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Laser cooling of a single trapped ion in a Paul trap is discussed theoretically in the Lamb-
Dicke limit, with full consideration of the time dependence of the trapping potential. Resulting
mean kinetic energies are defined as time averages over one period of the micromotion and are
compared with final temperatures expected from the laser cooling treatment with harmonic traps.
For laser-atom detunings close to the micromotion frequency the results differ significantly from
those expected for a harmonic trap potential. A physical interpretation is given and simple formulas

are derived for the strong confinement case.
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I. INTRODUCTION

The ability to cool single trapped ions optically has
become an important tool for fundamental experiments
both in quantum optics and in precision spectroscopy
[1,2]. This is due to the fact that a single trapped
and cooled ion provides an almost ideal quantum sys-
tem which can be modeled by quantum optics theory and
thus considered for applications with time and frequency
standards [3,4].

The standard theory of laser cooling of trapped ions
assumes motion of a laser-driven ion in a (static) one-
dimensional harmonic oscillator trapping potential [5-8].
Almost all experiments with single laser-cooled ions, on
the other hand, have been performed with Paul traps
where a rf of frequency w and a dc electric field are used
to generate a trapping potential. Thus the trapping po-
tential of a Paul trap is explicitly time dependent. In
general, the ion motion in a Paul trap is governed by a
fast oscillation at the driving frequency w (micromotion),
superimposed on a slow secular motion (macromotion)
[1]. To the extent that the frequency of the macromotion
is much smaller than that of the micromotion, adiabatic
elimination of the fast time scales 1/w allows one to de-
scribe the ion dynamics as motion in an effective har-
monic oscillator potential (pseudopotential). Thus stan-
dard laser cooling theory is based on the assumption that
the time scale of the rf field is much faster than all other
time scales of the problem. In experiments the effects
of the micromotion are clearly visible as additional reso-
nances in excitation spectra [9], and it appears necessary
to investigate in which way the time dependent trapping
field influences the cooling dynamics, the cooling rates,
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and the final temperatures. It is the purpose of this pa-
per to develop a theory of laser cooling in Paul traps that
includes the influence of the micromotion.

A theoretical description of laser cooling of a single
two-level ion trapped in a harmonic potential was given
some time ago by Wineland and Itano [5] and by Sten-
holm, Javanainen, and Lindberg [6-8]. They derived sim-
ple formulas for both the cooling rate and the final energy
reached by the ion at the end of the cooling process. For
trap frequencies v smaller than the natural linewidth T’
of the optical transition used for laser cooling (i.e., the
weak confinement or weak-binding limit), the final energy
of the ion is limited by E = AI'/2 (Doppler limit). For
v > T (i.e., strong confinement or strong-binding limit)
the trapped ion develops well-resolved absorption side-
bands at the trap frequency and selective absorption on
the lower sideband can optically pump the ion to its low-
est vibrational state, and therefore to the lowest energy
permitted by quantum mechanics E = Av/2 (sideband
cooling).

When discussing the influence of micromotion, the no-
tion of temperature has to be reconsidered. In a har-
monic trap laser cooling theories predict a Boltzmann
distribution of the occupation of the harmonic oscilla-
tor states which allows the assignment of a temperature.
However, with the micromotion present, the Hamiltonian
that describes the motion of the ion in the trap is time
dependent and therefore the concept of time-independent
eigenstates of the trap Hamiltonian fails. Nevertheless, it
is always possible to define the kinetic energy via the ex-
pectation value of the squared momentum (P(t)2) which
is explicitly time dependent. For a comparison with ex-
perimental results we define as the mean kinetic energy
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a time-averaged value (P2)/(2m) where the time aver-
age is taken over one period 27 /w of the micromotion
[11]. As we will show below, this mean kinetic energy
can be compared to the kinetic energy (as given by the
temperature) obtained for the harmonic pseudopotential
approximation and thus one can study the influence of
the micromotion on the dynamics of laser cooling of a
single ion in Paul traps. Although in this paper we con-
centrate on two-level ions, the general features of the re-
sults are valid and applicable to laser cooling processes
for multilevel ions in a time-dependent potential.

From our results, it turns out that the treatment of
laser cooling with harmonic traps describes the cooling
dynamics sufficiently well as long as the laser-atom de-
tuning 4 is small compared to the micromotion frequency
w, more precisely, for |§] < w —v —T'. We will show that
when this condition is not fulfilled, cooling may arise for
additional detunings and heating may appear where cool-
ing was expected. It will also be shown that laser cooling
is possible for detunings even above resonance, i.e., for
blue detunings, using both traveling- and standing-wave
laser fields.

This paper is organized as follows: in Sec. II an
overview of the most important features is presented,
with an emphasis on the phenomena that arise when tak-
ing full account of the micromotion in a Paul trap. The
theoretical model is introduced in Sec. III. In Sec. IV we
give a physical description of the cooling process, deriving
a simple formula for the final kinetic energy in the strong
confinement limit. In Sec. V we describe a method that
permits us to numerically evaluate the kinetic energy in
terms of matrix continued fractions and we derive some
analytical results pertaining to the role of micromotion
in the stationary state. A more detailed discussion of the
results is presented in Sec. VI. Finally, some technical
details of the calculations are given in Appendixes A and

B.

II. PRELIMINARY CONSIDERATIONS

In the following we will consider laser cooling of a single
trapped ion confined in a Paul trap including the full
time dependence of the trapping potential. With the
assumption that the ion is confined to spatial dimensions
smaller than the optical wavelength (Lamb-Dicke limit),
we have obtained the stationary behavior of the ion. In
this section we give a qualitative overview of the main
results presented in this paper.

