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Stapp has recently presented a revised algebraic version of his (and others') earlier nonlocality
arguments. Stapp's argument would seem to be an improvement over traditional arguments because
he assumes only the so-called parameter independence condition, but neither determinism nor the
so-called outcome independence condition. We show that, in fact, Stapp's argument rests on a
logical fallacy.
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I. INTRODUCTION

Nearly all attempts at deriving an inequality [1] or
an algebraic contradiction [2] from a locality assnTnption
coupled with quantum predictions have relied on one of
two sets of assumptions, often described [3) as (a) de-
terminism plus parameter independence (PI) (also called
"locality" ), and (b) parameter independence plus out-
come independence (OI) (also called "completeness" ). PI
says that outcomes, or the probabilities for outcomes, at
one detector [in the standard Einstein-Podolsky-Rosen
(EPR)-Bobm experiment [1], the Greenberger-Horne-
Zeilinger (GHZ) experiment [2], or, most recently, the
Hardy experiment [4]] do not directly depend on parame-
ter settings at the other, e.g. , the orientation of the Stern-
Gerlach magnet. Similarly, OI is the assumption that
outcomes (or probabilities for outcomes) at one detector
do not depend on outcomes at the other. Stapp and oth-
ers have claimed in the past [5] that one can deny both
determinism and OI, yet still derive a Bell inequality.
However, his claim has been much disputed [6]. Recently
[7—9] Stapp has taken a slightly new strategy, namely,
to seek an algebraic contradiction (rather than a Bell
inequality). In these new arguments, he reafnrms his
commitment to a denial of determinism. (See especially
Ref. [7].) And in [8], he makes it clear that his intention
remains to avoid any assumption such as OI:

Some proofs introduce hidden variabLes, and
require a factorization property that entails
that, for any fixed values of these hidden vari-
ables, the result of a measurement in one of
two spacelike-separated regions must be inde-
pendent of the result of the measurement in
the other region.

Stapp claims that such proofs are "none too surpris-
ing. " Two very well known proofs along these lines (and
ones whose conclusions, we believe, are surprising) are
those of Bell, and Clauser and Horne [1]. (We empha-
size, however, that the introduction of hidden variables

is inessential to OI, and that Bell's inequality or an alge-
braic contradiction can be derived without explicit refer-
ence to them, using just OI and PI—see ref. [10].) We
claim that Bell and others are correct to require OI along
with PI, given that they avoid determinism. We support
this claim by showing that Stapp's argument is logically
invalid. We shall then suggest that given the assumption
of OI (or determinism, or, of course, both), the proof is
valid.

II. STRICT CONDITIONALS AND
COUNTERFACTUAL CONDITIONALS

The two essential features of Stapp's latest argument,
apart from the quantum predictions, are his locality ('no-
faster-than-light-influence" ) conditions —roughly, PI—
and a rule of inference which elsewhere [9] he calls "elim-
ination of eliminated conditions" (EEC). For reasons dis-
cussed at length elsewhere [6], we doubt whether Stapp's
locality conditions are valid in a genuinely indetermin-
istic framework. However, here we shall grant Stapp's
locality conditions as unproblematic so that we may fo-
cus on the (perhaps more serious) difBculty arising from
the supposed rule of inference EEC. We concentrate on
the argument in [8], that of [7] being the same in logical
structure.

Notation: We adopt Stapp's notation in [8] and his
use of Hardy's nonlocality experiment [4], in which there
are two spacelike-separated regions, A and B, in each of
which there are two possible measurements, 1~ or 2~ and
ltd or 2tr, with possible results y (yes) or n (no) in each
region. Letting R = A or B and i = 1 or 2, we define:
B; means "the measurement iver is performed in region
R." Further, letting p = y or n, we define: p~ means
"the result p occurs in region R." Note that because only
one measurement can be performed in a given region at
a time, and only one result can occur in a given region at
a time, the following inferences are true, with "~" the
strict conditional connective and "~" the logical negation
operator:
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Stapp [8] says explicitly that he, too, uses m as the strict
]

conditional. In doing so, he correctly derives &om the
quantum predictions and his locality conditions the fol-

lowing nested conditional (where "A" is the logical "and"
connective):

( i & Bi & y~) ~ [(A, ~ B,) ~ [(A, A B,) ~ [(A., r B,) ~ [(A, n, B ) ~ (A, P B, n, n,&)]]]].

