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The vortex structure of the steady-state probability How for a general one-particle system in
quantum mechanics is introduced and its relationship to the inverse-square potential is discussed.
The relationship is made clear by classifying the corresponding solutions of the related classical
inverse-square-potential problem.
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I. INTRODUCTION

Recently, in studying the patterns of quantum proba-
bility flow, we pointed out the important role of two spe-
cial situations: the velocity node and the quantum vortex
[I]. We argued that these two patterns are the keys to
understanding the global probability flow problem. Of
the two, the quantum vortex is particularly interesting.
We related the number of quantum vortices to the ac-
tion along a closed path and the enclosed magnetic flux,
which may be viewed as a generalization of flux quantiza-
tion. The key theoretical tool is the concept of "quantum
potential" due to Bohm [2,3] in which the dynamics of
the quantum probability flow is turned into a classical
fluid problem involving an additional potential of quan-
tum nature. The same form of potential also appeared
in the theory of superconductivity, for example, see the
Feynman Lectures on Physics [4], but there it played no
great role.

Another interesting aspect of the quantum vortex is
that it is strongly correlated with the classical inverse-
square-potential problem. The inverse-square problem is
solvable, and is discussed extensively in the literature on
many-particle one-dimensional quantum systems [5—9].
It is interesting that such a useful potential arises in a
quite different context where it is responsible for the for-
mation of quantum vortices.

The theme of this paper is to discuss in detail the
relationship between the inverse square potential and
the quantum vortex. Section II derives the inverse-
square quantum potential for a particle in a scalar plus
vector potential near a wave function node. Section
III then solves the classical inverse-square problem in
two-dimensional space, particularly for the only possi-
ble closed orbit, which is a circle. Section IV gives a
relationship derived &om the properties of quantum vor-
tices between the action integrated around a closed path,
the flux through it, and any enclosed vortex. Section V
discusses the quantum vortex in three-dimensional space.
The related inverse-square classical problem is given in

Appendix A. Finally, the conclusions are given in Sec.
VI.

II. THE INVERSE-SQUARE QUANTUM
POTENTIAL

Consider a quantum steady state for a pointlike parti-
cle of charge q in a vector potential A and scalar potential
V. The time-independent Schrodinger equation is

—V —qA /(2m)+V @=Eg
)

Expressing g in terms of the probability density p and
action 8,

(2)

V.j = V. (pv) = 0 (4)

where

v = (VS —qA)/m.

Equation (4) is the equation of continuity for the steady
state, as j is the probability current density. In Quid me-
chanics, the current density is the density times velocity,
so v is interpreted as the velocity of a particle. With
this interpretation, Eq. (3) is the law of conservation of
energy for a particle in the external potential V plus a
"quantum potential [2—4]"

hz V ~p
2m ~p

(6)

and substituting into the complex Schrodinger equation,
we arrive at two real equations:

1 h2 V' /pE= —mv +V—
2 2m +p

and

1050-2947/94/49(6)/4305(7)/$06. 00 49 4305 1994 The American Physical Society



4306 HU A WU AND D.W.L. SPRUNG

0.2

49

obtained by takingation of motion is o aThe classical equa io
the gradient of Eq. (3): 0.2

v x B —V'(V+ Q)dt
0.1 0.1

Ot = 0 for steady flow.where we have used L9v

d the vorticity oWe would like to stu y
Eq. (5),

V' x p = V' x (mv) = V' x V'S —qB .

—0.05 0.05
0

—0.02 0 0.02
Y

I
'

II
'

I
'

I
132 ~

I
'

I

jY

ma netic field supports vor-ni
t td

Obviously, a n
orce. In order to s u

E. (8)
'

o 1o

h

ma be nonzero
g

h t the vorticity may
function nodes.t be at the wave une vortices, i y,an, mus e

ices.These are called qu
the probabili y

' 't densityave function,
ofcontinuous.
der

p is non- g
er. If we stop astarts at the second or er.