The motion of an ion in a Paul trap is described by
the Hamiltonian

i, - 2 Lawaxe (2.1)
7 om 2 ’ ’
where
W(t) = %wz[a — 2q cos(wt)] (2.2)

Here P2%/2m denotes the kinetic energy of the ion with
mass m. The parameter a is proportional to the dc volt-

age whereas q is related to an ac voltage of frequency w
applied to the trap electrodes.

We begin our discussion by describing the motion of
the ion from the classical point of view. Starting from the
Hamiltonian (2.1) one can derive the equation of motion
for X (t), which is the Mathieu equation

2
. w

X(t)+ I[a — 2gcos(wt)] X (t) = 0. (2.3)
As it is well known, stable ion trapping is only possible
for certain values of the (a,q) parameters, and is usu-
ally described in terms of a stability chart [12]. A stable
solution of this equation can be expressed as

X(t) = AF(t) + cc., (2.4)

where the complex parameter A depends on the initial
conditions X (0) and P(0), and

o

o ei(u+nw)t
E n .

n=—oo

F(t) = (2.5)

The frequency v is a function of a, ¢, and w (more specif-
ically, 2v/w is a function of @ and q). Assuming c¢o = 1,
we can write ¢y, (n # 0) in terms of a continued fraction
(13]

co=1, (2.6)

C(t2nF2
Cian = 7 _( s )1 , (2.7)

2T Vianen — -
where
Vi, = a— (2v/w+ 2n)2.

q

From Eq. (2.6) it can be shown that, in the limit

a,q < 1, the inequality ¢o = 1 > |c+2| holds, and there-
fore, the motion is essentially governed by a secular mo-
tion with frequency v ~ iw(a + ¢%/2)'/? (K w). Super-
imposed on this macromotion is a small-amplitude modu-
lation with the micromotion frequency w. In this case the
pseudopotential approximation applies, which amounts to
expanding all the variables in terms of ¢ and a, and re-
taining only the lowest order terms in these expansions.
In this limit, X (¢) can be approximated by

X(t) ~ Ae™* + c.c. (2.8)
that is, one can consider that the ion moves in an ef-
fective harmonic potential of frequency v, without tak-
ing into account the micromotion. However, to evaluate
the kinetic energy one has to consider the micromotion,
since despite the fact that the amplitudes of the micromo-
tion oscillations are small, their frequency is much larger
than v, i.e., it contributes to the total kinetic energy.
Within the framework of the pseudopotential approxi-
mation (and for ¢ > a) the kinetic energy due to mi-
cromotion is reinterpreted as the potential energy in the
effective harmonic trap, which allows us to restrict the
study of the motion in Paul traps to harmonic traps.
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This approximation is also used in all theories concern-
ing laser cooling of ions in Paul traps [15,16]. Hence,
all theories treating laser cooling of ions in a Paul trap
merely consider the secular motion of an ion in the effec-
tive harmonic trap and neglect the effects of the micro-
motion other than a contribution to the kinetic energy of
the same order as that of the secular motion. This leads
one to consider the micromotion as a source of further
oscillatory motion, which in fact leads to the appearance
of sidebands as, e.g., observed in absorption spectra [9].
Qualitatively, we may expect that the presence of the
micromotion affects the cooling dynamics and it is then
worthwhile investigating whether or not it could be used
for additional cooling.

In order to study the role played by micromotion in
laser cooling let us first give a brief summary of the the-
oretical description of laser cooling in harmonic traps.
The energy of an ion moving in a harmonic potential of
frequency v is given by

(P%) 1 5 42

E = Y= + gmy (X,
where (---) stands for quantum expectation value. This
energy can be calculated in the Lamb-Dicke limit [10],
and therefore the kinetic energy of a laser cooled ion in
a stationary state can be readily derived. For two-level
ions interacting with a laser traveling wave, cooling oc-
curs for negative laser-ion detunings (6 < 0), and the
minimum energies are found for low Rabi frequencies [6].
In a standing wave, however, the situation is different,
since the ion can be localized at any position with re-
spect to the standing wave [10]. So, at the node the final
energy does not depend on the Rabi frequency, and it is
a factor of about 2 smaller than in the traveling case. At
the point of maximum gradient and for high Rabi fre-
quencies laser cooling for positive detunings (6 > 0) is
possible.

The pseudopotential approximation also allows a sim-
ple explanation of cooling by transforming to a frame
which is moving with the trapped ion. In this frame the
ion senses, in addition to the laser at frequency wy, two
motional sidebands wy, +v which arise from the harmonic
motion of the ion in the trap with frequency v [compare
Eq. (2.8)]. Higher order sidebands are neglected in the
Lamb-Dicke limit. It can be shown that any absorption
of a photon of frequency wy, + v (wr — v) is accompa-
nied by a decreasing (increasing) of the ion’s energy [10].
Cooling is achieved when the relative absorption on these
frequencies is such that the energy of the ion is reduced
on the average (i.e., when the ion is more likely to ab-
sorb photons at wy, + v). Laser cooling is particularly
efficient when the secular frequencies are larger than the
natural linewidth I" of the cooling transition; in this case,
by choosing the laser frequency in such a way that the
sideband at wy + v is on resonance with the two-level
transition, we obtain the most efficient cooling mecha-
nism and the ion ends up in its lowest vibrational state
(sideband cooling).

(2.9)

In all experimental realizations and measurements,
such as those used for precision spectroscopy, one is inter-
ested in the ion kinetic energy achieved after laser cooling

the ion, since this is the quantity that eventually limits
the precision of a measurement. As will be shown in Sec.
V below, in the Lamb-Dicke limit, the kinetic energy and
spatial variance of a single trapped ion can be calculated
under the influence of laser cooling, taking also into full
account the time dependence of the potential. The ki-
netic energy is determined by the expectation value of
the squared momentum (P(¢)2) which, even in the sta-
tionary state, oscillates according to the different modes
given in Eq. (2.4). Hence we take a time average over
one period of frequency w to determine the mean kinetic
energy (P2)/(2m) and the mean variance of the spatial
extension (X2). In addition, we can determine the maxi-
mum and minimum kinetic energy and spatial extension
that are attained in one micromotion period and compare
these to values predicted by the pseudopotential approx-
imation (i.e., the harmonic trap approximation).

