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Many-world, decoherence, and modal interpretations of quantum mechanics su@'er from a "basis de-

generacy problem" arising from the nonuniqueness of some biorthogonal decompositions. We prove

that when a quantum state can be written in the triorthogonal form %=+,c; ~ A; )ss ~B; )8 ~C; ), then,

even if some of the c s are equal, no alternative bases exist such that 4 can be rewritten

g, d; ~
A )8 ~B )8 ~

C ). Therefore the triorthogonal decomposition picks out a "special" basis. We can

use this preferred basis to address the basis degeneracy problem.

PACS number(s): 03.65.Bz, 01.70.+w

I. KN'l'MODUCTION

We will prove a technical result that helps several in-
terpretations of quantum mechanics (QM). Specifically,
we show that when a quantum state vector describing
three systems can be written in the triorthogonal form

c~A; ) ~8, ) ~C; ), then there exists no other
triorthogonal basis in terms of which 4 can be expanded,
even if some of the c s are equal. The triorthogonal
decomposition picks out a "special" basis.

Several interpretations of QM can make use of this spe-
cial basis. For instance, many-world adherents can claim
that a branching of worlds occurs in the preferred basis
picked out by the unique triorthogonal decomposition.
Modal interpreters can postulate that the triorthogonal
basis helps to pick out which observables possess definite
values at a given time. And decoherence theorists can
cite the uniqueness of the triorthogonal decomposition as
a principled reason for asserting that pointer readings be-
come "classical" upon interacting with the environment.

To motivate our technical results, we must show why
triorthogonal decompositions, as opposed to biorthogo-
nal decompositions, are sometimes needed to pick out a
basis. But first we set the context by briefly reviewing the
measurement problem.

II. THE MEASUREMENT PROBLEM

Consider a spin- —, particle initially described by a su-

perposition of eigenstates of S„the z component of spin:
~@)=c&(S,=+ )+c2(S,= —). Let ~R =+ ) and

~R = —) denote the "up" and "down" pointer-reading
eigenstates of an S,-measuring apparatus. According to
QM (with no wave-function collapse), if the apparatus
ideally measures the particle, the combined system

evolves into an entangled superposition,

Iq &=c, IS, =+&S IR=+&+c,lS, = &S I—R= —
& .

Common sense insists that after the measurement, the
pointer reading is definite. According to the "orthodox"
value-assignment rule, however, the pointer reading is
definite only if the quantum state is an eigenstate of P,
the pointer-reading operator. Since ~y) is not an eigen-
state of P, the pointer reading is indefinite.

The interpretations of QM mentioned above attempt to
deal with this aspect of the measurement problem. But
their solutions run into a technical diSculty we will call
the "basis degeneracy problem. "

III. BASIS DEGENERACY PROBLEM

To introduce the basis degeneracy problem, we will
show how it arises in the context of many-world interpre-
tations. Many-world interpretations [1] address the mea-
surement problem by hypothesizing that when the com-
bined system occupies state ~p), the two branches of the
superposition split into separate worlds, in some sense.
The pointer reading becomes definite relative to its
branch. For instance, in the "up" world, the particle has
spin up and the apparatus possesses the corresponding
pointer reading. In this way, many-world interpreters ex-
plain why we always "see" definite pointer readings, in-
stead of superpositions.

This approach suffers from a we11-known technical
problem, the basis degeneracy problem, which arises
from the nonuniqueness of some biorthogonal decomposi-
tions. According to the biorthogonal decomposition
theorem, any quantum state vector describing two sys-
tems can, for a certain choice of bases, be expanded in the
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+c, iS, = —)elm =—&g IE (3)

where IE+ & is the state of the rest of the universe after

the environment interacts with the apparatus. As time

passes, these environmental states quickly approach
orthogonality: (E+ IE ) ~0. In this limit, Eq. (3) is a

triorthogonal decomposition of I'0). We will prove in

Sec. V that euen if c, =cz, the triorthogonal decomposi-

tion is unique. In other words, no transformed bases ex-

ist such that I
4 ) can be expanded as

d Is'=+&lz =+&IE' & + d Is'= —&lz'= —
&

IE' ). Therefore„Eq. (3) picks out a "preferred" basis.
Many-world interpreters can postulate that this basis
determines the branches into which the universe splits.