- e ativity gives usa '
ni el' "' "d. In terms of p incip a '

quauadratic form. n erm

I I I I I I I I I

.54 0.56 0.580.5 0.52 0.
X

ear a wave functionma nitude near a wa
as

g

h' d
' ' d'

das e o
Bottom part:

elli se,ha ni . Counting froma nitude lines.
e curve starts oto devi-

Th dott d
ver su . hs r. The

increases asin increases.
es withfth X 0

the asymmetry in
t and it mergesline is a mirr

' ror image o
X. U per right paart:the X ) 0 part for sm X.all X. p

2 2p=) X,'/a, .
(12)

eofpwithr = gP . X2p o p0
T}1

1 d'- has '----.q--rived Rom t is as
'

rate on the the two-dimensionalWe shall first concentrate on t e
case, writing

= r'(cos' 8/a' + sin 8/b')

and

uations of motionwhich leads to equa io

mr = mr 8' + 2f(8)/r',
—

( '8) = —f'(8)/r' (14)

s have a cir-

dt

that these equations
b't solution r = R o

f the inverse-squarethis to e a
—V 8) tpp oseapo en'

cular or i sb't at any radius r =
——= f (8) ()—

2m (b2 cos2 8 + a2 sin mR8
'2

(15)
otential as longrse-square po ewill be an inver

ofth f t, o

f vpj 1yo
th

nitude1

t l is not symme r
f nction magni uthe lines o eqcipal axes,

become ellipses.

~ ~

mR'8 =—
v=R

OV

r 02V

2 Or88
OV

08

~ ~

two equations and eliminating 8tons an e
' 8 and 8,Combining these two q

(R/2)[0 V/(Br08))„~ = — „— s for any B,
and thus

N TO TN THE INVERSE--S UAREIII. SOLUTION T

= 0 the external potentialn ular at r =
This gives

While Q is sing
i nored for sma ll enough r. TV(2:, y) can be signor

nse ot a Lagrangian

ial differential equationut' to this partia i e uationThe general solu ion
is

f(8)+ („)

l potential supportse two-dimensiona poThus an attractive mo-



49 INVERSE-SQUARE POTENTIAL AND THE QUANTUM VORTEX 4307

circular orbits of arbitrary radius if and only if it can be

tvritten as the sum of a central potential and an inverse
square potential. Furthermore, if all the circular orbits
have the same energy E, then g(r) = E But why are
we interested in studying circular orbits? What is the
connection to the vortex? To answer this question, let us
integrate the equations of the motion. Multiplying Eq.
(14) by r28, one has

-mr'8'+ f(8) = 0.
dt 2

Together with the energy conservation

E = -m(r'+ r'8') +
2 r2 (20)

we see that

F =r E ——mr'

)
(21)

2 yEr2 —F
m r (22)

The + sign depends on whether the particle is leaving or

is a constant of the motion. The existence of this con-
served quantity has profound consequences for our prob-
lem. Since streamlines do not cross each other, the or-
bits near the center of a quantum vortex must be closed.
Any closed orbit has a maximum (r ) and minimum

{r;„)radius. At these extrema, r' = (dr/d8)8 = 0.
From Eq. (21), E(r2 —r2;„) = 0. If r = r
the orbit is a circle. On the other hand, if E = 0,
F = —r2 mr'2/2 = 0, and r' = 0. Therefore, all closed
orbits of a particle moving in an inverse square -potential
are circles. This immediately implies that 8treamline8
of a quantum vortex are circles for small r. This con-
clusion is well verified in many examples of the electron
waveguide problem [11—14].

Figure 2 shows some Bow lines for an electron pass-
ing through a right-angle-bend waveguide. We see six
quantum vortices in the region plotted. In the right up-
per corner of the figure is a magnification of the second
vortex (counting Rom the upper entrance) in the dash
box, showing that the Bux lines are circles. In fact, by
examining the energy of the particle, one finds that a
circular orbit implies E = F = 0. But in our problem,
the energy of the particle is given: why do we still see
circular orbits? The answer lies in the singularity of the
inverse potential; for small r, the potential is so large
in magnitude that the energy of the particle can be ne-
glected. On the other hand, the quantum potential we
derived relies on the small r expansion of the probability
density, which is nevertheless an approximation. From
the observed circular orbits, it is reasonable to assume
the quantum potential to be Q = f(8)/r2 + E, which
supports circular orbits at energy E.

We shall now classify the solutions to the inverse-
square problem. Equation (21) implies Er2 —F & 0.
Solving for r &om Eq. (21) gives an equation to deter-
mine r(t):

FIG. 2. Some stream lines for an electron passing a
right-angle-bend waveguide without magnetic field. The elec-
tron energy is E = 6.25E&, where Ez is the first open mode
threshold. The electron enters from the top left in the first
transverse mode, and is transmitted to the lower right lead
with a transmission probability 0.264. Six quantum vortices
are shown. Some stream lines inside the dashed box for the
second vortex (counting from the top) are magnified in the
upper right corner to demonstrate that the the stream lines
close to the center of a quantum vortex are circles.

r/Er2 —Fr'= 6
gF —f(8)

(24)

All possible solutions may be listed as follows.