As stated above, in the absence of cooling the harmonic
trap is recovered in the limit a,qg — 0 (and w — oo, such
that v remains constant). We have found that this is
also true even in the presence of cooling. In particular,
for a = 0 we find

(T’l)’ — 2<P2>htv
-Q(—2> B <X2>ht7

(2.10a)
(2.10Db)
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FIG. 1. Kinetic energy (a) and position variance (b) as
functions of the Mathieu ¢ parameter for an ion at the node
of a standing wave. Parameters are a = 0, v = 0.2T", and
A = —-T'/2. Solid lines give the minimum and maximum
values in one micromotion period; dot-dashed lines give the
mean values and the dashed lines show the results calculated
with a harmonic trap. Note that the stability boundary for
the present case is ¢ =~ 1.
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2
and the amplitude of the micromotion tends to zero [the
subscript ht indicates the value obtained using the (ef-
fective) harmonic oscillator trap]. This behavior is illus-
trated in Figs. 1(a) and 1(b) where the time averaged
position variance (X2) and kinetic energy (P2)/2m (in
units of AI'/2) are plotted as a function of the parameter
g (dashed-dotted lines). We have assumed that the ion is
located at the node of a standing laser wave. In these fig-
ures we have also indicated the maximum and minimum
values of the position variance and kinetic energy during
one micromotion period (upper and lower solid lines, re-
spectively) and the corresponding values expected from
the harmonic trap approximation (dashed lines). The
curves of Fig. 1 were obtained from the cooling theory
derived in the following sections.

Figure 2 shows (P2?) and (X?2) for a trap frequency
v = 1.5T", and a micromotion frequency w = 10T as a
function of the detuning for the case of an ion at the
node of a standing-wave field. The solid lines represent
the results of our theory (Sec. V), and the dashed lines
show the detuning dependence for a harmonic potential.
For the parameters in this figure we have sideband cool-
ing for the harmonic trap: for the optimum detuning
of A = —v we find an energy close to £ = Av/2, or

(2.10¢)
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FIG. 2. Mean position variance (a) and mean kinetic en-
ergy (b) as a function of the detuning A for an ion at the
node of a standing wave. Parameters are a = 0, v = 1.5,
and w = 10. The dashed lines show the results calculated
with a harmonic trap.

(P?)/2m = hv/4 = 3/8kI [Fig. 2(b)]. Note first that in
Fig. 2 the regions where cooling and heating are observed
differ considerably when micromotion is considered. As
will be shown below, this qualitative behavior is general
and remains unchanged when we consider other locations
of the ion in the standing-wave or in traveling-wave con-
figurations [see Figs. 3(a) and 3(b)]. In addition, we
find increased cooling for detunings below the resonance
(red detunings) and there are resonances where heating
is observed (when the laser detuning is close to the rf fre-
quency) and, more surprisingly, there is cooling observed
for blue detunings. The minimum energy calculated in
the harmonic trap approximation is no longer achieved,
and more importantly, a minimum energy may be found
now for much larger detunings with values even below
that predicted for a harmonic trap.

This behavior may be understood in a qualitative way
by transforming to a frame that is moving with the ion.
In this frame the ion appears at rest and interacts with
the laser and the motional sidebands: in the Lamb-Dicke
limit the ion senses light waves of frequencies wy,, wy, + v,
wr £ (v £ w), etc. [compare (2.4) with (2.8)]. These
frequencies are represented in Fig. 4, where their inten-
sities are indicated by the height of the vertical bars
which, in turn, are determined by the coefficients cy,
given in Eq. (2.6). Absorption of photons of frequencies
wr + nw + v (n = 0,£1,...) is accompanied by a de-
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FIG. 3. Mean kinetic energy as a function of the detun-
ing for a two-level ion (a) located at the point of maximum
gradient in a standing wave, with Q = 5T; (b) in a traveling
wave, with Q@ = 2I". Other parameters are a = 0, v = 1.5T,
w = 10T, and k& = 0.01 (m = 1).
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FIG. 4. Schematic representation of the lasers seen in a
frame moving with the ion. Note that the sidebands are a
factor of n = k/(£2'/?) <« 1 times smaller than the central
laser.

crease of the kinetic energy of the ion, while absorption
of laser photons at wy +nw —v (n = 0,%1,...) increases
the kinetic energy. Hence, as in the case of the cooling
theory for the harmonic trap, the absorption at different
laser-atom detunings determines the cooling. This argu-
ment is particularly simple when the frequencies sensed
by the ion are well separated, i.e., in the sideband limit
I' K v € w—T. In this case, for a detuning close to
A = —(v + nw) (n = 0,%1,...), the ion preferentially
absorbs photons of frequency wp + v + nw and—as in
the case of sideband cooling in harmonic traps—the ion
is cooled very efficiently. As we will show in Sec. IV,
this simple picture permits us to calculate the final ki-
netic energy for any values of a and ¢. On the other
hand, heating appears for detunings around A = v £ nw.
When for a given detuning the “lasers” sensed by the
ion are not so well separated (I' > v or I' > w — v),
the ion can absorb photons simultaneously from more
than one light wavelength; this treatment of laser cool-
ing of ions becomes increasingly complicated, and more
difficult to interpret, although it can still be understood
qualitatively in these terms. Note finally that for ¢ < 1
we have that c1y ox ¢ < 1, i.e., the lasers of frequencies
wr and wy + v are much stronger than the others (see
Fig. 4). Hence, for detunings |§] < w —v —T the ion only
interacts with these three frequencies, and the resulting
problem is formally the same as for a harmonic trap (see
Sec. IV).

