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Noise-tleyemlent uncertainty relations for the harmonic oscillator
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The Gaussian noise model for a harmonic oscillator subjected to random linear fluctuations (e.g.,
thermal noise) is used to derive generalized Heisenberg and entropic uncertainty relations for the
position-momentum and number-phase observables. The lower bounds are partitioned into pure quan-

tum and pure noise terms, and the minimum-uncertainty states are determined. Formally similar results
of Abe and Suzuki [Phys. Rev. A 41, 4608 (1990)] for the position-momentum case, derived using the
thermofield formalism, are shown to correspond to arnplification noise rather than thermal noise.

PACS number(s): 03.65.Bz, 42.50.Ar

I. INTRODUCTION

Utt(X, P lp) =~6,P ~
—,', (2)

where 6 A denotes the root-mean-square deviation of ob-
servable A (units are chosen throughout such that 6=1).
The minimum-uncertainty states corresponding to (2)
have the position representation [2]

q(x)=(xlq)
= [2~(~) ]

Xexp[ —(x —(X))2/(2~) +i(P)x] . (3)

A lesser-known example is the entropic uncertainty re-
lation for position and momentum [3]:

Uz(X, Plp)=S(Xlp)+S(Plp) ~ Inure, (4)

where, if II(alp) denotes the probability distribution of
observable A for state p, then

S( A
I p) = fd. 11—(a lp)»11(a lp) (5)

denotes the associated entropy. Inequality (2) in fact fol-
lows from inequality (4) [3], and hence the latter is a
stronger uncertainty relation. It may be checked that the
minimum-uncertainty states corresponding to (4) are
again of the form (3). Entropic uncertainty relations for
finite Hilbert spaces are discussed in [1,4].

While uncertainty relations (2) and (4) are universally
valid, stronger relations may be obtained for quantum

An uncertainty relation for two observables A and B of
a quantum system has the general form [1]

U( A, B lp) +8( A, B),
where U denotes some state-dependent measure of joint
uncertainty and X denotes some state-independent lower
bound. Those density operators p which saturate in-

equality (1) are the minimum-uncertainty states corre-
sponding to U.

A well-known example is the Heisenberg uncertainty
relation for a position coordinate X and its conjugate
momentum P [2]:

systems that are subject to noise from their environment.
In particular, the joint uncertainty of two observables
will tend to increase in the presence of noise, leading to a
larger lower bound in (1). In Sec. II of this paper the case
of a harmonic oscillator subject to random linear fluctua-
tions (e.g., thermal noise) is considered, and generaliza-
tions of relations (2) and (4) are obtained for this case in
Sec. III. A generalized entropic uncertainty relation for
the number and phase observables of the oscillator is ob-
tained in Sec. IV, and a noise-dependent Heisenberg un-

certainty relation for number and phase is conjectured
there.

The case of the harmonic oscillator is of interest not
only because of its wide applicability as a model for quan-
tum systems, but also because of its special connection
with the minimum-uncertainty states (3). These states
are in fact the well-known "squeezed states" of quantum
optics [5,6] and, choosing units such that the oscillator
mass and frequency are of unit magnitude, evolve under
the Hamiltonian

H= '(P +X )—
2

(6)

(bX)o=(XP)v=2

i.e., when
l g) is a coherent state [2,5,6].

It will be shown in Sec. III that only the coherent states
remain minimum-uncertainty states of position-
momentum when the oscillator is degraded by noise.
Similarly, it is shown in Sec. IV that, while all energy
eigenstates of the oscillator are minimum-uncertainty
states of number-phase in the absence of noise, only the
ground state remains a minimum-uncertainty state when
noise is added.

such that [6]

(~),(&P),

=
—,'[1+—,'[(~)o/(bP)o —(bP)o/(bX)o] sin 2t] '

(7)
Thus the minimum-uncertainty property of squeezed
states is periodically recovered for an oscillator system (at
times t =n. /2, m, 3~/2, . . . ), and indeed is always present
in the case
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In Sec. U it is demonstrated that formally similar re-
sults of Abe and Suzuki for the position-momentum case
[7,8], derived using the thermofield formalism [9], corre-
spond to amplification noise rather than to thermal noise.
The interpretation of results is discussed in Sec. UI.

