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Effective Hamiltonian for the radiation in a cavity with a moving mirror
and a time-varying dielectric medium
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We study the quantized field in a one-dimensional electromagnetic resonant cavity. The cavity con-
tains a linear and lossless dielectric medium with frequency-independent polarizabihty. The dielectric
permittivity is an externally prescribed function of both the space and the time. We also allow one of the
cavity s mirrors to move in a given trajectory. Unlike other previous studies on the same system, we for-
mulate an effective Hamiltonian so that the dynamics of the cavity field can be described in the

Schrodinger picture. The effective Hamiltonian is quadratic in structure, therefore two-photon genera-

tion from the vacuum state can occur. We also discuss the case of resonant behavior of the system.

PACS number(s): 42.50.0v

I. INTRODUCTION

In this paper, we study the quantized Geld in a quite
general time-dependent cavity system. Both the refrac-
tive index of the medium and the cavity size are external
time-varying parameters. The quantization of the elec-
tromagnetic Geld in a cavity with movable perfectly
rejecting boundaries was first discussed by Moore [1] two
decades ago. Within the framework of Moore's ap-
proach, Dodonov and co-workers [2] recently have gen-
eralized the theory so that the effects of a time-varying
refractive index of the medium inside the cavity are also
included. The major interest in this kind of system is the
possibility of the creation of photons [3],which can be in-
terpreted as a nonadiabatic distortion of the electromag-
netic vacuum state. It has been predicted that a moving
mirror with nonuniform motion [4,5] or a sudden change
of the refractive index of the medium [6,7] can produce
real photons from the vacuum state. In the latter case,
Yablonvitch [6] suggested that a rapidly growing plasma
produced by short optical pulses could provide a large
rate of change of the index of refraction with observable
effects. From the point of view of quantum optics, the
statistical properties of the photons are perhaps even
more interesting. Since the emission is purely a quantum
elect, we expect the photon statistics to carry some non-
classical features. In fact, a nonthermal distribution [8],
as well as squeezing, was found in recent theoretical anal-
yses [8,9].

The quantization of a field in a cavity with time-
varying parameters has so far [1,2] been restricted to the
Heisenberg picture, in which the field operators are con-
structed directly from the solutions of the classical wave
equation, and the Hamiltonian plays no role in the
theory. It is therefore not possible to know the explicit
form of the state of the field. Early work [10] on formu-
lating the dynamics from the Hamiltonian applies to a
system with moving mirrors only, and a generalization of
the method in Ref. [10] for a time-dependent dielectric
medium seems difticult. Physically, both the moving mir-
ror and the time-dependent dielectric medium produce

similar effects on the cavity field, so they can be treated
on the same ground. In this paper, we adopt a different

approach to establish an effective Hamiltonian which is
consistent with the previous formalism [1,2]. This
effective Hamiltonian exhibits the essential features in the
physical processes and makes a Schrodinger-picture
description possible. In Sec. II, we define the quantum
system and derive the effective Hamiltonian. The reso-
nance behavior of the effective Hamiltonian is discussed
in Sec. III, and Sec. IV is devoted to our conclusions.

II. FIELD QUANTIZATION AND THE
EFFECTIVE HAMILTONIAN
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FIG. 1. The one-dimensional cavity with a moving mirror
and the dielectric medium have time-varying permittivity.

We consider a one-dimensional cavity formed by two
perfectly reflecting mirrors (see Fig. 1). One of the mir-
rors is fixed at the position x =0 and the other is allowed
to move in a prescribed trajectory x =q(t). The space
between the mirrors contains a linear, lossless, and non-
dispersive dielectric medium. The relative dielectric per-
mittivity e(x, t) of the medium is an externally prescribed
real function of both space and time. For simplicity, we
let the magnetic permeability p be a constant throughout
the cavity.

The Lagrangian density of the system (c =1, p= 1) is
given by
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L (x, r) =—e(x, t)=1 BA
2 Qt

2

(2.1)

where A {x,t) is the vector potential. We have con-
sidered only the case of a linearly polarized field because
the two polarizations are decoupled. The wave equation
obtained from (2.1}has the form

role of the t in Pk(x; t) is a parameter. Such a set of func-
tions is orthonormal,

f dx e(x, t)P„(x;t)P (x;t}=6„ (2.9)
0

and is complete. Hence A(x, r) and ir(x, t) can be ex-
panded in terms of Pk (x; t) at any instant r:

E(x, t)
Bt Bt

(2.2)
and

A(x, r)=g Q„(t}p„(x;t)
k

(2. 10)

and we impose the boundary conditions [1]

A (O, r)= A(q(r), r)=0 (2.3)

which guarantees that the electric fields are always zero
in the rest frames of the mirrors' surfaces.