III. MODEL

We consider a two-level ion trapped in a one-
dimensional time-dependent potential. The ion interacts
with a laser field and is damped by spontaneous emis-
sion. In a frame rotating at the laser frequency wy, the
master equation for the system has the form (we choose
units with 2 =1 and mass m = 1 in the following)

p = —i[Hep + Hr + Vaip, p] + L%, (3.1)

where Hyj, is the time-dependent Hamiltonian for the ex-
ternal degrees of freedom given in (2.1),

1
HI = —'2"AU;

is the free Hamiltonian for the internal energy levels of
the ion, and

(3.2)

Vin(X) = S1F(X)o* + F(X)'o] (3.3)
denotes the dipole interaction between the laser and the
internal degrees of freedom of the ion. Here, o4 , are
the usual transition operators describing the two-level
transition, A = wp — wp is the laser-ion detuning, and
the form of the function f(X) depends on whether we
are considering a standing-wave or a traveling-wave laser
field, namely

f(X) =cos(kX + @) (3.4)

and
etk X

f(X) =

respectively. Spontaneous emission is described by the
dissipative Liouville term

(3.5)

r
Lip = 5(2a“ﬁa+ —oto p—pote™), (3.6)
where T is the spontaneous emission rate, and
~ 1 ! thkXz _—ikX:z
p=5 dzW (z)e pe , (3.7)
-1

with W(z) being the angular distribution of spontaneous
emission which, for usual dipole transitions, is W(z) =
3n 2
7 (1 + 2%).

In the Lamb-Dicke limit, we can expand master equa-
tion (3.1) up to second order in kX, obtaining

Vain(X) = S [7(0)0" + £(0)"0"]
FX[7(0)0" + F(0)% "]

FIX((0)0* + f7(0) 0], (3.82)
Lip = g—(20'—p0’+ —oto p—potoT)
+aTk?0~ (2XpX — X%p — pX*Ho™, (3.8b)

where the angular distribution W (z) for spontaneous
emission is normalized, and an even function of z. Fur-
thermore, we have defined

| I
a= 5/ dzz*W (z), (3.9)

-1

which equals 2/5 for usual dipole transitions. In all these
expressions the prime stands for “spatial” derivative.
The master equation (3.1) with Vy;, and £? given in
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(3.8) is the starting point for the analysis presented in
the following sections.

IV. LASER COOLING IN A PAUL TRAP

We next present an approach to the problem which
permits us to understand the cooling process in terms of
the interaction between the ion and the different lasers
“sensed” by the ion due to its motion. Within this ap-
proach we will derive a simple formula for the kinetic en-
ergy reached by the ion in the stationary state, valid in
the sideband limit. We start by considering the Hamil-
tonian part of the interaction up to first order in the
Lamb-Dicke expansion,

H = Hyp(t) + %woaz + %f(O)(a*efi“’Lt +H.c.)
0 .
+=[f'(0)ote "t + H.c.]X.

5 (4.1)

Now we look at the frame moving with the ion, which
J

o0

-1 Q iw Qf'(o
H = 5&)00'2 + _2‘f(0)(g'+e Lt + HC) + n:Z_oo E ]:/(ig) Co
where £ has been defined in Appendix A. The inter-

pretation of this Hamiltonian is straightforward. In
the new interaction picture (in the moving frame), the
ion senses: (i) a (strong) laser of frequency wp, with
Rabi frequency equal to Qf(0); (ii) pairs of lasers of
frequencies wy, + (v + nw) (n = 0,+£1,...) and corre-
sponding Rabi frequencies of Qca,f'(0)/(v/2€). Note
first that these last frequency components are weak com-
pared to the first ones, since they give the first-order
contribution in the Lamb-Dicke limit to the Hamilto-
nian H. Note also that for n > 0 (n < 0) in general
lean| < |ez(n-1y| (lezn] > |c2(n—1)l) [13], and therefore the
intensity of the sidebands decreases as |n| increases (see
Fig. 4).

The fact that the ion can absorb more efficiently one of
the sideband frequencies determines the cooling process.
In order to describe laser cooling let us first consider the
case in which the transition frequency is close to one of
these laser frequencies wo ~ wy, + (v + nw). Then, this
laser is more likely to be absorbed than the others, pro-
vided that the transition linewidth I' is smaller than the
frequency difference between the remaining lasers and the
transition frequency, i.e., for

w-T>v>T. (4.5)

In this case, the remaining sideband frequencies can be
ignored, and the Hamiltonian reduces to

Q£
2 V2 "

H~ -—wyo, + [ T Ae~Hwrtvinw)t 4 g o

1
2
(4.6)

is defined by the unitary operator that fulfills
U(t) = —iHy,(t)U(t). (4.2)

In this new picture the states evolve with the Hamilto-
nian

,’:Qx

;wgaz + o JO)(o e 4 He)
FOFO) 0 et p B K@), (43)
while the external operators evolve with the Hamilto-
nian Hy, = UTH,,U. Consequently, the operator X (t) =
UTX (t)U appearing in (4.3) satisfies the quantum Math-
ieu equation. This equation has been extensively studied,
for example, by Glauber [14] (see also Appendix A). In
particular one can write the evolution of X (t) in terms of
two operators A and A', which fulfill the commutation
relation [A, AT] = 1. As in the classical case, A and At
depend on the initial conditions X (0) and P(0). Insert-
ing the expression (A2) for X (t) in (4.3) we can write the
Hamiltonian H as

+{Ae—i(wL+u+nw)t+Ate—i(wL—u—nw)t]+H.C. (44)

[

Moving now to a second interaction picture defined by
the unitary operator
VvV = e‘éiwLO'zei(u—%nu)AfA

(4.7)

this Hamiltonian becomes

I
(0) cono T A+ H.c.