We did not come up with the idea that the environ-
ment picks out the pointer-reading basis. Decoherence
theorists have been stressing this point for years. Indeed,

simple form g;c;IA;)IB;), where the [IA;)] and

[ IB, )]. vectors are orthonormal, and are therefore eigen-
states of Hermitian operators (observables) A and 8 asso-
ciated with systems 1 and 2, respectively. This
"biorthogonal" expansion picks out the "Schmidt" basis.
The basis degeneracy problem arises because the
biorthogonal decomposition is unique just in case all of
the nonzero Ic; I's are difFerent.

When I c i I
=

I e z I, we can biorthogonally expand y in
an infinite number of bases. For instance, we can eon-

' ~

struct S eigenstates out of linear combinations of S,
eigenstates. And, similarly, we can introduce a new ap-
paratus observable P', whose eigenstates are superposi-
tions of pointer-reading eigenstates:

Is„=+&=2-'"[Is=+)+Is,= —&],
lz =*&=2-'"[Ig=+ &+in = —&] .

When c, =c2 =2 ', we can rewrite Eq. (1) as

lq &=2 '"[I&,=+ &I&'=+ &+ls'. = —&I&'= —&.

(2)

These two ways of writing Itp) correspond to two ways of
writing the reduced density operator p, that describes the
apparatus. Trace over the particle's states, using Eq. (1)
and then Eq. (2), to get

p. ——2- [ I
~ = + & « = +

I
+

I
~ = —

& « = —
I ]

=2-'[l~'=+&« =+I+i~ =-&&~ =-I].
From these considerations, we can see that nothing is
special about the pointer-reading basis. The formalism
gives us no more reason to assert that the universe splits
into pointer-reading eigenstates than it gives us to assert
that the universe splits into P' eigenstates. For this
reason, the basis degeneracy problem leaves many-world
interpreters without a purely forrnal algorithm for decid-
ing how splitting occurs.

Our technical results solve the basis degeneracy prob-
lem for the many-world interpretation. Here is why: As
the decoherence theorists [2,3] show, when the environ-
ment interacts with the combined particle-apparatus sys-
tem, the following state results:

ie&=c, iS, =+ &cia=+)e IE, &

Zurek's [2] "existential interpretation, " a sophisticated
variant of the many-world view, relies on the environ-
ment to select the "correct" basis.

Unfortunately, this interpretation sufFers from a ver-
sion of the basis degeneracy problem. Zurek [2] em-
phasizes that if Eq. (3) describes the universe, and if
(E+IE ) =0, then the reduced density operator p z,
describing the particle and apparatus (found by "tracing
over" the environmental degrees of freedom) is

p,~. =leii l~, =+ &&&,=+ll~ =+ &&& =+I
+ fe I IS, = —&&S,= —

I I& =

the same mixture as would be obtained upon wave-
function collapse. If c, =cz, however, then we can
decompose this mixture into another basis, in which case
the pointer reading loses its "special" status. For exam-

ple, define Iqg&—=2 '"[l~.=+&a l~=+&+IS', = —
&

IR = —) ]. If ci =c2=2 '~, then we can rewrite p di,
as

p, .=2 '[Iq &&@ I+le &&a ll

Although decoherence-based interpretations can deal
with their basis degeneracy problem in many ways, a par-
ticularly "clean, " formal solution is to invoke the unique-
ness of the triorthogonal decomposition in Eq. (3). As
noted above, uniqueness holds even when c

&
=cz.

A third kind of interpretation aided by our technical
result is "modal" interpretations [4—8] that rely on the
biorthogonal decomposition theorem. According to most
modal interpretations, if g;c, I A; ) IB; ) is the unique
biorthogonal decomposition of the quantum state, then
system 1 has a definite value for observable A, and sys-
tem 2 has a definite value for k For instance, consider
Eq. (1), the state of the particle-apparatus system after an
ideal spin measurement. According to modal interpreta-
tions, if Ic, IX Ic2 I, then the particle has a definite z com-
ponent of spin, and the apparatus has a definite pointer
reading. These possessed values result not from a world
splitting; the entangled wave function still exists entirely
in our world, and continues to determine the dynamical
evolution of the system. Rather, these modally possessed
values are a kind of hidden variable. (Since few observ-
ables possess values at any given time, and since some of
these observables are nonlocal, modal interpretations do
not fall prey to "no-go" theorems such as Bell's or Ko-
chen and Specker's. )

In short, according to modal interpretations, an ob-
servable can possess a definite value even when the quan-
tum state is not an eigenstate of that observable. The
unique biorthogonal decomposition determines which ob-
servables take on definite values.