Stapp says that (2) implies

(2)

(Ag & Bg & yg) m (Ag A Bg A n~).

And (3) directly contradicts the quantum predictions for the Hardy [4] experiment. Hence, if Stapp has legitimately
derived (3) from his locality conditions plus the quantum predictions, then he has indeed shown that they lead to a
contradiction. He claims to justify the inference from (2) to (3) by use of the following rule (EEC):

((Ag & B& & pz) m [(A& n, 82) m [(A2 A B2) m f(A2 A B&) ~ [(A& n, B& m (A& A B, A ~z)]]]])
~ [(Al ~ Bl ~ JJA) + (Al ~ Bl ~ aB)]. (4)

The first thing to note about this argument is that
Stapp cannot mean what he says when he says that ~ is
a strict conditional, for straightforward truth-functional
analysis reveals that EEC is then invalid. The strict con-
ditional p -+ q is false if and only if there is a possible
valuation: p = T ("true") and. q = J ("false" ) [11].
Using the valuation (Aq = T, A2 = J,Bq = T, B2 =
&, yg = T, nz = J ), EEC comes out false. Hence the
rule thus interpreted is invalid. (Keep in mind that the
possibility of a falsifying valuation is all that is required
to invalidate a strict conditional. )

It is very important here to note that this valuation
is permitted by the quantum predictions themselves. In-
deed, it is exactly a prediction of the Hardy experiment
[4]—in particular, his Eq. (17d)—that makes the falsify-
ing valuation possible. Therefore, (17d) entails the in-
validity of EEC. Furthermore, (17d) is explicitly used
by Stapp in his derivation of an algebraic contradiction.
And once one sees that (17d) and EEC are inconsistent,
it is no surprise that the argument results in a contra-
diction. But, of course, deriving a contradiction &om a
contradiction does not constitute a nonlocality result.

On the other hand, the content of Stapp's argument
suggests that he did not mean to say that + in the an-
tecedent and consequent of EEC is the strict conditional,
but rather the counterfactual conditional, usually writ-
ten P CI-+ Q and read: "If P had been the case, then g
would have been the case." (Indeed, Stapp himself uses
the counterfactual conditional in [9].) So, for example,
the conditional

(Aq A Bq A y~) ~ [(Aq A B2) C I-+ (Aq A B2 h y~)] (5)

can be read: "If 1~ and 1~ had been measured with the
result y in region A, then it would have been the case

that, if 1~ and 2~ had been measured, it would have
been the case that 1~ and 2~ were measured with the
result y in region A." (5) is in fact one of Stapp's locality
(PI) conditions, with "~" interpreted as "Clm." (The
First two conjuncts in the last consequent are obviously
redundant, but we keep them in order to make it clear
that our argument exactly follows Stapp's. ) Under this
necessary change of conditionals, EEC reads

((A, n, B, r y&) C3-+ [(A, r B,)~ [(A, w 8,)~ [(A2 & Bg)~ [(Ag & Bg)~ (Ag ~ Bg & nay)]]]])
m [(Ag h Bg A y~) 6-+ (Ag r Bg n, n~)]. (6)

We do not change the second-to-last conditional to a
counterfactual because it expresses the entailxnent of the
consequent of EEC by its antecedent.