(a) E ( 0: These orbits are bounded outward. Since
Er —F & 0, F & 0. Because E and F have the same
sign, we can define F = ER with R a positive number.
By consulting Eq. (21), we see that R is the maximum of
r. Integrating Eqs. (22) and (24) yields a radial integral:

and the orbit

r = Q~R + (2E/m)t
~

R
cosh j f(s)—

(25)

(26)

where 8o ——8~g —o, and the origin of time is chosen when
r = R takes place. Combining the above two equations,
we have an implicit angular integral

t = +R/g —2E/m tanh
Fd8-

F —f(8)
(27)

approaching the center. With the help of energy conser-
vation,

r' [F —f(8)] = r [Er —F],
where r' = (dr/d8) Since E.r 2 —F & 0, F —f(8) & 0,
and the equation to determine the orbit is
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d0

8. V'—&(())
(28)

(c) E = 0, F g 0: We shall call these noncircular zero
energy orbits. From Eq. (21), F ( 0. The radial integral,
orbit, and angular integral are found to be

r = [R2 6 g 8F/mt(I, — (29)

g-Fd() l
r = Rexp

8, QF —f(8) j
(30)

Supposing the particle to rotate in the anticlockwise di-
rection, we pick up the positive sign. The motion of the
particle is pictured as follows: At t = R—/g 2E—/m,
0 = —oo. It then spirals out and at t = 0, it reaches its
maximum radius R. Passing this point, it spirals in, and
reaches the center at t = R/g 2E—/m, when 0 = +oo.
It could then start a new cycle with 0 = —oo. However,
this switch over at infinity introduces uncertainty into
the problem, as the particle starting a new cycle by spi-
raling out forgets the history of how it spiraled in. So
every new cycle is independent; it doesn't have to repeat
the previous one. Within one cycle, the motion is deter-
ministic, but in between cycles, the motion is random,
i.e. , 6PO is a random variable of cycles.

(b) E = 0, F = 0: In this case, we have circular
orbits r = R, where R is any positive number. Keeping
F = ER2, and taking the limit E ~ 0, Eq. (27) is
transformed into

r = ~R 6 /2E/mtI, , (34)

1 yRf8 ~Ed8
' y f(—8)

Once again, this result can be derived from (d) by shifting
the time and angle origin and taking F —+ 0. R is a given
initial radius.

(f) E ) 0, F ( 0: Define, F = ER—. Changing R
to —R in Eq. (25)

r = Q~(2E/m)t —R ~, (36)

the orbit is found to be

sinh
~

sinh (1) + j f(8) )
Except for cases (a) and (b), all orbits are unbounded.

Among these unbounded orbits, only (d) has a nonzero
lower bound on the radius; the rest can reach the center of
the potential. Figure 3 shows the classification of orbits
in terms of E and F, and gives examples of orbits of type
(a), (d), and (f). Type (b) is at the origin of the E F
plane; type (c) is on the negative F axis, and type (e) is
on the positive E axis. Examples of orbits of types (c)
and (e) are shown in Fig. 4.

and

( ' g-Fdg l
t = +R g—m/(8F) exp k2 —1

, gF y(e)~-
(31)

where R is the initial value of r, not determined by E
and F. Though apparently difFerent from case (a), it can
be deduced &om (a) by shifting the origin of time and
angle and taking the limit E ~ 0.

(d) E ) 0, F ) 0: These orbits are unbounded out-
ward, but bounded inward by r ) R = gF/E. The
results are identical to case (a), except for a change of
signs of E and F:
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If one starts at r = R, the particle spirals out in either
direction. The particle leaves the system on an asymp-
totic straight line when the argument to the cosine in the
denominator equals 7r/2.

(e) E ) 0, F = 0: This is also a special case,

FIG. 3. Classification of orbits for the inverse-square po-
tential in terms of conserved quantities E and F Types (d), .

(a), and (f) appear in the first, the third, and the fourth
quadrants; examples of orbits are shown. There are no orbits
allowed in the second quadrant. Type (b), the circular orbit,
appears only at the origin of E I' plane. Examples for type
(c) (on the negative I" axis), type (e) (on the positive E axis),
are shown in Fig. 4.
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E=O F=—0.01
0.2

E=i F=O V x p = h) I';h(r —r;) —qB (43)
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FIG. 4. Examples of type (c) and (e) orbits.