For this reason, modal interpretations sufter from the
basis degeneracy problem, just as many-world interpreta-
tions do, when

I c, I

=
I cz I. But our technical results can

help. %'hen the particle-apparatus system interacts with
its environment, it evolves into IV), which is (uniquely)
triorthogonally decomposed in Eq. (3). By allowing
unique triorthogonal decompositions —as well as unique
biorthogonal decornpositions —to pick out which observ-
ables receive definite values, modal interpreters can ex-
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plain why all ideal measurements have de6rute results
(i.e., after the measurement, the pointer reading is
definite). Importantly, the basis selected by a triorthogo-
nal decomposition never conflicts with the basis picked
out by the unique biorthogonal decomposition, when one
exists. In summary, by proving the uniqueness of the
triorthogonal decomposition, we can help many-world,
modal, and decoherence interpretations deal with the
basis degeneracy problem.

IV. FACTORIZABLE VERSUS ENTANGLED STATES

To discuss our technical results, we need to review
some terminology. Assume throughout that all vectors
are normalized.

Two vectors are collinear if the modulus of their inner
product equals 1. For instance, lg) and e'~If) are col-
linear. A nontrivial set of vectors, denoted {la, ) },must
contain two or more vectors. (Ia;) j is "noncollinear" if
any two vectors in the set are not collinear. A set of vec-
tors (la ) } "difFers nontrivially" from (la, ) } only if
some of the ( la ) j vectors are not collinear with any of
the (la, ) j vectors.

( la; ) j is linearly independent only if no vector in the
set can be written as a linear combination of other vec-
tors in the set. (Itt, ) } is orthogonal if (a, la ) =5,". A
linearly independent set of vectors can serve as a basis for
the Hilbert space (or the subspace thereof) spanned by
those vectors.

First, we will prove a lemma about factorizable states.
In some cases, a two-system quantum state is
factorizable: IV) =I/)lg), where IP) is the state of
system 1, and lg) is the state of system 2. If so, then we
cannot rewrite I 4 ) in the "entangled" form
g;d, I A, ) IB, ). In other words, a factorizable state
cannot be rewritten as an entangled state, or vice versa.
We will now formalize this result.

Lemma i: Suppose IV), the combined state of system
1 and system 2, is factorizable. Then there exists no or-
thogonal set of vectors ( I A, ) },and no noncollinear set of
vectors ( IB; ) j, such that I%') =g;d, I A; )g IB; ) (for two
or more nonzero d s).

Proof: By assumption, I+) =I/)lg). Let (IA,')}
denote an orthogonal set of vectors such that
IP) =gjc~ I AJ'), where each c; is nonzero. (An infinite
number of such sets exist. ) So, I 4 ) =g c I A ')g Ig).

Now let I+') =g, d;I A;) IB;), where ( A, ) } is or-
thogonal and contains the same number of vectors as
(IA )} does. Clearly, I+&=I+'& o»y if (IA;)j and
(I A ) j span the same subspace of H, . Therefore, since

( I A; }} and ( I
A ) } are both linearly independent sets of

vectors, the primed and unprimed vectors can be expand-
ed as linear combinations of each other:
IAJ&=g,.ei,. IA;&. So, from I+&=gjcJIAJ&lg&, we
get le&=yj.y;c)ej., IA; &a I&& =y;h;I -A; &e I&& where
h;—:g.ciej;. Since ( I A, ) j is a linearly independent set,
I+ & =g;h; I A; & lg& and I+') =g;d; I A; & IB, & are the
same vector only if d; IB; ) =h;lg) for each i. Therefore,
1%'& = l%'& only if all the (IB; & j vectors are collinear.
This proves the lemma.

V. THEOREMS

In this section, we prove the triorthogonal uniqueness
theorem and related results. We will begin with a trivial
but crucial lemma.