The field quantization is achieved by constructing a
field operator A (x, t) associated with the vector potential
such that it is a solution of Eqs. (2.2) and (2.3), and
satisfies the following commutation relations:

[A(x, t), A(x', t)]=[8(x,t), 8(x', t)]=0,
[A (x, t), m(x', t)]=i5{x—x'),

(2.4)

(2.5)

where x and x' are defined in the space between the mir-
rors, excluding the boundaries. The operator rr(x, t) is
the conjugate momentum obtained from the Lagrangian
density:

~(x, t) =e(x, t)
a A" (x, t)

(2.6)

It is known that the solutions for the field operator
A (x, t) can be determined consistently through (2.2) and
(2.3) regardless of the Hamiltonian. In fact, we do not at-
tempt to formulate a quantum theory which is based on
the full Hamiltonian of the system. This is because the
description of the interaction between the field and the
induced surface current on the moving mirror can be
quite complicated. The vanishing boundary conditions
on A (x, t) are therefore used to account for these subtle
interactions in a simplified way. Once the boundary con-
ditions are assumed, it is not necessary and even not pos-
sible to find a consistent fundamental Hamiltonian [1].
However, an effective Hamiltonian does exist. As we
shall see below, the Hamiltonian dynamics can be
recovered in a special time-dependent mode basis.

Let us first define the "instantaneous" set of mode
functions [Pk(x;t)},

ir(x, r) =e(x, t)g Pk(t)P&(x; t}
k

where Qz (t) and Pk(t) are defined by

Qk(t)= f dx e(x, t)A(x, t)gk(x;t),
0

Pi. (t)= f dx m(x;t)p„(x;r) .
0

(2.11)

(2.12)

(2.13)

[Q, (r), Q, (r)]=[ P( )r, P(t)]=0,

[Qk(t), Pi(t)] =i 5
(2.14)

which guarantee the commutation rules (2.4) and (2.5)
among the field operators. Therefore we can interpret
from (2.14) that Qk(t) and P (t) are the natural general-
ized position and momentum operators, respectively, for
the field.

By taking the time derivative of (2.12) and (2.13), and
using the relations (2.6), (2.7), and (2.9), we obtain the
equations of motion for Qk(t) and Pk(t)

dQk =Pk+g Gk J(t)QJ(t),
dt

(2.15)

JPk = —cok(t)Qk —Q G, k(t)P&(t),
dt

(2. 16)

where the time-dependent coefficient Gk J.(r ) is defined by

q(() BP (x;r)
Gk (t)= —f dx E(x, r)fk(x;r)k, j ai

(2.17)

The expansion (2.11) should not include the moving
boundary point x =q(t), because n(x, t) is . actually
nonzero there (except for the case of stationary mirrors).
The discrepancy at that point however does not a6ect the
time dependence of Pk (t) defined in (2.13).

Now we let Qk(t) and P, (t) obey the commutation re-
lations

8 pk{x;t}+e(x, t)cu„(t)P„(x;t) =0,
Bx

subjected to the boundary conditions

p&{0;r)=p„(q(r};r) =0

(2.7)

(2.8)

Considering Eqs. (2.15) and (2.16) as the Heisenberg

equations of motion, 0 =i [H,s.,0], we can construct the
effective Hamiltonian up to an arbitrary constant,

H, s =
—,
' g I Pa+uk{ t)Qk+ Gk k(t){PkQk +Ql P~ ) }

with the eigenvalues cok{t). The physical meaning of the
mode functions Pk(x;t) is quite obvious. If we "freeze"
the system at the instant t0, then the dielectric permittivi-
ty and the length of the cavity are stopped at e{x,t0) and

q{t0), respectively. The set of mode basis functions for
this system is therefore I P„( tx„)}. In other words, the

+ g G„,(r)PkQJ,
j,k

jWk

(2.18)

which generates the equations of inotion (2.15) and (2.16).
In order to describe the system in Fock space, we now in-

troduce the "instantaneous" creation and annihilation
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operators:

1
ak = [tok(t)Qk /Pk ],

2cok(t)

1
[tok(t)Qk+iPk ] .