ﬂ2#1502+ 2
2 2 V2

(v+ nw)ATA +

Note that this effective Hamiltonian is time independent.
This makes it possible to explain the cooling dynamics
via the eigenstates of ATA, i.e., the states |[N) defined in
Appendix A. In terms of these states, each absorption of
a laser photon by the ion is accompanied by a decreasing
of N in one unit. A subsequent spontaneous decay leaves
the two-level ion in its ground state, ready for the next
absorption. After several absorption-emission cycles, the
ion ends up in its ground state and with N = 0. Thisisin
clear analogy to what occurs in cavity quantum electro-
dynamics. In fact H is the so-called Jaynes-Cummings
Hamiltonian and, up to first order in the Lamb-Dicke
expansion, the problem treated here coincides with the
interaction of a two-level atom with a cavity mode, in-
cluding spontaneous emission. As is well known, in this
case the atom ends up in its ground state and the cavity
mode in the vacuum state.

This cooling mechanism is based on the same principle
as the so-called sideband cooling for harmonic traps. The
only difference is that, in the presence of micromotion,
one can perform sideband cooling with all the cooling
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lasers sensed by the ion, that is, for detunings

A=—-v+nw) (n=0,%1,...). (4.9)

At the end of the cooling process we have that (ATA) =
(A?y = (A'?) = 0, so that the expected value of P(t)?
results in

1

(P(t)*) = iglF(t)F, (4.10)

as can be deduced from Eq. (A5b). Averaging this ex-
pression over one micromotion period we obtain

1 oo
(P?) = 2—621‘;&|c2n|2[1/+nw|2. (4.11)
Analogously, one can show that, in this case,
1
(X1 = FIF(t)Iz, (4.12)
and consequently
- )
(X?) = 2% n;w |can!®. (4.13)

All these expressions can be simply evaluated, and only
depend on the Mathieu parameters a, ¢, and w. On the
other hand, it can be easily shown that in the pseudopo-
tential limit ¢ < 1 (and for a = 0), when § = —v, ex-
pressions (4.11) and (4.13) reduce to P? = 2X2 = v,
which exactly coincides with the final energy for the har-
monic trap case when sideband cooling applies. This is
in agreement with what we already advanced in Sec. II
[Egs. (2.10)].

If we now consider the case in which the transition
frequency is close to one of the laser frequencies wg ~
wr, — (v + nw), the effective Hamiltonian takes the form

Q£(0)
2 V2

conot AT + hec.

H~ —%50; + v+ nw)AfA +

(4.14)

The arguments given above also apply, but the absorp-
tion of a laser photon is now accompanied by an increase
in the quantum number N. As a result, the ion is heated.

To summarize, when condition (4.5) is satisfied, i.e.,
the lasers seen by the ion are well separated, absorp-
tion of a laser photon of frequency wy, + v + nw leads to
cooling, while absorption of a laser photon of frequency
wr — (v + nw) leads to heating. If condition (4.5) is not
fulfilled, laser cooling can be also understood in terms
of absorption of photons from these lasers, although the
dynamics is more involved since the ion can sense various
lasers at the same time.

V. SOLUTION TO THE MASTER EQUATION

For harmonic traps, master equation (3.1) can be
transformed into an infinite set of ordinary differential

equations either by projecting it onto eigenstates of the
harmonic oscillator Hamiltonian, or by deriving the evo-
lution equations for the expectation values of products
of annihilation, creation, and atomic operators. These
equations can be subsequently solved by numerical meth-
ods. This is no longer possible for the time-dependent
Hamiltonian considered here. Instead, one can use the
position and momentum operators themselves rather
than the ill-defined annihilation and creation operators.

We are particularly interested in the equations for the
expectation values (X?2) and (P?2) up to second order in
the Lamb-Dicke expansion. In view of (3.8), they are
connected in first and second order to other quantities
such as (Xo4 ) and as (X204 ,,), respectively. Con-
sequently we also have to include the equations for the
former up to first order, and for the latter, up to zeroth
order. In zeroth order the internal and external degrees
of freedom are decoupled (note that they are connected
by Vaip and £4, which in lowest order do not depend on
X). Hence we can factorize

(X%04.) = (X% (o4..), (5.1a)
(P?04.,) = (P*){0o4..), (5.1b)
(PX+XP)ot,.)=((PX +XP))ox,.)- (5.1¢)

As we are concerned with the long-time limit, we can
calculate (o4 .) in the stationary state using the op-
tical Bloch equation for a two-level ion at rest at the
(fixed) position X = 0. The resulting equations for both
traveling- and standing-wave configurations are listed in
Appendix B. They can be summarized in matrix form as
follows:

X = BX + 2CX cos(wt) + D, (5.2)

where B and C and D are constant 14x14 matrices and
a constant vector, respectively, which can be readily read
off from the equations of Appendix B. The whole set of
dynamical variables has been written in a column vector
X, its components being the following expectation values:
;= (P?), zo = (X?), 23 = (PX + XP), etc. (see
Appendix B).
Making the ansatz

X = i Yneinwt’

n=-—0oo

(5.3)

inserting it into (5.2), and identifying terms with the
same time behavior we find the relation between different
coefficients

inwY™ = BY" + C(Y™! + Y™ 1) + Db,o.  (5.4)

The solution to this equation can be given in terms of
matrix continued fractions as

Y™t = H"Y™, (5.5)
where

H" = —[B—iw(n+1)+CH"'"1C (5.6)
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and

Y’=-[B+C(H®+ H*)]"'D. (5.7)

These formulas may be used to evaluate numerically
(P?) and (X?), by taking H™ = 0 for a given no and
checking that the results do not vary when ng is in-
creased. We have verified that this method converges
very rapidly for the first stable region in the a-¢ param-
eter space. In the unstable region unphysical results are
found, such as negative kinetic energies, because in that
case, the ion is heated by the trapping potential.