Lemma 2. Let ( Ia; ) j and, ( IC; ) } be linearly indepen-
dent sets of vectors in H& and H2. Let ( I

C ) } be a linear-
ly independent set of vectors that differs nontrivially from
(IC;&j. If I1i&=y;c, la, )elC, ), then lp)=g, d,. la,')
g I C,') only if at least one of the ( Ia,

' ) } vectors is a linear
combination of (at least two) ( Ia;) } vectors. In symbols,
for some k, Iak ) =g;gk, Ia; ), where at least two of the
gk s are nonzero.

Proof. Let If') =g;d;la; ) IC ). We will first prove

lg') equals lp) only if (IC ) j and (IC;& j span the
same subspace of Hz. Therefore, since both of those sets
of vectors are linearly independent, the (IC ) j vectors
are linear combinations of the ( I C; ) } vectors:
IC )=gje;JICJ). By assumption, at least one of the
I
C ) vectors is not collinear with any of the

I C ) vectors.
Therefore, for some i, e; %0 for at least two values ofj.

Since IC ) =gje;J ICJ ), we have ly'&=y;d;la; &

(g e; IC )). Because the (Ia, ) } vectors are
linearly independent,

I
P') =g;d; Ia; )(QJ e,j I CJ )) is

the same vector as I1t ) =g;c;la;)8 IC, ) only if
IC;)=(d;/c;)g~e;iICJ ) for eachi Since. the (IC, ) j vec-
tors are linearly independent, IC, ) =(d;/c, )gje;J IC~ )
only if e;1 =0 for all jAi Theref. ore, for each i, e; %0 for
exactly one value of j, namely j=i. This contradicts the
conclusion of the previous paragraph.

By similar reasoning, you can prove that
I1i') =g;d;la,') IC ) cannot equal lg) if all the
I
a'; ) 's are collinear with the

I a, ) 's. Therefore,
lg) =g;d;la,') IC ) only if (Ia,') } is nontrivially dis-
tinct from ( Ia, ) j. Since ( Ia;') } and ( Ia; ) } must span
the same subspace of H, (or else g, d, la,')SIC,') could
not equal g;c;Ia;)IC, )), it follows that at least one
Ia,') vector is a linear combination of (Ia;) j vectors. In
symbols, for some k, Iak) =g, gk,.la;), where at least
two of the gk s are nonzero.

Given this lemma, we can now prove triorthogonal
uniqueness. Although a three-system quantum state can-
not in general be triorthogonally decomposed, our proof
shows that if such a decomposition exists, it is unique.

Triorthogonal uniqueness theorem. Suppose
I
+ & =g;c; I A,. & I&; & I C; &, where ( I A; & } ( IB; & j, and

(IC,. ) j are orthogonal (and therefore linearly indepen-
dent) sets of vectors in H„H2, and H3. Then, even if
some of the Ic; I's are equal, no alternative orthogonal sets
of vectors (IA ) j, (IB ) j, and (IC,'}}exist such that
I+ & =g;d; I A &e I8 ) IC,'), unless each alternative set
of vectors differs only trivially from the set it replaces.

Proof. Assume, without loss of generality, that ( IC; ) j
difFers nontrivially from ( I C ) }. It is given that
IV) =g;c; Ia; )s IC,. ), where Ia; ):—I A; )8 IB; ).

Here is a proof by contradiction. Suppose
I+&=y;d;IA &I& &Ic &.

I C ), where Ia,'. ) =
I
A ) I8 ). By lemma 1, we can-

not rewrite the factorizable state I ak ) =
I Ak ) IBk ) as
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an entangled state.
But according to lemma 2, since ~%) =g,.c; ~a; ) ~C,. )

and since [ ~ C; ) ] diff'ers nontrivially from [ ~C; ) ], it fol-

lows that ~%) =g,-d;~a,') ~C ) only if
~a'k )=g;gk;]ct;), where at least two of the gk s are
nonzero. Since ~a;) —=

~ A;)~B;), it follows that ~a'k ) is

an entangled state, ~ak ) =g,.g k~ A,. )8 ~B, ). This con-
tradiction establishes that ~%)Ag;d;~ A,.') ~B )8 ~C,.').