ZCOk(t)

(2.19)

(2.20)

+—y pk J(t)(akaJ +akaJ aja/, —aj—a/, ),
j,k

jAk

(2.21)

where we have used the abbreviation

Once again we take the time derivative of (2.19) and
(2.20) to obtain the equations of motion. Because of the
explicit time dependence of cok (t) in the definitions, the
effective Harniltonian that governs the motion of ak and

ak has some extra terms. The final form of the effective
Hamiltonian is given by

H ff g ~k ( t)akak +/ g gk (t)(ak' —ak )
k k

is the two-photon processes characterized by the terms
aka. and ak, so that photon pairs can be created from
the vacuum state. This two-photon character of the field

is related to the squeezing phenomena that were recently
found [8,9]. It must be noted that the eff'ects of these two
processes are determined by the time dependence of the
(k(t) and j/, k, (t) N. onadiabatic behavior happens only if
gk(t) and pk J.(t) change appreciably in the typical time
scales of the system. For the scattering process the time
scale is given by the inverse of the frequency difference
between the two scattering modes, whereas the time scale
for the two-photon process is the inverse of the frequency
sum of the two modes concerned. These two time scales
can be different from each other by many orders of mag-
nitude. As an example, take a one-meter-long cavity. If
we consider only the optical field, it requires that gk(t)
and p, k j(t) have frequency components in the optical
domain in order to create photons. On the other hand,
the scattering between neighboring modes requires a
much slower motion of gk(t) and /2k/(t), which is in the
microwave frequency region.

Gk k(t) + 1 dcok(t)
(2.22)

III. RESONANCES IN THE WEAKLY
PERTURBED REGIME

and

Pk j(t)=
1/2

COk(t)

mj. (t)
Gk j(t) . (2.23)

It is worth noting that if the mirrors are fixed in positions
and the dielectric permittivity is spatially homogeneous
ff(x, t) =e(t), then all coefficients Gk 1 are zero [but
gk(t)%0]. In this special case, diff'erent modes are decou-
pled from each other and the effective Hamiltonian de-
scribes a system of decoupled oscillators with time-
dependent frequencies [11].

Having obtained the general effective Hamiltonian
(2.21), the time evolution of the system is deterinined by
the Schrodinger equation

B„~q) =i (2.24)

where ~q/) is the state vector represented in the Fock
space. We emphasize that the Fock space here is dynam-
ical in nature because it is based on the set of tirne-
dependent mode basis functions [pk(x;t)]. As we
change the system's parameters in time, the vacuum state
changes accordingly. Therefore, the bosons associated
with the "instantaneous" creation and annihilation
operators (2.19) and (2.20) may not be regarded as real
photons unless we can specify a rneasurernent process to
detect them. Nevertheless, these bosons become real
photons once e{x,t) and q {t) stop changing with time,
since the ordinary Fock space is recovered when the
mode functions become stationary [12].

There are basically two kinds of nonadiabatic processes
in the system. The first kind is the zero-photon process
characterized by the ak~a terms in the Hamiltonian.
Photons are scattered from one mode to another without
changing the total number of photons. The second kind

When the cavity field is weakly perturbed periodically
by some appropriate choices of the motion in the cavity's
parameters, resonances [9] would occur and cavity modes
can be selectively excited. To facilitate our discussions,
let us concentrate on the moving-mirror system in the ab-
sence of the dielectric medium, i.e., e(x, t) = 1. The mode
functions are given by

1/2
km.x

sin
2

q(t)
(3.1)Pk(x;t) =

and the eigenvalues are tok(t)=km/q(t). Hence, the
effective Harniltonian reads

+ ff 2~k(t)akak+i y 4
(ak ak)

q(t)

k 4q t

1)j+k &I2J2 i2
jAk

' 1/2
k

J
q(t)
q(t)

X (akaj +aka/ —ajak —aj ak ), (3.2)

where q(t) =dq (t)/dt Expression (3..2) is not the same as
the one obtained in a difFerent approach [10]. The
discrepancy is due to the different definition of the field

operators.
A convenient choice of the mirror's trajectory q(t) is

to make q(t)/q (t) purely sinusoidal:

gp COSQt
q(t)=I. exp I. (3.3)

The q(t) itself is actually very close to a simple harmonic
motion because we wi11 let qp «L, in order to keep the
system in the weak perturbation regime, where the cavity
frequencies are well defined by cok =k~/I. .

To locate the resonance conditions, we notice that each
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(i) 0=m/L.
qo

H ff X f1(k)(ak+lak+akak+1)
4L

(3.4)

(ii) A, =2+/L:

Heisenberg operator ak carries a zeroth-order time
dependence exp[i(2kvr/L)t]. This fast oscillatory phase
factor has to be canceled by q(t)/q(t) for resonance to
occur. Therefore if 0=2m+/L, where m is an integer,
the k =m mode will be resonantly excited. A similar ar-
gument also applies for the operators aka ', when we have
resonance for Q=(m+n)m. /L. In this case the k =m
and j =n modes are excited simultaneously. For the
scattering case aka~, the k =m and j = n modes are reso-
nant when Q=(m n—)n/L.