I'(p)= f f dx dppr(x, p;n„)D„pDt (8)

Here, integration is over the x-p plane, p (rxp;n )ris a
Gaussian distribution of the form

p r( xp;n r)=(2mn r) 'exp[ (x +p—)/(2nr)], (9)

n z is a dimensionless variance parameter, and D„ is the
unitary displacement operator [10)

D„z=exp(ipX ixP) . — (10)

Equation (8) implies that the oscillator is displaced by an
amount (x,p) in phase space with probability

Pr( px;nr). The form of this probability distribution
essentially arises from the central limit theorem of classi-
cal probability theory, which states that the statistics of a
large number of random fluctuations is typically Gauss-
ian [16].

From (10) one has the relations [10]

D„XD„=X—x, D„PD„=P p, —(11)

and hence, using (8) and (9), one finds [15,16]

tr[HI(p)]=tr[Hp]+nr . (12)

Thus the variance parameter nz determines the average
noise energy added to the oscillator. Adding noise to the
ground state (0)(0( yields the thermal state [10—16)

II. THE NOISY OSCILLATOR

The description of a harmonic oscillator subjected to
random linear excitations was first considered by Glauber
[10] for the case of the ground state and has since been
extended to the cases of coherent states [11], squeezed
states [12,13], and energy eigenstates [14]. The general
description corresponds to a Gaussian noise model
[15,16], and a systematic exposition is given in [16]. It
should be noted that [10-16]work primarily with the an-
nihilation operator a =2 '~ (X+iP), rather than with X
and P separately.

The e6'ect of adding random linear excitations to an os-
cillator described by state p is generically modeled (in the
interaction picture) by replacing p with the density opera-
tor [15,16)

Substitution of an arbitrary operator A for p in (8)
defines the operator I ( A ). Some useful properties of the
mapping A ~I'( A ), to be used later, are [15,16]

I (1)=1,
tr[AI (B)]=tr[l (A)B],

(15)

(16)

I (D„AD„)=D„ I ( A )D„ (17)

These may easily be derived from (8)-(10). Note from
(12), (15), and (16) that

I'(H)=H+nr . (18)

III. POSITION AND MOMENTUM

It will be demonstrated here that

UH(X, P(I (p})& ,'+n—r,

UE(X, P(l'(p)) &inde+in(2nr+1),

(19}

(20)

P=&P, (g, &&&, l, &P, =I=&g, lg, &, (22)

it follows from the concavity of the entropy functional (5)
and the linearity of the mapping (8}that

S(A(I'(p))=S A Igp, l (lg, &&&, I)
'

J

&yP, S(A(r((q, &&y, l)) .
J

Hence, from (4),

U (X,P(I (P)) &QP. U (X,P(I'((g,. )(P)())

thus generalizing uncertainty relations (2) and (4) to the
case of the noisy oscillator.

First, it follows from (8), (9), (11),and (16) [cf. Eq. (21a)
of [16]] that Gaussian noise increases the variances of X
and P by an amount n . Hence, from (2) one has

U~(X, P(I (p))=[(~) +nr]' [(hP) +n ]'~, (21)

where LhX, bP refer to state p. Minimizing this expres-
sion for a fixed value of ~hP yields the condition
~=A,P, which combined with the inequality in (2) im-
plies relation (19) as desired. Noting that inequality (2) is
saturated by the squeezed states (3), the condition~=hP implies that (19) is saturated only when p is a
coherent state.

Second, writing p as a mixture of pure states

1(10&&0()=&(m &&min /(n +1) (13) & inf [ U~(XP(f'((P, ) (g, ())], (23)

where (m ) denotes the mth energy eigenstate. Hence, an
effective noise temperature Tr may be defined via the
Planck relation

implying that only pure states need be considered for the
minimization of UE(X,P(I (p)).

