum-defect function from the lower states
continues unchanged to higher energy. Combined with
the equally good agreement for the large R part of the P
state we see that the MQDT prediction for the newly
available parts of the 3s and 4s states is extremely good.
This agreement indicates that our modeling of the g„de-
fect and its energy dependence must be close to the physi-
cal values.

In the regions for which the agreement between the
MQDT prediction and the ab initio calculation for the P
and 0 states is much less satisfactory these states corre-
spond to the extremities of the 4d state on either side of
the avoided crossings. As described above, the lack of ab
initio data at the time we performed our fitting meant
that it was not possible to determine the energy depen-
dence of the gdd defect. Despite the significance decrease
in the ab initio calculated energies in these regions the po-
tentials still lie as much as 220 cm ' above the MQDT
curves for R = 1 4-23 au. , and 370 cm ' for
R =3.5—5.0 a.u. If the ab initio P and 0 state potential-
energy curves are indeed converged for all values of R,
then the energy dependence of gdd is not negligible and
must be accounted for in the future. The difference is not
necessarily due solely to an energy dependence of the gdd
defect, but may also involve the R dependence of the gdp
defect. The evidence for the convergence of the ab initio
calculation involves experimental results for the v=0 lev-
el which only samples R values for R=1.7 to 2.5 a.u.
Over this region the MQDT potential-energy function
lies from 50—150 cm below the ab initio potential. Yu
and Dressier have used our potential curves in their cal-
culations and Dressier has indicated to us [20] that it
seems likely that our MQDT predictions for the P state
curve may be about 75 cm ' too low. This roughly cor-
responds to an average of the difference over the region
sampled by v =0, and in fact corresponds to the
difference between the two potentials at the equilibrium
value of R.

Particularly significant is the fact that over large re-
gions of R the new ab initio results are in closer agree-

ment with the MQDT predictions than they are with the
preliminary ab initio calculations. This, combined with
the quality of the MQDT prediction for the 3s and 4s
states, indicates the predictive power of MQDT. This is
particularly shown by the fact that although the new ab
initio results are significantly improved (and therefore
changed) compared to the preliminary ones, they never-
theless remained in agreement with the MQDT in those
regions where there was already agreement.

C. Diabatic and resonant states

Of particular interest in the 'X+ state is the
(lo„)(2po„)=(lcr„) doubly excited diabatic state. At
lower energies it is the interaction of this state with the
singly excited states that leads to the complex series of
double minima and "shouldered" potentials shown in
Fig. 1. At higher energies the coupling of this doubly ex-
cited state to the singly excited (lo )(escr ) and
(los)(@do ) channels retains its importance, since it is re-
sponsible for electronic preionization and dissociative
recombination. These continuum processes depend criti-
cally on the position of the crossing of the (lo „)(2po „)
diabatic potential-energy curve with the 1so ~ state of the
ion, relative to the ionic vibrational levels. Because of
this, many theoretical calculations of the (lo „)(npo „)di-
abatic states have been performed (see Ref. [21] and cita-
tions therein). In Fig. 2, the (1cr „)(2po „) diabatic
potential-energy curve we obtained from the MQDT
analysis of the 'Xg+ bound states is compared with the ab
initio curve of Guberman [22] (triangles connected by
dashed line). The same comparison is also made for
the (1cr„)(3pcr„) state. In addition, we show the
(lo „)(2pcr„) potential function obtained by Hazi, Derk-
its, and Bardsley [16] which represents a combination of
ob initio calculation in the continuum and an MQDT pa-
rametrization of the EF and GK states. To illustrate the
(lo„)(2po„) potential obtained by Hazi, Derkits, and
Bardsley, we have used their ab initio values for energies
above the ionization limit (third data row of Table I of
Ref. [16])and their MQDT parametrized values for ener-
gies below the ionization limit [Eq. (11) of Ref. [16]]
Guberman's results and those of Hazi, Derkits, and
Bardsley are seen to be in good agreement near the criti-
cal ionic crossing point. Other workers have obtained
similar results [21]. Although they lie somewhat below
these other determinations, the present MQDT results,
derived from bound states lying well below the crossing,
are in reasonably good agreement with them. This means
that it has been possible to obtain a realistic potential-
energy curve for the diabatic (lcr„)(2pcr„) state near the
ionization threshold by studying bound states lying
significantly below.

The (lcr„)(3po.„)diabatic state is shown in Figs. 2 and
4. Both the present MQDT results and the ab initio re-
sults of Guberman [22] (triangles connect by a curve) are
shown. The 3p curves predicted by these two techniques
are very similar in shape, despite the fact that the 2p
curves differ significantly for larger R values. The simi-
larity is striking when it is remembered that our 3p curve
is essentially an extrapolation from a fitting of the F state
which lies about 30000 cm ' below. Furthermore, this
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extrapolation had to be done without allowing for energy
dependence of the g quantum-defect function, since the
lack of appropriate a~b initio data forced us to neglect this
energy dependence in the least-squares fitting. Indeed,
because the 2p state is the first member of the p series we
expect a significant energy dependence at this energy.

