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Quantum inverse problem for the derivative nonlinear Schrodinger equation
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The quantum inverse problem for the nonultralocal nonlinear Schrodinger problem is formulated by

using the idea of operator product expansion. It is demonstrated that the quantum R matrix so generat-

ed has the usual relation with the classical r matrix constructed through the approach of Tsyplyaev
[Theor. Math. Phys. 48, 580 {1981)].The algebraic Bethe ansatz is then set up and the excitation spec-

trum of the problem is determined.

PACS number(s) 03.65.—w

INTRODUCTION

Quantization of an integrable nonlinear system is one
of the most important problems of nonlinear theory [1].
Well-established methods have been set up by Fadeev
et al. for classical integrable systems that are ultralocal,
that is, whose Poisson structure involves only a 5 func-
tion. On the other hand, no such prescription is known
for nonultralocal systems, which abound in nature.

The pioneering attempt to treat the nonultralocal sys-
tem was done by Tsyplyaev [2]. After that an indepen-
dent formulation for the case of an extended derivative
nonlinear Schrodinger equation was done by Roy
Chowdhury and Sen [3], which was accidentally ultralo-
cal. A similar situation was also observed for the case of
Alfven wave propagation in a plasma, which is governed
by a set of equations very similar to a derivative non-
linear Schrodinger equation but again ultralocal [4]. On
the other hand, significant progress for the case of a
nonultralocal integrable system was done by deVega,
Eiechenherr, and Maillet [5] and Maillet [6] who succeed-
ed in developing a theory for the r matrix (classical case)
for the nonultralocal case. Though it can be mentioned
that their approach does not include every nonultralocal
situation. The situation in the quantum case (for the
nonultralocal system) is still not clear. So here we have
tried to formulate the quantum inverse problem for the
derivative nonlinear Schrodinger equation with the help
of the concept of operator product expansion [7], a
methodology immensely successful in the domains of
high-energy physics and solid-state physics. We then
show that our quantum R matrix possesses the same nat-
ural relation with the classical r matrix deduced a Ia
Tsyplyaev [2]. In the next section we show how the alge-
braic Bethe ansatz [8] can be formulated and the excita-
tion spectrum determined. Lastly we note that the quan-
tum R matrix so deduced satisfies the Yang-Baxter equa-
tion [9].

FGRMUI. ATION

The derivative nonlinear Schrodinger equation is writ-
ten as

iq, +q„„+e(~q~ q)„=0, a=+I

The isospectral problem associated with it is

qt„=iL(x, A, )qr,

L(x, k, ) =
i Aq—(x)
—X2 (3)

The classical Poisson bracket due to the Hamiltonian
structure of (1) is

jq*(x),q(y)]= 5(x —y) .= a
Bx

(3')

The presence of the derivative of the 5 function in the
Poisson bracket is the source of nonultralocality.

We start with the derivation of the classical r matrix
following Tsyplyaev. We can rewrite L as

L =I, o 3 i Aq(x)cr+ —i kq'(x)o— (4)

where o +=(o,+io 2)/2, o; being Pauli matrices. Using

Eq. (3') we at once obtain

.L(x, k) 18 L(y, p, ),=to5'(x —y),

where

where ~+(x
~

A. ) denotes the solutions of
[t)„—iL (x, A, )]r(x,y ~

A, ) =0 for the asymptotic matrix
L+(A, ) =lim„+„L(x,i, ). The Jost functions are related
to these solutions through

@+(x,A. )= lim r(x,y ~A. )~+(y~k) .
g —++ 00

It is then easy to demonstrate that the Poisson bracket of
~(A, ) and r(p) is given as

co= —Ap(o+cr +cr So+) .

The transition matrix r(A, ) associated with the linear
problem is defined by

r(A, )= lim ~+'(x ~A)r(x, y ~A, )r (y, ~A, ),
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00

. gA, ) r(p), = f f dx dye+'(x, A, ) 84+'(y, p}K4 (x, A, }4' (y,p)

where

E=,L(x, A, ) L(y,p), .

Using

8„4+'(x,A, ) = —4+'(x, A, }L(xA,),
8„4 (x, A, ) =L(x, A, )4 (x, A, ),

the equation can be transformed to the following form:
00

. ~(A) ~(p), = f dx [4+'(x,A) 4+'(x, p)]Q(x iA, ,p)I4 (x,A) 84 (x,p)[,

(9)

(10)

where

Q(x~k, ,p)= [o+so +cr cr+, L(x, A. ) 1 —1L(x, p)] .AIM

2

B„r(x~Ap)+ [r(x ~A, ,p), L(x, A } 1+1L(x, p)]
=Q(x iA, p) . (13)

With Q, given by (11),we try to solve Eq. (13) by setting

r(x ~A, ,p)= A lg 1+Bo3go3+Co+go +Du Scr+ .