Writing

nr =[exp(fico/kT )—1] (14) J= U, (X,P(r((g) (@())—A((li(f) —1), (24)

where units have been restored in (14). For T =300 K
and co = 10 —10' Hz, one finds from (14) that
n =10 "-10 .r

where A, is a variational parameter constraining the nor-
malization of (P), and noting for example from (8) and
(16) that
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II( lr(lg&&itl))= & lr(lp&&gl)lx &

analogous to the zero-noise case [3], so that the latter is
in general the stronger relation.

&qlr(lx &&xl)lq)

=r(lx) &xl)lq),

one obtains the variational equation

IV. NUMBER AND PHASE

N =
—,'(X iP—)(X+iP)=H —

—,
' (30)

The (dimensionless) number operator of the oscillator
is defined by

z=o=[r(~ )
—x —2]ly&,

where 3
&

denotes the Hermitian operator

f—dxlx &&x lnll(xlr(lq&&ql)}

—f dp Ip & & p I
lnII(p I

r( I & & & & I ) )

(25)

11((t)lp) =(2~) '&e''lple''&,

where le'~) is the ket

(31)

and has eigenvalues 0, 1,2, . . . corresponding to the ener-
gy eigenstates

I
0 ), I

1 ), I
2 ), . . . of the oscillator. The

conjugate observable to N is the phase, 4. While phase
cannot be represented by a Hermitian operator [17], the
canonical phase distribution

II(Pip�

}of state p may be cal-
culated via the simple formula [18—20]

= —»11(xlr( lg& & gl ))—»11(Plr(lg& & gl)) . (26) Ie't') =g e'"t'In ) (32)
It follows from (25) that UE(X,PIr(IQ) & pl )}attains its
external values whenever

I p ) is an eigenstate of r( A
&

).
The minimum-uncertainty solutions to (25) may be

found by trialing the squeezed states (3), which are al-

ready known to be minimum-uncertainty states for
n =0. For such states one has [cf. Eq. (64) of [16]]

11(xIr(lg&&gl))

=[2m[(~) +n ]] '~ exp
-(x-&X&)'
2[(~) +n ]

(27a)

11(p [ Ir( I & & & & I ) )

=[2m[(b,P) +nr]] ' exp
—(p-&P))'
2[(bP) +n ]

(27b)

and hence from (11)and (26) it follows that

A&=ln2m(n~+ —,
'

)

+(2n +1) 'D(x) (r)(X +P )D(x) (t, ) (28)

in the coherent-state case ~=AP =2 ' . But for this
case one has from (3) and (10) that lg) =D„~IO), to
within a phase factor, and so using (6), (10), (17), and (18),
it follows that

r( & @)lg& =ln2vr(n~+ —,
' )lp&

+2(2nr+1) 'D(x) (p)I (H)IO)

=[1n2m. (n + —,')+ l]lg),
i.e., Eq. (25) is satisfied for coherent states lit ).

Thus, the coherent states are minimum-uncertainty
states for Uz(X, Plr(p)), and the uncertainty relation
(20) follows via Eqs. (27) [it may also be checked via (27)
that general squeezed states do not remain minimum-
uncertainty states when noise is added]. Inequality (19)
may be derived from inequality (20) in a manner exactly

(in [19,20] it is shown that this prescription gives results
equivalent to the less compact Pegg-Barnett phase for-
malism [21]).

An entropic uncertainty relation for number and phase
follows from results in [3] as

Ug(N, C Ip}=S(Nlp)+S(C Ip) ~ln2n, (33)

Uz(N, 4), Uz(X, P) ~ ln2vrenr . (35)

Hence, both pairs of conjugate observables, (X,P) and
(N, 4), share a common uncertainty bound in the high
noise limit.