Another way to compare this same information is to
determine

happ
defects using Guberman's 2p and 3p re-

sults. These are shown by the triangles and boxes, re-
spectively, in Fig. 3(a). Comparison of the 2p and 3p ver-
sions of Guberman's ri shown in Fig. 3(a) shows that
these curves are quite parallel. This implies that the en-

ergy dependence of
happ

is a smooth function of R, as was
the case for g„. (Note that the first point of Guberman's

ri~~ quantum-defect curve for the 3p state is out of line
with his other values. } For R ~ 4 a.u. the 2p forms of i)
obtained from our MQDT analysis and from Guberman's
results are gratifyingly similar. The point at R =6 a.u. re-
quires some explanation. In this R region our

happ
curve

is based on the F state. However, for large R values the F
state can no longer be identified as the 2p state but in-
stead corresponds to the H++H ionic state. Thus, at
large R neither our g curve nor our 2p diabatic curve,
which are both based on the F state, correspond exactly
to the diabatic p structure of Guberman's calculations.
This may explain the significant difference seen at R=6
a.u. between the 2p diabatic curve determined in our
MQDT calculation and that determined by Guberman
(Fig. 2), and between the MQDT and Guberman versions
of g~ [Fig. 3(a)].

The 3p state will play role in avoided crossings at
larger R and at higher energy than considered in this
work. Figure 4 highlights the region in which these
crossings should occur. The solid curves in Fig. 4 show
the new ab initio Born-Oppenheimer potential-energy

FIG. 4. Detail of the region involving the 3p diabatic state.
Ab initio Born-Oppenheimer energies of the 0 and P states [15]
(solid curves) are compared with the MQDT diabatic curves

(dashed curves), and with the 3p diabatic curves of Guberman

[22] [triangles (=data points) on faint dashed curve] and

Shimamura, Noble, and Burke [21] (faint dashed curve). (Note
that the 3s state is hidden behind the P state, and the 4d diabatic
state is partially hidden behind the 0 state. ) H2+ ion as in Fig.
1.

functions of Wolniewicz and Dressier [15] for the 0 and
P states, while dashed curves show some of our diabatic
curves for this same region. Because our neglect of
configuration mixing starts for R&5 a.u. , these curves
only maintain their meaning out to R =5 a.u. , and are,
therefore, only shown to this distance. The light dashed
lines show the 3p state as calculated by Guberman
(triangles=calculated points) and by Shimamura, Noble,
and Burke [21]. According to Dressier [20], the dip in
the HH state for R &6 a.u. corresponds to the 3p state.
Our prediction for the 3p state extrapolates nicely to the
required position to account for this dip. The 3p curves
of Guberman and of Shimamura do not seem to extrapo-
late quite so nicely, lying somewhat too high in energy.

In sweeping down to become part of the H state, the 3p
state crosses the higher members of the s and d series.
Depending on the strengths of the sp and dp interactions
in this region these crossings may result in a complicated
pattern of avoided crossings around R =5 a.u. , analogous
to the avoided crossing of Fig. 1 that were the object of
the present work. However, this is not clearly evident in
the current ab initio potential-energy curves for the P and
0 states. In the future, the detailed examination of this
region may provide useful information about the ofF-

diagonal quantum defects at larger R and to higher ener-

gy than was obtainable in the present work, along with
information about the energy dependence of the g
quantum defect.

More recently, Shimamura, Noble, and Burke [21]
have calculated the series of superexcited (lo „)(npo „)
states for n =2-10. Revising their Fig. 2 to plot their
quantum defects as functions of e for various values of R,
instead of as functions of n, results in smooth curves for
)M(e) for each value of R. In addition, these curves are re-
markably parallel for different values of R. This further
strengthens our conclusion, based on Guberman's results,
that the quantum defect corresponding for the p channel
has a very smooth energy dependence which is addition-
ally uniform with R.

This energy dependence may have some effect on our
prediction of the location of the crossing of the
(ltT„)(2ptr„} doubly excited state and the ltTs ground
state of H2+. Future inclusion in a least-squares fitting of
the new ab initio data for the 0 and P states [15] may al-
low us to approach the ionic crossing even more closely,
from below. Indeed inclusion of the new ab initio data of
Guberman [22], Shimamura, Noble, and Burke, [21], and
other workers may well be possible and could form an
important avenue for further refinement of our
quantum-defect matrix.

D. Resonance widths

Shimamura, Noble, and Burke [21],as well as other au-
thors cited there, have also used their ab initio wave func-
tions for the superexcited (for R ~ 2.6 a.u. ) doubly excited
state (Icr„)(2ptr„) to evaluate the electronic preionization
width I,(R ) corresponding to the decay into the
(los)(esos) and (Icrg)(Edcrg) continua. We use our
fitted quantum-defect matrix for the same purpose. To
this end the appropriate open-channel boundary condi-
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tions must be applied to the s and d channels, i.e., for
these channels the effective principal quantum number v,-

in Eqs. (9) and (10) must be replaced by the continuum
eigenphase r~ and the quantity A is set to unity (see Refs.
[8] and [9] for details of this procedure). Two eigen-
phases, m~, p = 1, and 2, are thus obtained for each given
energy above the 1o threshold, and for each R ~ 2.6 a.u.
Near the position of the (10„)(2pcr„) resonance the
eigenphase sum m~=m~&+mvz rises by m. The position of
the resonance is given by the point of steepest slope of the
eigenphase sum, while the half width corresponds to the
range over which a phase change of ir/4 occurs.