(14)

Assuming the functions A, B, C, D to be independent of
x, we get

We now demand, following Ref. [6], that the integrand of
Eq. (10) be the total derivative of

4+'(x, A)@4+'(x,p)r(x~A, p)4 (x, A) g4 (x,p)

(12)

which in turn leads to a differential equation for the clas-
sical r matrix r(x ~A, ,p), viz. ,

THE QUANTUM R MATRIX

Though the classical r matrix can be deduced as above,
in the corresponding case, R cannot be constructed. So
we here follow a different route. We adopt the funda-
mental idea that the field operators q(x), q '(y), do not
have a well-de6ned product at the same space-time point,
and q(x)q'(x) is singular at x.

Consider the monodromy matrix T(x,y, A, ), which is a
solution of the equation

[8„iL(x,A —}]T(x,y, A, ) =0 (17)

T(x,y, A, )=Pexp i f L(g, A, )dg

with boundary condition T(x,x; A, )=I, where I
represents the unit matrix.

The formal solution of (17) can be written as an or-
dered exponential and we get

2BA,—Cp= A,p
2

2Bp —CA, =—R, p
2

(15)

P denotes the ordering. Using the group property of the
exponential we can write at once

T(x,y, A. ) T(x,y, p)
Ap Ap(A, +p)

2(A, —p) 2(A, —p, ) =ST(x —b„y;A, ) T(x —A,y;p), (19)

and A remains arbitrary, whence we get

r(x )A,p) =r(A, ,p)
A, p= A 1(3) 1+ (3)

2(A, —p, )

+ A,p(A, +p, )

2(A, —p)
XQ(o'+Scr +o o'+). (16)

where S is

Pexp i f L(g, A)dg' P exp i f L(g, p)dg
x —

LL x —6

for arbitrary h. DifFerentiating Eq. (19) with respect to x
we get
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Bx[T(x,y, A) T(x, y, p)] =[iL(x,A)P exp[iL(A)] P exp[iL(p)]+P exp[iL(A)] iL(x, p)

XP exp[iL(p)]] T(x —b„y, A ) T(x —b,y,p) . (21)

The commutation relation of q*, and q given from (3 ) via the correspondence principle shows that [q*(x),q(y)]
i—fi(BIBx)5(x —y)-b, . So we expand the exponentials in (21) and retain terms up to second order in b. f'his

leads to

8„[T(x,y, A) T(x, y, p}]=I (x, k, ,p)T(x,y, k) ST(x,y, p) (22)

as b, ~0. In Eq. (21) above we have used the notation

L(g)= f L(g, k, )dA, , L(p)= f L((,p)d( .
x —5

The expression for I can be obtained without much diSculty and we get

x

r(x, Z, p)= iL(x, k) 1+1iL(x, p) iL(x—, &)S f f L(p, p)L(p', p)dp'dp
x —hx —b,

x
—f f L(g, A, )L(g', A. )dgdgiL(x, p)

x —5
(23)

In the present case we get

I (x,p, p)=q(x)(Ao+I+pIo+)+q'(x)(Ao 1+pIsa )+i(Ao'3g ,1+p Io3)
+2fiAp(A, +p )(cr+go og—a+)+i'fiApq(x)(pa+so 3

'Ao 3—o'+ )

+ifikpq'(x )(Ao 3o po' —So'3), (24)

where I is the unit matrix. Now the quantum R matrix is
defined to be an operator that is defined on the direct
product space V& V2 and intertwines between
T(x,y, A, )T(x, y,p) and T(x,y, p)T(x, y, A, }, whence
we demand

1 0 0 0
0 0 1 0

r 0 1 0 0 ~

0 0 0 1

R(A, ,p)l (x, k, ,p)=I ( x, pA, R}(A,, p). (25) So our quantum R matrix can be connected to the classi-
cal one as in the case of an ultralocal system.

Writing out R in the basis of the product space V, Vz

we can easily solve (25) and get

R(A, ,p)= —,
' 1 2ifil,p—A, +p

ASYMPTOTIC LIMIT AND SCATTERING DATA

Since R (A, ,p, ) is independent of x and

R(A, ,p)T(x, y, i, ) T(x, y,p)
= T(x,y, p)0y T(x,y, A. )R(A, ,p), (28)

+—' 1+2ikkp A, +p
A, +p

+(o+o +o o. +),

0 3 cT3

(26}

we can take the limit x ~+ 00 in this equation to deduce
the commutation rules of the scattering data. For the
solitonic fields ~q(x) ~