The proof of (34) is similar to that of (20) in Sec. III.
First, as per (22) and (23), only pure states need be con-
sidered for the minimization problem, so that one writes

K= U (N, air(lq) &ql)) —&(&pig) —1) (36)

in analogy to (24). As per Eqs. (25) and (26), the extremal
states then satisfy

a&pl
E=0=[r(B ) —A, —2] li/i),

where 8& denotes the Hermitian operator

(37)

as was demonstrated in [22]. The corresponding
minimum-uncertainty states are just the energy eigen-
states (two classes of approximate minimum-uncertainty
states, with well-defined phase properties, are noted in
Sec. IV of [22]).

It will be shown here that (33) may be generalized to

Uz(N, @lr(p)) ~ ln2~+in(n~+1)+n ln(1+n '
)

(34)

for the noisy oscillator. The only minimum-uncertainty
state corresponding to this uncertainty relation for n ~ & 0
is the ground state. Note from (20) and (34) that for
n &)1, one has
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B
&
= —g I n & & n

I lnII( n
I
I ( I g & & & I ) )

The solutions to (37) are given by the energy eigen-
states, as may be checked using (31), (32), and (38) and
the property that I ( I

n & & n
I ) is diagonal with respect to

the energy basis [IO&, ll &, I2&, . . . ] [14—16]. This last
property also implies that

~(@ll'(ln &&nl))=»2~, (39a)

S(N I
I'(

I n & & n
I ) )= —tr [I ( I

n & & n
I )lnI ( I

n & & n
I ) ] .

(39b}

Combining these equations with the result [15]

—tr[1 (p)lnI'(p)] + —tr[r(lo&&0I)lnl (IO&&OI)], (40}

U (W@lp;{9}=~&~@'——,'ll —2~11(()+~lp}l . (42)

The lower bound in (42) is state dependent, and reduces
to the trivial value zero when p is an energy eigenstate.
Based solely on the minimum-uncertainty property of the
ground state for the entropic uncertainty relation (34), it
is conjectured here that

U (%@II'(p);6}) U (N, @II'(IO&&OI);8)

=a[n (n +r1)/3]'~ (43}

where the last line follows via (13) and (31). Note that
the conjectured lower bound scales linearly with noise en-

ergy in the limit n ))1, in analogy with relation (19) for
position and momentum.

V. THERMOFIELDS AND AMPLIFICATION

Inequalities formally similar to (19) and (20) have been
previously stated by Abe and Suzuki [7,8] for states
lg, g;P & of the "doubled" Hilbert space %%. Here, %
is isomorphic to the oscillator Hilbert space &, and P is
identified as an inverse temperature. Motivated by their
use of the thermofield formalism [9] (more typically ap-
plied to the calculation of thermal averages in field
theory), Abe and Suzuki interpret their inequalities as
"thermal uncertainty relations, " pertaining to an oscilla-
tor in equilibrium with a thermal reservoir. However, it
will be shown here that, even under a suitable restriction

valid for all density operators p (with equality only for the
coherent states), the uncertainty relation (34) follows as
desired via (13}, and is clearly saturated only by the
ground state.

The difficulty of defining variance for periodic observ-
ables such as phase is discussed in [22]. However, one
may consider the second moment of the canonical phase
distribution (31) with respect to an arbitrary reference
phase 8:

(a,C )'=f" dy(y e)'I—I(pip), (41)

which satisfies the Heisenberg-type uncertainty relation
[22]

H=arctan(e ~~ }, (46)

and a, a denote the annihilation operators on &,%, re-
spectively.

It may be checked that the derivations in [7,8] do
indeed go through under restriction (44} [noting that the
second term in Eq. (38) of [7] should be added rather than
subtracted, and that the normal-ordering symbols should
be removed from Eq. (40} of [7]]. In fact, since only ex-
pectation values of operators on % are calculated, the re-
sults may be generalized to the density operator form

UH(X, P
I A (p) ) ~

—,'cosh(28),

Uz(X, PI A(p)) ~inne+1n[cosh(28)] .

(47a)

(47b)

In these inequalities [corresponding to inequalities (43)
and (52) of [7)], the mapping p~A(p) generalizes the
mapping If&~If, p;p& in (44) via

A(p)=tr [e ' pPe' ], (48)

where p is some density operator on %, and tr []
denotes the trace over %.