IV. THE VORTICITY
OF THE PROBABILITY FIELD

From the last section, we know that an orbit near the
center of a quantum vortex is a circle. This makes a
study of the vortex properties for small r very easy. For
a circular orbit of radius R, it is found that

hat

mR (b cos 8+ a sin 8)
(38)

and &om this, the magnitude of the current density

j = pv = hR/(mab)

is a constant. Along the circle, the velocity changes. This
results in compression and decompression of the flow,
causing the density to oscillate.

Knowing the velocity along a circle, we may calculate
the the action

p dr =kh (40)

V x p = h) I';b(r —r;), (4I)

where r; is the location of a vortex, and I'; = +1 accounts
for the vortex chirality. This is equivalent to saying

p dr=(N+ —N )h (42)

for any simple closed contour, where N~ are the numbers
of right and left handed vortices enclosed. Such a contour
must be continuously contractable to a single point in
the region where the wave function is defined, i.e., there
can be no holes in it. The requirement that the action
along any closed curve be an integer multiple of Planck's
constant ensures that the wave function is single valued.

Let us now add on a magnetic field. The force gener-
ated by the quantum potential is proportional to I/r,
while the velocity of the particle, and thus the Lorentz
force, is of the order of I/r. Just like V, it can be ne-
glected for small r. Thus,

where the 6 sign gives the direction of the circulation of
the vortex; + for right handed, and —for left handed.
Equation (40) is true for any closed curve enclosing a
quantum vortex because V x p is zero everywhere else.
Therefore,

p . dr + q4 = (N+ —N )h, (44)

where 4 is the flux passing through the enclosed surface.
This formula quantizes the sum of the action along a
closed path and the charge times the flux enclosed, in
terms of the number of quantum vortices.

V. GENERALIZATION
TO THREE-DIMENSIONAL SPACE

In this section, we discuss quantum vortices and vor-

ticity of the probability field in three-dimensional space.
As in the previous sections, we first discuss the situa-
tion where 8 is absent. When the wave function is non-

zero, V x p = 0; the field is irrotational. The interesting
points are those where p = 0. First, let's discuss an
isolated wave function node. Assume r0 is an isolated
node, p(ro) = 0, p(re + e) ) 0, where e is an arbitrary
small vector. We wish to see if any quantum vortex can
form around this node. Choosing any small closed path
around the node, we can compute the action $ p . dr.
However, since the node is isolated, one can always find
a surface with the path as its boundary, and evading the
singular point. Since V x p is zero on the surface, the
action along the path is zero. Thus, no quantum vor-
tex will form around an isolated wave function node in
three-dimensional space. For completeness, the classical
solution for a particle in three-dimensional inverse-square
potential is given in Appendix A.

The proper place to see a quantum vortex in three-
dimensional space is where wave function nodes form a
continuous curve, either closing on itself or ending on the
boundary (which also consists of wave function nodes).
This requirement breaks down the condition which re-
sults in vanishing action around a closed path winding a
nodal line. The reason is that for any surface with the
path as its boundary, there must be at least one singular
point where the nodal line crosses the surface. Actually,
for a short enough path, there will be only one singular
point. Now let r0 be one of the points on a closed nodal
curve, and consider a small enough neighborhood so that
the nodal curve can be considered to be a straight line
segment. Taking a plane orthogonal to the curve, one can
establish a local cylindrical coordinate system. Bearing
in mind that the wave function magnitude must be non-
negative, the Taylor expansion of p is independent of z,
and depends quadratically on r. The quantum potential
is then also independent of z, but an inverse square func-
tion of r. Thus, on the plane orthogonal to the nodal
curve, the previous two-dimensional discussion applies.
Thus, stream lines close to a nodal curve are circles in
planes perpendicular to it. The sheets of flow around
the nodal curve form concentric tori; they are like long
concentric cylinders bent to close at the ends.