It is not difficult to see that among all the terms in ex-
pression (3.2), there are only a few of them that are on
resonance, when a specific choice of 0 is given. The
effective Hamiltonian can therefore be greatly simplified
by keeping only those resonant terms. This is the so-
called rotating-wave approximation. In the following, we
write down the approximate form of the resonant
effective Hamiltonian for the first three resonances of the
system:

~%(t)}=~vac} i— ta, ~vac} for 0=2vr/L
qp7T

4L

and

(3.8)

~%'(t) }= ~vac) i— ta, a2~vac) for Q=3n/L
qp7T

2v'2L'

(3.9)

where the case of the first resonance is not considered. It
is clear that the dynamics of the system is dominated by
the parametric oscillator for small t, and scattering pro-
cesses will appear only as higher-order effects. When the
time increases, the scattering terms act as an oscillator
bath and cause damping in the motion of the parametric
oscillator.

We have performed exact numerical calculations on
the time evolution of the photon number in a few lowest
modes of the cavity. Figure 2(a} corresponds to the reso-
nance with Q =2m/L. We . see that the fundamental
mode k =1 is resonantly excited. The k =2,, 4 modes are
basically empty because the value of 0 permits resonant

proach could be useful. If the initial state of the system is
the vacuum, the evolution of the system in the short-time
domain, to first order in t, is given by

H" — (a +a )
qpm

4L

qp~
X f2(k)(ak+2ak+akak+2}

4L I,

(iii) 0,=3m. /L:

("
)

qp1r
H ff = ~— 2(ala2+ala2}2&2L'

qp7T+, +f3(k)(ak+3ak+akak+3)
4L

(3.5)

(3.6)
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where the function f,(k)(a= 1,2, 3) is given by
1/2 1/2

k (k +lx)
2k +o.

k+a
k

(3.7)

In deriving the effective Hamiltonians (3.4), (3.g}, and
(3.6), we have made rotating-wave approximations and
neglected the correction in the cavity frequencies due to
the modulation of q(t). There is no time dependence in
the expressions because they are represented in rotating
frames.

The first resonant Hamiltonian (3.4) describes the
scattering interactions between neighboring modes, and
the total photon number is conserved. In the second
case, a degenerate parametric oscillator associated with
the lowest mode k = I appears in (3.5), and the total pho-
ton number is not conserved. The third resonance is
similar, but with a nondegenerate parametric oscillator
associated with the modes k =1 and k =2. In all cases,
the complicated form of the scattering terms forbids us
from finding the analytic solutions, and a perturbative ap-
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FIG. 2. The time evolution of the photon number in the
lowest five modes of the cavity. Initially, the field is in the vacu-
um state. The time axis ~= t /T is dimensionless, where
T=2L/c is the round-trip time. The parameters are L =0.3 m,
qo=10 L. Each of the points in the figure was taken for the
times at every 100T, when the system is instantaneously at rest.
{a)0=2~/L, (b) 0=3+/L.
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scattering from the fundamental mode to odd k modes
only. In Fig. 2(b), the frequency is 0=3m./L, so both
k =1 and k =2 modes are excited at the same time. The
characteristic of two-photon emission is quite apparent
because the two curves for these two modes almost coin-
cide. There is a relatively small amount of photons in the
modes k =4 and k =5, which is created by the scattering
from the modes k =1 and k =2, respectively. In both
figures, we have found good agreement between the nu-
merical solutions and the perturbative results on the pho-
ton number in the resonant modes, as described by the
wave functions in (3.8) and (3.9).

IV. CONCLUSION

In conclusion, we have derived the effective Hamiltoni-
an of the field in a one-dimensional cavity with a moving
mirror and a dielectric medium with time-varying index
of refraction. The effective Hamiltonian is found in a
quadratic form. We have discussed the time scales that
are associated with the nonadiabatic processes. In the
case of resonance, the resonant mode can be regarded as

a parametric oscillator. We have demonstrated numeri-
cally the growth of the photon number in the regime of
the first two parametric resonances of the moving mirror
system. Finally, we hope that the effective Hamiltonian
can provide a convenient way for further study of the
atom-field interaction. The response of atoms to the field
in this type of cavity should be quite unusual and may
provide us with indirect ways to probe nonadiabatic
changes of a vacuum field. It is because the environment
that the atoms experience is modified with time. Virtual
transitions and the self-dressing processes of atoms would
become important, a fact that may lead to emission of
photons even if the atoms are in the ground state [13].
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