An important question arises here, namely, whether
all of the conditionals in (4) must be reinterpreted as
in (6). The answer is no. On the one hand, it is clear
that, for example, the second conditional must be a coun-
terfactual because, given Aq A Bq, one can at best say
what mould have happened had 1~ A 2~ been performed.
[One cannot say what does or will happen, given that
l~ A 2~ is performed because quite clearly it is not-
given the assumption Aq A Bq, the concurrent assuxnp-
tion that Ai A B2 would amount to the claim that the
xneasuring device in region B simultaneously makes two
different measurements, a contradiction of (1), above. ]
On the other hand, this problem does not plague the
first and last conditionals in (6); hence, there is noth-
ing preventing them from being strict conditionals. [A
similar arguxnent would make the 6rst, but not the sec-
ond, conditional in (5) a strict conditional. ] Changing
the first and last conditionals back to strict conditionals,
EEC becomes

f(Aq A Bq A y~) ~ [(Aq h, B2) ~ [(A2 A B2)l:3+ [(A2 A Bq)~ [(A~ A By ~ (Aq & Bq A n~)]]]]j
~ [(Ag h Bg A y~) m (Ag h Bg A n~)].
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However, in the next section we shall show that if (6) is
invalid, then so is (7). Indeed, of (4), (6), and (7), (6)
is the logically weakest formulation of EEC, so that its
failure entails the failure of (4) and (7). Therefore, we
shall concentrate on (6) and demonstrate its invalidity.
We emphasize that the move &om the strict conditional
to the counterfactual conditional is absolutely necessary
if Stapp's argument has even a chance of validity, because
EEC is clearly invalid when all its conditionals are read
as strict.

it could still be that p = T and q = 4 in some worlds.
The truth of p 0-+ q requires only that p = J or q = T
(or both) in the nearest p worlds. Therefore, the strict
conditional is easier to falsify than is the counterfactual
conditional. And conversely, if a counterfactual condi-
tional is false, then a fortiori the corresponding strict
conditional is false. Hence, if we want to show the inva-
lidity of EEC in its weakest formulation, we must show
that (6) is invalid. It will follow that (7) is invalid.

III. TRUTH CONDITIONS FOR THE
COUNTERFACTUAL CONDITIONAL

The counterfactual conditional is, of course, subject to
difFerent truth conditions &om those of the strict condi-
tional. The conditions most widely used —and the ones
endorsed explicitly by Bedford and Stapp [9]—are those
given in Lewis' [12] analysis in terms of possible worlds.
Lewis proposes:

"P C3~ Q" is true at a world m iff: (i) There
are no +worlds (i.e., possible worlds where

P is true) or (ii) every +world among those
worlds closest to ut is also a Q-world

[One must say "among those closest to m" to allow for
ties—two P worlds equally close to m. Also, for simplicity
we ignore the case where there are no P worlds closest
to m—just as there are no positive real numbers closest
to zero. Cf. [12] (1976), Sec. 1.4.] Example: Let P
denote "a photon hits the photographic plate" and let Q
denote "the plate registers a hit. " Presumably, "QE3+ g"
is then true in our world (i.e., the actual world, which,
hereafter, we call a). And a remote (highly dissimilar)
possible world where the laws of nature are different (so
that photographic plates are unafFected by photons) is
irrelevant, because such a world is farther from a than
are possible worlds where the laws are such that in fact
photons do afFect photographic plates (as they do in a).

For present purposes, one need not worry unduly about
a general definition of closeness of possible worlds. We
shall take only the rather Bexible position that the clos-
est worlds are ones where no "indiscriminate" changes
are mad- indiscriminate here meaning "not forced by
the antecedent of the counterfactual conditional. " So, for
example, because the counterfactual supposition P about
the photon did not require a change in the laws of nature,
we presumed above that worlds where such changes ob-
tain are farther &om a than those which share our laws.
In what follows, nothing we say turns on controversial as-
sumptions about the precise criteria to be used for world
similarity.