In the following we will show that some of the proper-
ties of the ion motion in the stationary state can be calcu-
lated without the necessity of evaluating (5.7). Once the
ion has reached the stationary state due to laser cooling,
one can try to ignore the presence of the laser-ion inter-
action between the external and internal degrees of free-
dom. This amounts to keeping only zeroth order terms
in the evolution equations, which then take the form

i‘l = —W.’L’g y (583)
i!g = I3, (58b)
I.g = 2113]_ - 2W(l)2 . (58C)
Again, making an ansatz for z; (1 = 1,2, 3),
Ti= Y yre™t (5.9)

n=—oo

and proceeding as before we find the following relations:

w? n+1 n—1 o W

T‘I (y3 + Y3 ) =wy; + Iays ) (5.10a)
0 =iwnyy —y3 , (5.10b)

T ) =~y + rayi +igys . (5.100)

This set of equations can be easily solved. Indeed, the
second and third equations directly give y7 and y% in
terms of y}; a suitable linear combination of them all
gives a relation between the y3 variables:

g[(2n+1)u5* + (20— 1)y5 Y] = 20 (e — n?) 3.
(5.11)

The solution to this equation can be given in a continued
fraction form

n+1__hn n
= 2

Yy (5.12)

where
q(2n +1)

"= 2(n+ U)a — (n + 1)?] — q(2n + 3)h"+1" (5.13)

These formulas for y3 are similar to (5.5) and (5.6),
but now the variable yJ remains undetermined. Hence
Egs. (5.8) do not have a unique solution; rather, the gen-
eral solution is determined up to an overall factor y3.
This was expected, since the stationary state assumed in

the Fourier expansion (5.9) is determined by cooling. It
is the laser-ion interaction that determines the value of y3
[starting from the solution (5.7)]. An analogous behavior
is also found for a harmonic trap, since in that case the
final energy can only be determined when the laser-ion
interaction is taken into account. As one can show using
simple power counting arguments, Eq. (5.12) can be used
to find the remaining coefficients y? (i = 1,2, 3) starting
from y2, since the corrections given when the laser-ion
interaction is included are of higher order in the Lamb-
Dicke expansion. These coefficients are proportional to
y3 and consequently we can establish relationships be-
tween these coefficients without any need to consider the
cooling process, i.e., using only (5.12).

The conclusion is that in order to study many features
of the behavior of the trapped ion in the stationary state,
one only has to deal with the Mathieu equation which, in
terms of the appropriate variables, takes the form (5.8).
For example, the ratio between the amplitude of the os-
cillation of the kinetic energy due to the micromotion and
the mean kinetic energy depends only on the parameters
that determine the micromotion, i.e., those appearing in
the Mathieu equation (a and ¢). It is given by

<P2>max - <P2>min _ fll%
(P?) Y1

(5.14)

The expressions for y1 and y? can be easily found from
Eqgs. (5.10). We find

<P2>max — <P2)min

(P?)

(a —2)h® — g — ghth®
—4 e , (5.15)

where h° and h! are given by Eq. (5.13). In the par-

ticular case a = 0 (which is the most often used in the

experiments), this expression takes the simple form
<P2>max - <P2>min 3

25
B Attt o)

(5.16)

which has proved to be in good agreement with the re-
sults obtained from the numerical solution of the full
problem. In a similar way one can obtain other ratios
such as ({X %) max — (X?)min)/(X?2). However, if the final
averaged kinetic energy is required, one must evaluate
the matrix continued fractions (5.7) numerically, or, al-
ternatively, use other qualitative arguments such as those
given in the previous section.

VI. DISCUSSION

In the preceding sections we have shown that the final
mean kinetic energy, as given by (P2?)/2m, can indeed
be calculated taking into account the micromotion in the
Paul trap. Also, it was argued that we can understand
the occurrence of the various minima and maxima of the
final residual kinetic energy as arising from the interac-
tion of the ion with several laser frequencies in a frame
moving with the ion. As an illustration of this concept
Fig. 5 shows (P2) as a function of the detuning for an
ion localized at the node of a standing wave. Figures
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FIG. 5. Mean kinetic energy as a function of the detuning
A for an ion at the node of a standing wave. a = 0 and (a)
w = 0.5T; (b) w = 2T (c) w = 4T, and (d) w = 10T. In all
the figures the ratio »/w = 1/4. In (d) instead of the mean
kinetic energy we have plotted the maximum and minimum
values of the kinetic energy in one micromotion period. The
dashed lines show the results calculated with a harmonic trap.

5(a)-5(d) show the mean kinetic energy for the same
stability parameters a and g, i.e., for a constant ratio
v/w = 1/4, with w = 0.5,2,4,10T in Figs. 5(a)-5(d),
respectively (under the Lamb-Dicke approximation, the
results at the node of a standing wave do not depend on
the Rabi frequency 2, nor on other parameters such as
k). The dashed lines always show the expectation values
in the harmonic potential approximation.