Now suppose r; are the coordinates of the nodal curves,
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with a closed path. This relationship was also gener-
alized to the three-dimensional case, in which a closed
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bulence, and the quantum potential with quantum chaos
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FIG. 5. Three-dimensional scattering problem for a thin
hard disk of radius R. Z is taken to be the symmetry axis,
and the beam is parallel to it. Flux density field is plotted
in one plane including the symmetry axis. Two nodal curves
are plotted, and they are circles with Z as their symmetry
axis. Vortices form about the nodal curve due to backward
scattering from the target, giving a How in the negative Z
direction inside the nodal curve. The energy of the beam is
E = 5r'/(2mB').

then the vorticity of the probability field is
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APPENDIX A: CLASSICAL SOLUTION TO THE
THREE-DIMENSIGNAL INVERSE-SQUARE

POTENTIAL

In spherical coordinates, the three-dimensional inverse-
square potential is

(AS)

P x p = h) fd(r —r;)dr;,
t

(45) and the Lagrangian is

where the closed path line integral is taken in the direc-
tion determined by the rotation of the vortex using the
right hand rule. When a magnetic field is present, a —qB
term should be added. Finally, the action-fiux-quantum
vortex relation is the same as for the two-dimensional
case. As an illustration of quantum vortex in three-
dimensional space, consider an identical particle beam
of energy E scattering from a thin hard disk of radius R.
Let the beam be normal to the surface of the disk. When
the energy of the beam is small, no vortex is seen. As the
energy rises, vortices build up in the region of backward
scattering due to strong interference between the inci-
dent and scattered waves. Figure 5 plots the fiux density
field (j) in a plane containing the syminetry axis Z. Two
vortices are seen, associated with the nodal curves which
are circles perpendicular to the symmetry axis.

L= (r +r—8 '+r sin 8$)— (A2)

which results in difFerential equations of motion

mr' = mr(8 + sin p ) + 2f(8, dt's)/r (A3)

—(mr 8) = msin8cos8R Pdt r280 ' (A4)

and

d 2. 2 2 18f—(mr sin 8$ ) = ——
dt p 8 (A5)

Combining 8r2x(A4)+Jr x (A5), and moving every-
thing &om the right to the left,

VI. CONCLUSION mr (8 + sin 8$ —) + f (8, P) = 0.
dt 2

(A6)

In this paper, we have derived the inverse-square quan-
tum potential near a wave function node, based on
Bohm's prescription. The corresponding classical prob-
lem was then solved, and possible orbits classified. It was
proved that the only possible closed orbits in two dimen-
sions are circles, and thus stream lines near the center of
a quantum vortex are circles. Based on the properties of
a quantum vortex, the vorticity of the probability fiow
was found. Its integral form gives a relation between the
action, the fiux and the number of vortices associated

Therefore, just as for the two-dimensional inverse-square
potential,

I'=r
/
E — mr'—2 1

2
(A7)

is a conserved quantity. This implies that r(t) takes the
same form as in the two-dimensional case. The solution
for 8(t), P(t) depends on the specific form of f (8, P). As
in the two-dimensional case, if there are closed orbits,
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they must obey E = I" = i = 0. In other words, closed
orbits are only possible on spheres. However, the theory
does not guarantee their existence.

APPENDIX B: SOLUTION TO THE THIN HARD
DISK SCATTERING PROBLEM

The problem is to solve the Helmholz equation

V'4+k'4 =0,
with 4' = 0 on the disk. For r ) R, the solution takes
the form

jl jlnQeven

jn + O„h(')

ngeven

where the Bessel function take argument kR and

1

I„i = P„(z)Pt (x)dx
0

l(—1)l"+' i)~2(n —1)!!(l—2)!!
[l (l + 1) —n(n + 1)]n!!(l —1)!!

(B6)

@ = —) i (2l + 1)[ji(jr)+ ath& (kr)]Pt(cos8) .
l

(B2)

If all o.t were zero, this would reduce to the plane wave
expansion for the incoming beam.

For r ( R, since the wave function vanishes on the disk
surface (8 = w/2), only odd angular momentum partial
waves are needed,

) pti (2l + 1)ji(kr)Pi(cos8), cos8 ) 0 (B3)kr l6~~

) gati (2l + 1)jt(kr)Pi(cos 8), cos8 ( 0 . (B4)
i&odd

Matching the wave function at r = R results in

C „= ) (2l+1)I tI„Ui/jt .
l6~~

(B10)

Solving Eq. (B9) gives solutions for the a„of the even
partial waves.

Furthermore, matching the normal derivative of the
wave function at r = R results in

Q.l
——0 for odd I, ,

while

) [0 „i"(2n+1)h( i —i h'~ )b „]a„
nQ even

=i j' — ) C „i"(2n+1)j„(B9)
nQ even

for non-negative even integers n and m, where
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