~0 as x~+ ao and the solution of
I A, CJ3X

(2) behaves as e ' . So we set

which is exact up to the order of A. Comparing with Eq.
(16}we immediately observe that

lim T(x,y, k, ) =e ' T(A, )e
X ~ oo

y~ —oo

(29)

T(}(,) being the scattering data. So from Eq. (28) we get
R(A, ,p) =P„[I—4ihr(A, ,p)],

where P, stands for the permutation operator

(27)
R, (A, ,p)T(A, ) T(p) = T(p) S T(A, )R2(A, ,p)

where

(30)
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R, (A,,p)= lim (e ' e ' )R(A, ,p)(e ' ge ' },

R2(A, ,p)= lim (e
'" se '

P)R(A, ,p}(e' Pe'" P).
(31)

Let

I (x, l, ,p)= lim I (x,k, ,p)=i(A, cr I+p Io. )+2%}(p(}(,+p )(o+cr o—o+),

whence

RI 0(x, l, ,p)=I'0(x, k, ,p)R,
—i I 0(xAp, ) —i I 0(xkp, )

Using Eqs. (31) and (32) we arrive at

R+ T(A, } T(p)= T(p) T(A, )R

(32)

(33)

R = lim (e e )(e 'Re )

X(e e ) .lA, CTP lP CJP

If we now rewrite R (A, ,p) given in Eq. (26) as

a(A, ,p) 0 0 0
0 b(Ap} 1 0
O 1 b(Xp) O

0 0 0 a(Ap)

(34b)

(35)

lk (73x I/4 cT3z)
~ 2 2

Xe e (34a) then Eqs. (34a) and (34b) lead to

R+(A, ,p) = lim
x —++00

a(A, ,p} 0
2i(A, —p )xoe

—2i(A, —p )xb8 0
a(A, ,p)

(36)

Now the symmetry of the L operator dictates that

A (A, } 8(A, )

8'(A, ) A '(A, )
(37)

The commutation rules of the scattering data can be easi-
ly read off from Eq. (33) and yield TrT(A)= A(A, )+ A, '(A, ) . (41)

q(x) as a destruction operator and q' as a creation opera-
tor, then due to the triangular structure of L(x, A, )~0)
(where ~0) represents a pseudovacuum), 8(A, ) acts as a
destruction operator and 8' as the creation operator for
the Bethe ansatz. On the other hand, the Hamiltonian is
given by

A(A)B (p)=bB*(A,}A(p)+i' (p)A(A),

A '(l, )B'(p) =a '8'(p, ) A *(A,)+—A '(p)B'(A, ),b

A '(p)B'(A, ) =VB'(A, ) A (p)+bB'(p) A '(A, ), (38)

So, let us assume

A(X)~0) =e(X)~0),

A'(X)~0)=s"(X}~0) .

The n particle state is

(42)

where

4iki,p
p

P standing for the principal value and

b=2MA, p(A, +p )5(A, —p ) .

(39)

fin(pi ' pn) =8*(W»*(p2) 8'(p. ) I» (43)

Now, operating with A (A, )+ A '(A, ) on Q„and using the
commutation rules (38), we can separate the wanted and
unwanted terms and obtain the equation determining the
equation for the eigenmomenta p,

Since the calculation is straightforward we just state
the final result. The Bethe ansatz equations determining
p; are

ALGEBRAIC BETHE ANSATZ

From the structure of the L operator and the definition
of T(A, ) in terms of L, it is apparent that if we interpret

e'(p;)
E(p;)

Pi ~PJ.n g~( . . )

1+b (p, ,p }
JXl

(44)
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whereas the energy eigenvalue of the state 0„ is given as subject to the condition

(45)

The expressions for e(A, ) and E*(A, ) are most easily deter-
mined by a discretization procedure. If we denote the
length of the interval on the x axis as L' then

Since the coupled set of Eqs. (44) are very difficult to
solve we can take recourse to the usual approach of con-
verting it into an integral equation. If we denote

(46)

then following the standard procedure we at once obtain
in the limit L ~~ and in the continuous limit of the ei-
genvalues p;,

(47)

DISCUSSIONS

In our above analysis we have shown that the idea of
operator product expansion can lead to a reasonable
derivation of the quantum R matrix for the nonultralocal
case of the derivative nonlinear Schrodinger problem. It
has the required limit when A'~0 and matches with the
classical r matrix derived via the approach of Tsyplyaev.
The algebraic Bethe ansatz can be set up and the usual
analysis of the quantum inverse scattering method can be
performed. Lastly it can be mentioned that the R matrix
deduced in Eq. (35) does satisfy

R ]~(k,,]]t)R ]3(k,v)R~3(p, v)

R 23 (i]ty v)R ]3 (~t v)R ]p ( ~l p')

which is nothing but the usual Yang-Baxter equation.
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