According to the concept outlined above (cf. discus-
sion of Fig. 4), the small vertical lines indicate the posi-
tion of the six different sideband frequencies contributing
to the cooling-heating processes. Note in Fig. 5(a), the
frequency w is small so that the lasers interacting with
the ion in its rest frame are close enough together to all
interact with it, the strongest component (at wy, +v) pre-
vails, and the minimum of the kinetic energy appears at
A = —TI'/2 which corresponds to the optimum detuning
for weak confinement (for w = 0.5, v = 0.125, and then
I’ > v). Note also that the mean kinetic energy is about
twice the value expected for the harmonic trap case, as
was stated in Sec. II.

In Fig. 5(b) the micromotion frequency and the trap
frequency are further increased, i.e., in the rest frame of
the ion the laser frequencies become more separated. Ac-
cordingly, cooling is observed for the detuning —(v + w)
[see the local dip in Fig. 5(b)], whereas for the detun-
ing v — w heating can be observed as indicated by the
local maximum in Fig. 5(b). Increasing w and v further
results in even greater separation of the frequencies [see
Figs. 5(c) and 5(d)] and accordingly regions where cool-
ing and heating appears are more and more separated
and well resolved.

Cooling regions appear in the figures for detunings
close to —v, —(v + w), and —(v — w), in agreement with
the arguments presented above. Moreover, all the local
minima in each of these regions have the same values,
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which coincide with that given by (4.11).

As has been argued in Sec. IV above, the greater the
separation of the frequencies “sensed” by the ion, the
better the ion can be considered as interacting only with
a single frequency chosen by the given detuning in each
case. This concept can be generalized to more levels, tak-
ing into account different separated resonances and pro-
vided that the laser frequencies “sensed” by the ion are
well separated as, e.g., given by the inequality (4.5). As
soon as more than one frequency contributes essentially
to the cooling-heating process this concept is no longer
applicable and the full and involved treatment, as out-
lined in Sec. V, has to be invoked in order to determine
the exact values for the final kinetic energy.

As already mentioned in Sec. II, in the long-time limit
(i.e., t = oo) the kinetic energy (P(t)?) and the spa-
tial variance (X (¢)?) are explicit functions of time. Their
respective maximum values and minimum values were
evaluated and given in Fig. 1. For a comparison with the
mean values which are obtained by averaging over one
period of the frequency w, the minimum and maximum
values (P?)max and (P?)min are shown in Fig. 5(d). In
many experiments the kinetic energy limits the achiev-
able accuracy as, e.g., in time and frequency standard
applications where the second order Doppler shift causes
a major uncertainty. Thus, a residual micromotion ac-
tually leads to higher uncertainties than those expected
for a harmonic trap. This problem has been addressed
previously by Wineland et al. [15], who state that the
energy contribution of the micromotion energy is equal
to the kinetic energy of the secular motion as discussed
above in Sec. II. However, they do not consider the time
dependence of the additional micromotion energy which
would lead to unwanted uncertainties in measurements.
We find from Eq. (5.16) that the uncertainty in the ki-
netic energy can be given by the simple formula

(P2>max - <P2)min ~ 3
ORI

(6.1)

which is valid for all ¢ parameters in the stability region
and for a = 0. An expression which is valid in the whole
stability region is given in (5.15). This uncertainty is
to be compared with the quantum uncertainty which is
determined by the final quantum state of the laser cooled
ion. For sideband cooling as well as for Doppler cooling,
using the results for the effective harmonic potential, we
find that the quantum uncertainty is given by

AP?
=V

(6.2)
Hence, since always 3¢/4 < v/2 (in the first stability re-
gion), the uncertainty imposed by the residual micro-
motion is always smaller than the quantum uncertainty,
though its contribution is negligible only for small values
of q.

So far, all calculations have been carried out for cool-
ing of a single ion placed at the node of a standing-wave
laser field. As has been shown earlier [10] this leads to
temperatures that are lower than for a traveling wave and
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independent of the applied Rabi frequency. Figure 3(a)
shows a calculation of the mean kinetic energy as a func-
tion of the detuning for an ion located at the point of
the maximum gradient in a standing wave (solid line).
The parameters were 2 = 5I', v = 1.5, w = 10, and the
dashed line indicates the calculation for the harmonic
trap case. Comparing this figure with Fig. 4(d) shows
that the behavior is very similar to the case where the
ion is localized at the node of a standing wave, except for
the fact that now cooling is observed for blue detunings
which is to be expected [10]. This is completely different
for the case of traveling waves as is shown in Fig. 3(b).
Here, the dashed line again indicates the expected be-
havior for a harmonic trap whereas the solid line shows
the influence of the micromotion. In contrast to what is
observed for a harmonic trap potential, the most striking
result is that cooling is possible for blue detunings, i.e.,
for a detuning close to § = w — v. Note also that cooling
near § = —v is less efficient and for § = —(v + w) is more
efficient than expected from a harmonic trap.

For an experimental verification of the influence of the
micromotion on laser cooling of an ion in a Paul trap
we thus propose to investigate the cooling with traveling
waves and for blue detunings. Observation of cooling as
predicted by the calculations indicated in Fig. 3(b) would
clearly demonstrate that the micromotion not only in-
fluences the cooling-heating behavior but indeed can be
exploited for laser cooling of trapped ions in Paul traps.
The condition (4.5) of course requires that v > I', how-
ever, this could be experimentally achieved either with
narrow transitions as, e.g., in In* ions, or by new minia-
turized trap designs.