It is clear &om the truth conditions for counterfactuals
that (6) is weaker than (7). Recall that the invalidity of
a strict conditional p —+ q is assured by the possibility of
a falsifying valuation. In other words, if p ~ q is true,
then it is the case that either p = J or q = T {orbeth) in
every possible world. (It is best in this case, however, to
restrict ourselves to possible worlds where quantum pre-
dictions hold. ) On the other hand, if p C3-+ q is true, then

IV. INVALIDITV OF EEC

The consequent of a strict conditional is often called a
"necessary condition" for the antecedent. In other words,
a consequent, q, has a certain reatriction placed upon it
merely by virtue of its being the consequent of some an-
tecedent, p, namely, that it must be true if p is. The
consequent of a counterfactual conditional is similarly
restricted —though now counterfactucLly restricted —by
its antecedent, for which it may be called a 'counterfactu-
ally necessary condition. " Hence, even if for some reason
one supposes that the antecedent of some counterfactual
p C3-+ q is not of interest, still it cannot be ignored, be-
cause it imposes a certain restriction on q. Stapp s funda-
mental error in endorsing EEC is to ignore certain coun-
terfactual antecedents which he considers to have been
"countermanded. " Even if he is correct, their having
been countermanded is not license to discard these an-
tecedents. The following rigorous analysis of EEC makes
it clear that Stapp's brief and nonrigorous argument does
not justify the EEC "collapse" of a nested counterfactual
into a single one.

The way to think about (6) is to imagine moving from
one set of possible worlds to another. Here we begin by
putting ourselves into the nearest (Aq A Bq A y~) worlds
to a and asking, what would have been the case (given
that we are in that world) if we had performed (1~ A

2~)? To answer that question we jump into the nearest
(Aq A B2) worlds —that is, the (Aq A B2) worlds nearest
to the (Aq A Bq A y~) worlds where we were a moment
ago. There we ask, what would have been the case if
we had performed (2~ A 2~)? The completed process is
illustrated in Fig. 1.

FIG. 1. Possible worlds analysis of EEC.
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The process ends at the (Aq ABq) worlds nearest to the
(A2 ABq) worlds nearest to the (A2AB2) worlds nearest to
the (Aq A B2) worlds nearest to the (Aq A Bq A y~) worlds
nearest to a. Are those worlds at the end of the process
exactly the same worlds as the (Aq A Bq A y&) worlds
nearest to o;? If they were, then all of the (Aq A Bq A y~)
worlds nearest to o. would also have to be n~ worlds, and
(3) (interpreted with counterfactual conditionals) would
come out true under Lewis' conditions. This result would
mean that the diagram in Fig. 1 "closes." But there is
no reason whatsoever to suppose that the diagram does
close [13]. The worlds at the end of the process are n~
worlds by virtue of the restriction placed upon them. But
these restrictions are not also placed on the (Aq ABq Ay~)
worlds nearest to o.. (2) (interpreted with counterfactual
conditionals) and Fig. 1 tell us nothing whatever about
the direct relationship between o. and the (Aq A Bq A n~)
worlds at the end of the process. Indeed, (2) does not
imply (3) for at least the following reasons:

(a) Nothing in (2) or Fig. 1 precludes the possibility
that the (Aq A Bq A y~) worlds nearest to o. are all y~
worlds. In this case, the diagram would not close. This
possibility, however, is perhaps contrary to the quan-
tum predictions for the Hardy experiment —whether it
is might depend on difFicult issues concerning the con-
nection between probabilitistic and counterfactual state-
ments.

(b) Nothing in (2) or Fig. 1 precludes the possibility
that the (Aq A Bq A n~) worlds at the end of the process
are all n~ worlds. Again, in this case the diagram would
not close. But this possibility is subject to the same
potential objection as (a).