We have performed this calculation at R =2.0 a.u. and
at R=2.5 a.u. and our results may be compared with
those of Shimamura, Noble, and Burke [21] for these two
points as follows.

Present results:

I (R =2. 5 a. u. ) =0.060 a. u.

I,(R =2.0 a. u. ) =0.024 a. u. ;

ab initio [21]

I (R =2.5 a. u. )=0.0676 a. u. ,

I (R =2.0 a. u. ) =0.0509 a.u.

with other ab initio results in substantial agreement with
Shimamura, Noble, and Burke. From Fig. 2 it can be
seen that the (10„)(2po„) state crosses the 10 Hz+
potential-energy curve near R=2.6 a.u. The excellent
agreement between our width and the corresponding ab
initio value at R =2.5 a.u. is gratifying since it shows once
again that the present quantum-defects matrix can be
realistically extrapolated to the energy range near thresh-
old. On the other hand our prediction for the width at
R=2.0 a.u. amounts to only half the ab initio value.
However, at R=2.0 a.u. the lowest doubly excited state
has risen to about 0.3 a.u. above threshold and it is not so
surprising that the extrapolation from the bound-state
levels used to determine the quantum-defect matrix yields
less satisfactory results.

V. CONCLUSION

In this work, we have used the best quantum chemical
potential-energy curves available for 'Xg Hz to extract a
3X3 quantum-defect matrix i);~(R) describing the e
Hz+ interaction including the lo. and 1o.„ target states
of Hz+. We have presented arguments indicating that
this matrix, beyond being a mere quantum-defect param-
etrization of the potential-energy curves, has enough
physical content to make it useful in a wider context than
that within which it was derived. Indeed, in the follow-
ing paper, we shall use the g matrix determined here to
calculate vibronic energies of the 'Xg+ system of Hz. The
results we obtain there will be within several wave-
number units of experiment, despite the fact that for
these levels the adiabatic and nonadiabatic non-Born-
Oppenheimer effects are of the order of hundreds of
wave-number units. This wi11 be additional and strong
evidence for the physicality of the q matrix.

Our approach may nevertheless appear as an unneces-
sary detour since it would clearly be more desirable to
calculate the quantum-defect matrix ab initio, thus elim-
inating our somewhat laborious and certainly indirect
fitting procedure. Yoo and Greene [23,24] have recently
pursued an alternative option, evaluating the 'X+ and
X+ quantum defects of Hz in an eigenchannel R-matrix

calculation formulated in prolate spherical electron coor-
dinates. Their quantum-defect matrices reproduce the
excited 'X+ potential curves reasonably, with the inner
minimum of the EF state about 100 cm ' higher than in
the ab initio calculation of Ref. [5], and the outer about
500 cm ' higher. Thus, while their results cannot com-
pete in accuracy with those of Ref. [5], they are at the
very least qualitatively correct. A disturbing result of
their calculations, however, is the strong and seemingly
erratic energy and R dependence of the quantum defects.
Indeed the energy dependence they observe is so strong
as to render impossible any detailed comparison with our
results. In fact it is not clear how their calculated quan-
tum defects could be used in an MQDT calculation of
vibronic energy levels, since a prerequisite for such a
treatment is a smooth behavior of the quantum defects
with respect to both e and R. A11 of this is puzzling given
the extreme smoothness with R of the energy dependence
of the g„defect, discussed above in Sec. III C. Not only
was the energy dependence of g„a smooth function of R
but it also appeared to be a simple linear function of e
over a wide range of energy, including the 2s, 3s, and
seemingly also the 4s diabatic curves, a range of about
18000 cm . Preliminary examination of the g defect
seems to indicate a similar smoothness with R of a simple
energy dependence. It is difKicult to reconcile these obser-
vations with Yoo and Greene's results. Thus, the exact
relationship between their results and ours remains to be
elucidated.

One important advantage of our indirect determination
of the quantum-defect matrix is that from the outset we
have a representation of the electronic wave function that
reproduces the Born-Oppenheimer curves with a pre-
cision of a few wave-number units. It would be very
difficult to obtain ab initio quantum-defect functions pre-
cise enough to do this, except for very highly excited
states.

From this point our work will progress in several direc-
tions. First, in the following paper, we present the results
of an MQDT calculation of the vibronic energies of Hi,
based on the quantum-defect function determined here.
Calculations of states also involving rotational excitation,
and, thus, the consideration of the 3d complex, are al-

ready well underway, and will be presented in the third
paper in this series. Finally, we plan to extend our calcu-
lations to higher energy where an increasing amount of
experimental data exists on highly excited states of Hz
and on the various continuum processes involving the
(lo „)(2po „)doubly excited state.
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