We can generalize this result, because nowhere did we
need to assume that [ ~B, ) ] is orthogonal, or even linear-

ly independent. In lemma 1, we assumed only that

[~B, )] is noncollinear. In lemma 2, we assumed that

[ ~C; ) ] and [ ~a; ) j are both linearly independent sets of
vectors. But if ~a, ) =~A, ))B, ), then the linear in-

dependence of [ ~a, ) ] follows entirely from the linear in-

dependence of [ ~ A; ) ].
Finally, as Allen Stairs first pointed out, lemma 1 holds

even if [ ~ A; ) ] is a linearly independent, instead of or-

thogonal, set of vectors. Putting a11 this together, we get
the tridecompositional uniqueness theorem.

Tridecompositional uniqueness theorem
Suppose ~4) =g;c; ~ A; ) ~B; ) ~C; ), where [ ~ A; ) j

and [ ~ C; ) ] are linearly independent sets of vectors, while

[ ~B, ) ] is merely noncollinear. Then there exist no alter-
native linearly independent sets of vectors [~ A )] and

[ ~C,') ], and no alternative noncollinear set [ ~B ) ], such

that ~%') =g, d, ~ A,') ~B,') ~C,'). (Unless each alterna-

tive set of vectors differs only trivially from the set it re-

places. )

At this point, for any n, we can prove the n-

decompositional uniqueness theorem.
Suppo se +=&;c; ~ A; &e

~ U; ) ~ V, ) ~C; ),
where [~A;)] and f ~C,. )] are linearly independent sets of
vectors, [ ~ U,. ) ] is a noncollinear set, and [ ~ V; ) ], etc. , are
any sets of vectors. No nontrivially-different alternative
sets of vectors exist such that %=+,d, ~ A,') ~ U,')
IV )(8 elD &.

Proof. Define IB &:
I U; )Ig

I V; &, and
—=

~
U )g

~ V,') @ . The noncollinearity of [ ~ U; ) ] and

[]U,') ] implies the noncollinearity of []B;) ] and [ ~B,') ].
Now plug these [ ~B; ) ]'s and [ ~B,') ]'s into lemma 1 and
the triorthogonal uniqueness theorem. (Lemma 2 does
not invoke ~B, ) vectors. ) The proofs go through un-

changed. Therefore, the n-orthogonal uniqueness
theorem holds.

VI. CONCLUSION

The tridecompositional uniqueness theorem provides
many-world interpretations, decoherence interpretations,

and modal interpretations with a rigorous solution to the
basis degeneracy problem. Recall from above that when
a device ideally measures a spin- —,

' particle's z component
of spin, and then the combined system interacts with its
environment; the final state is

~e &=c1IS,=+ &(8 IR=+ &IE+ &

+c, iS, = —&e IR = —& IE

If c& =c2, then the biorthogonal decomposition of the ap-
paratus with the particle-environment system is not
unique, and therefore gives us no principled reasoning for
singling out the pointer-reading basis. This is the basis
degeneracy problem. We have just proven, however, that
even if c& =c2, and even if the environmental states are
not strictly orthogonal, no alternative bases exist such that

can be expanded as d, ~S'=+ )]R'=+ )
Ig ~E'+ )+d2~S'= —)~R'= —)8 ~E' ). Therefore, we
have pinpointed a rigorous formal reason for calling the
pointer-reading basis "special. "

Many-world interpreters can claim that worlds "split"
along that preferred basis. Decoherence theorists can in-
voke tridecompositional uniqueness to support their
claim that environmental interactions make the pointer
reading become "classical" in some sense. And modal in-
terpreters can claim that when a quantum state vector
can be a tridecomposed (with two of the three bases or-
thogonal), the observables picked out by the tridecompo-
sition have definite values.

In [9], one of us argues that ideal measurements of
most observables are impossible. If this is correct, then
the unique biorthogonal decomposition of the measuring
device with the rest of the universe, if it exists, usually

picks out some apparatus basis other than the pointer-
reading basis. Furthermore, a nonideal measurement
usually results in a particle-apparatus-environment state
that cannot be tridecomposed. Our technical results can-
not help to solve these deep-seated technical problems as-

sociated with nonideal measurements.
In conclusion, at least for idealized cases, the tridecom-

positional uniqueness theorem can help several interpre-
tations of QM deal with the basis degeneracy problem
that arises from nonunique biorthogonal decompositions.
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