(c) Nothing in (2) or Fig. 1 precludes the possibility
that the (Aq A Bq A y~) worlds nearest to a are split,
some being n~ worlds, others y~ worlds. This possibility
amounts to the claim that the (Aq A Bq A n~) worlds at
the end of the process are a subset of the (Aq A Bq A y~)
worlds nearest to o, , so that the diagram partially closes.
In such a case, there is a tie in nearness to n between
(Ay ABg Ay~ Aygy) worlds and (A& AB& Ay& An&) worlds
Hence, (3) is false under Lewis' conditions while (2) could
still be true. The quantum predictions do not tell against
this possibility, but indeed suggest quite strongly that it
is the case, given that the outcome in region B is truly
indeterministic, i.e., it might have gone either way.

(d) Because the outcome of the 1~ measurement in
any (Aq A Bq A y~) world nearest to cx is restricted only
by n (i.e., by its being a counterfactually necessary con-
dition for a), whereas the 1~ outcome in any (Aq A Bq)
world at the end of the process is subject to a long string
of restrictions, there is no reason to suppose that these
worlds are the same. The 6rst is hardly restricted at all.
The latter is highly restricted. Stapp's move from (2) to
(3) is, in eKect, a retention of the effects of the restric-
tions while dropping the restrictions themselves. But, of
course, once one drops the restrictions, there is no reason
to suppose that their eKects continue to obtain.

Purthermore, it does not help matters to note, as Stapp
sometimes does [5], that any given measurement event
yields a "unique result, " meaning that it yields only a
single possible result out of the range of possible re-

suits. It does not help because the measurement event
in (Aq A Bq) worlds nearest to o, is not the same as the
measurement event in (Aq A Bq) worlds at the end of the
process, even though the settings are the same. These
measurement events are not the same for the simple rea-
son that they exist in diferent possible worlds. But Stapp
cannot claim that measurement events in di8'erent pos-
sible worlds, when the settings are the same, must yield
the same unique result —such a claim amounts to deter-
mlnlsnl.

Point (c) is sufBcient to dispose of EEC, but point (d) is

perhaps more relevant to Stapp's own attempt to justify
EEC. With (d) in mind, one can see that his claim that
the intermediate conditions are countermanded by the
most recent condition (Aq A Bq) in (2) is irrelevant to
the truth or falsity of EEC. Proposition (2), and likewise
the antecedent of (6), does not consist of the repeated
replacement of one condition for another. It proceeds,
rather, by piling new conditions on to the old ones. The
point is easily seen in a simpler case:

p 0-+ (q ~ r).

V. WHY RULES OF CLOSENESS DO NOT
MATTER

It is important to realize that the argument of Sec. IV
does not, as we said before, depend on any controversial
claims about rules for closeness of worlds. To see why,
consider again point (c) of Sec. IV. Could any accept-
able rule for determining closeness of worlds prevent the
possibility of the situation described in (c)? No. Re-
call that the problem in (c) arose because there is no
guarantee that the (Aq A Bq A y~) worlds closest to n
are not split between (Aq A Bq A y~ A yg) worlds and
(Aq A Bq A y~ A n~) worlds. To prevent this possibility,
one would have to adopt a rule of closeness which guar-
antees at least that the (Aq A Bq A y~) worlds nearest to
o. are all nB worlds. The problem is that any such rule
of closeness would, without any further argument, make
true the following counterfactual:

(+1 A Bl A VA) ~ (+1 A Bl A ~H) (9)

i.e., if one measures 1~ and 1~ and gets result y~, then
the result n~ is guaranteed. There are two points to
make here. First, any rule of closeness which by itself
implies (9) is clearly unacceptable. Indeed, (9) violates
the quantum predictions for the Hardy experiment. [See
his Eq. (17d).] Second, it is of course true that (9) is in

The consequent of (8) is not a replacement of the orig-
inal condition p by the condition q. It is, rather, itself
a counterfactual conditional. So, (8) says that if p had
been the case, then q 0-+ r would have been true. (8) is
not equivalent to, nor does it imply that, p D-w r, even
if (indeed, especially if) q -+ ~p, i.e. , even if q counter-
mands p. The further complexity of (2) adds no means
to avoid these fundamental facts of logic.
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fact the claim which Stapp wants to derive in order to get
a contradiction, but (9) must be derived from a locality
condition plus the quantum predictions, not guaranteed
directly (quite apart from any locality considerations) by
one's choice of the rules of closeness. Any rule which
guarantees (9) already violates quantum mechanics and
therefore cannot be adopted without presupposing from
the start that quantum mechanics is false.