VII. CONCLUSION

In this paper we have studied theoretically laser cooling
of a single trapped ion in a Paul trap with particular em-
phasis on the influence of the micromotion. Mean kinetic
energies have been derived from the time averaged expec-
tation value (P2?) and compared with results obtained
for a purely harmonic trap. The results show that for
the strong-binding limit the micromotion leads to a new
and unexpected cooling behavior whereas in the weak-
binding limit the micromotion increases the residual en-
ergies but does not change the cooling dynamics given
by the harmonic trap approximation. The theoretical re-
sults presented here open the prospect for further, more
detailed, understanding of laser cooling in Paul traps and
it is expected that in new trap designs the micromotion
can be used for additional cooling.
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APPENDIX A: QUANTUM MATHIEU
EQUATION

In this appendix we analyze in detail the quantum ver-
sion of the Mathieu equation and derive some results used
in Sec. IV. Starting from Hamiltonian (2.1), the position
operator X (t) in the Heisenberg picture (interaction pic-
ture of Sec. IV) satisfies the Mathieu equation

X(t) + %[a — 2qcos(wt)] X (t) = 0. (A1)

In view of the linearity of this equation we make the
ansatz

1

V2§

where A and AT are now (time-independent) operators
related to the initial condition at ¢t = 0. Substituting this
in the Mathieu equation, one finds that F'(¢) is that given
by the (¢ number) function (2.5) provided the parameter
¢ is defined as

[ATF(t) + AF(t)*],

X(t) = (A2)

1/2

¢ = |F(O)F(0)

(A3)

The operators A and A’ are linear combinations of the
initial position and momentum operators, X (0) = X and
P(0) = P, respectively. It can be readily checked that
they satisfy the commutation relation [A, AT] = 1. Tak-
ing the time derivative of (A2) we find that for the oper-
ator P(t) (we have taken m = 1)

P(t) = —— [4tE() + 4F ()]

A
NG .

Starting from (A2) and (A4), we have for the expectation
values of the operators X? and P?

(X ()% = Tr[X(t)%p]
_ 52—2{|F(t)|2’1‘r{(A1A + AT A)g)

+ F(t)?Tr[A2p] + F(t)**Tr[A%p]}, (A5a)
(P(t)%) = Tr[P(t)*p]
— e {IFOPTH(ATA + 41 4)
— F(t)*Tx[A"?p] — F(t)"*Tr[A%p]}. (A5b)

Finally, we can define a basis in the Hilbert space for
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the external degrees of freedom through

ATA|N) = N|N), (A6)
so that A and Af can be regarded as annihilation and cre-
ation operators in this Fock basis. Expressing the density
operator p in this new basis one can readily calculate the
expectation value of any external observable.

XT = ((P*),(X?),(XP + PX),(X03),(X0y), (X0.), (Pos), (Poy), (Po.), (X),(P), (02), (0y), (02))-

For a standing-wave configuration these equations read

Il

b1 = — (W 4 Quloz)ss) s — oy + zak(1+ (02)ss)
T2 = T3,

z3 =2z — 2 (W 4+ Qc(0z)ss) T2 — Qa4 ,

&y = —yT4 + Azs + 27,

5 = —0a(0;)ssT2 — Azg — yZ5 — Qpz6 + T3,

zg = Qo(0y)ssx2 + QpTs — 2yT6 + To — 2710 ,

i7=—WI4—’Y$7+A$s—7a,

2
C.CS = —--—é——<a'z>ss$3 - W:I:s — A(L‘7 — Yrg — szmQ 3

Q,
Ty = 7(%)53163 — Wze + Quzs — 2729 — 27211,

Ti0 = Z11

. a

13 = ~Wzxy — 5 T12,

T3 = —YT12 + Az13,

13 = ~QuT6 — Az1z — Y713 — Q14 ,

T14 = Qoz5 + QpZ13 — 27T14 — 27,

where v = I'/2, Q, = Qcos¢, R, = —kQsing, and
Q. = —k2Q, /2.
For traveling-wave configurations, we have

r
Ty = — (W+ Qc<0'z>ss) T3 — Qpzg + 5(1’62(1 + <0’z)ss) y
Ty =1z3,

23 =2z — 2(W + Qc(0z)ss) 22 — Qs
&g = —y24 + Azs + 7 + Q{0 )ssT2

APPENDIX B: EVOLUTION EQUATIONS FOR
STANDING- AND TRAVELING-WAVE LASER
CONFIGURATIONS

In this appendix we list the evolution equations for
an ion in a Paul trap up to second order in the
Lamb-Dicke expansion. In order to do that we define
(.’I,'l,.'tz, e ,.’L'14) = XT by

(B1)

[
s = ~Azy — yT5 — QuTe + Ts

&6 = Qp(02)ssT2 + Qps — 27T6 + T9 — 27Z10 ,

iy = %(az>ssx3 —Wzy — yer + Azs
zg = —Wzxs — Azy — yrg — Que — %ﬁ )
. Qp
Eg = 7<0‘x>ss$3 — Wazxe + Qpx8 — 2y29 — 277211 ,
T10 = T11
11 = —Wzqy — 7b$13 )

T13 = —yT12 + Azi3 + Qpzxg
Z13 = —Az12 — yT13 — QyT1y4 ,

Z1a = QT + QyT13 — 29T14 — 27,

where Q, = k2 and Q. = —k2Q/2. In all these equations
(0z)ss, (0y)ss, (0;)ss are the components of the Bloch
vector in steady state, derived for a two-level atom at
rest at the position X = 0 [10].

Note that a simple power counting performed on these
evolution equations shows that the solutions ;2 3 have
zeroth order contributions while the others are of the first
order at least. In addition, looking at the equations for
Z4,..14 one can readily see that only the zeroth order of
Z1,2,3 1s necessary and that by no means do these equa-
tions determine it. After an analysis, there seem to be
more variables than equations. However this is not the
case. The choice of an appropriate cutoff (ng — o) to
calculate the values of y7* (n = 0,+1,...,+ng) produces
the additional equations to determine the problem. In
the numerical calculation in terms of matrix continued
fractions (see Sec. V), a finite ng substitutes for the in-
finite limit. Note that this is also true in the harmonic
trap case, being in this case ng = 0.
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