Therefore, in order to avoid the problem described in

(c) by adopting some special rule of closeness, one would
have to assume the falsity of the quantum predictions.
But deriving a contradiction with quantum mechanics
having already implicitly assumed the falsity of quantum
mechanics does not constitute a nonlocality result. Note
also that this argument is completely general —it applies
to any rule of closeness which might be adopted to meet
the objections of Sec. IV.

This independence &om rules of closeness is a special
case of a more general problem, namely, that any new
assumption (i.e., an assumption derived from neither lo-

cality nor quantum mechanics) which might be used to
justify EEC will necessarily also entail the falsity of quan-
tum mechanics, the reason being that, as we have shown

above, EEC is incompatible with the quantum predic-
tions for the Hardy experiment. Hence, the proper re-
sponse to any such argument is to deny not locality or
quantum mechanics but the new assumption used to jus-
tify EEC. For the same reason, it is clear that one cannot
simply adopt EEC as a postulate. The only option left
is to show that EEC is a logical truth.

of the process are restricted by (i.e., are counterfactually
necessary conditions for) all of the antecedent families of
worlds indicated in Fig. 1. For the present case, the im-
portant restrictions are imposed on outcomes at one de-
tector by the parameter settings and outcomes in those
antecedent families of worlds. But Stapp's PI guarantees
that parameter settings at one detector cannot restrict
outcomes at the other. (5), for example, says that if
(Aq A Bq A y~) then the closest (Aq A B;) worlds must be
(Aq A B; A y~) worlds, no matter what the value of i. (It
is, of course, trivial for i = 1.) Thus far, however, there
remains the possibility that introducing an outcome at
region B will change matters, i.e., there remains the pos-
sibility that given some p, if (Aq A Bq A y~ A p~), then
it need not be the case that the closest (Aq A Bq A p'&)
worlds are (Aq A Bq A y~ A p'&) worlds, no matter what
the value of p'. Leaving this possibility open amounts to
allowing counterfactual restriction of outcomes by out-
comes at the opposite detector. But one can eliminate
such restrictions if, on analogy with Stapp's formulation
of PI, one adopts the following form of OI:

(A; A Bq A p~ A p~) ~ [(A; A B, A p ~)~ (A; A Bs A pg A p 8)j. (10)

Indeed, if we add (10) to Stapp's assumptions, then a
contradiction can be derived. But obtaining a contradic-
tion with quantum predictions from PI plus OI is nothing
new; hence, we shall not follow through the derivation of
that contradiction here.

VI. CONCLUSIONS

We have shown that even in its weakest formulation,
EEC is logically invalid. Hence, Stapp's algebraic argu-
ment, which relies essentially on EEC, is invalid. Note,
however, that adopting OI will restore the argument. To
see this point, recall that the (Aq A Bq) worlds at the end
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The material conditional, often denoted "p p q,

" is true
iff p = J or q = T. The strict conditional (sometimes
called "entailment" ) is the necessity of a material condi-
tional, i.e. , (p p q) where CI is the standard necessity
operator in modal logic. It is true if and only if it is
not possible that p = T and q = 3 . Stapp's EEC fails
whether ~ is the material or the strict conditional.
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This difFiculty is analogous to the "broken square prob-
lem" discussed by Clifton, Butter6eld, and Redhead et
al. in Ref. [6].