However, while inequalities (47) are formally similar to
uncertainty relations (19) and (20) [identifying cosh8
with (n„+1)'~ ], the mapping p~A(p) has an
"amplification" rather than a "thermal" interpretation.
This is readily apparent from Eqs. (45) and (48), which
correspond to the parametric amplification of state p
[23,24], where P denotes an initial "idler" state and the
energy gain is cosh 8.

Moreover, for the case p= IO& &Ol in (48), one may use
the relation [7—9]

e' ae ' =a coshO+a sinhO (49)

of the states I f, f;P & (to ensure the inequalities are valid},
the results of [7,8] in fact pertain to an oscillator
which has undergone linear arnplification by a factor
(1—e ~)

First, while the states I1t, p;p& are interpreted in [7,8]
as corresponding to some inverse temperature P of the os-
cillator, no technical specification is actually made other
than that they are states in %&. This invalidates the
derivations in [7,8] as they stand [the crucial Eq. (41) of
[7] does not hold for general states in &A, as is most
easily seen by choosing z =z =0 in that equation].
Indeed, violations of inequalities (43) and (52) of [7] (see
relations (47) below), for all values of P, can be obtained
simply by choosing I g, 1(;p & to be the doubled ground
state IO&s I0&.

It follows that some restriction of the states
I 1(,1T;p& is

necessary if the results of [7,8] are to be recovered Th.e
definition of "thermal coherent states" in [7,8] does sug-
gest a possible restriction, to states of the form

(44)

Here, I g &, I P & are arbitrary state vectors on & and &,
respectively, and

i G =8—( a a —ail ), (45)

where
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=exp( —
~g~ sinh0)y(gcosh8), (50)

where y denotes the characteristic function of p. Com-
paring with results in [25], it follows that A (p) in this
case also describes ideal linear amplification of the oscil-
lator state p, via interaction with a large number of excit-
ed two-level systems, again with an energy gain of cosh 0.
Berman [26] has studied this case from the thermofield
viewpoint for the choice p =

~
n ) ( n ~, inappropriately

referring to the states A ( ~
n ) ( n

~
) as "thermal excita-

tions. "
Thus inequalities (47) do not correspond to an oscilla-

tor in equilibrium with a thermal reservoir of inverse
temperature P, as suggested in [7,8], but rather to an os-
cillator which has undergone amplification with gain
cosh 8=(1—e ~) '. The connection between the
thermofield formalism and amplification has been noted
briefiy in Sec. VI of [13]. Heisenberg uncertainty rela-
tions of the form (47a) have been given previously by
Caves for general linear amplification models [24].

VI. DISCUSSION

It has been demonstrated that the uncertainty relations
(2) and (4) for position and momentum may be general-
ized to inequalities (19) and (20), respectively, for the case
of the noisy oscillator. Similarly, the uncertainty relation
(33) for number and phase has been generalized to in-
equality (34}, and a generalized Heisenberg uncertainty
relation for these observables has been conjectured in in-

equality (43). While the "thermofield" inequalities (47)
have a formal connection with uncertainty relations (19}
and (20}, they have been demonstrated to correspond to
"amplification" rather than "thermal" uncertainty rela-
tions.

The generalized Heisenberg uncertainty relation (19)
indicates how an open quantum system can exhibit classi-
cal behavior. In particular, the effective minimal area of
a phase-space cell will be much larger than the "quan-
tum" area fi/2 when n in (19) is sufficiently large, thus
washing out quantum effects. Indeed, choosing n to be
—,
' is already sufhcient to destroy any quadrature and am-

plitude squeezing properties [16],and the quantum upper
bound for information transfer via noisy osci11ator sys-
tems [15] approaches the classical upper bound in the
limit n~))1 [16].

The lower bounds in uncertainty relations (19), (20),
and (34) each split into pure noise and pure quantum
components, which are of equal magnitude when n�= —,',
~n~ —,'(m.e —1)=3.8, and n =1.8 respectively. It has al-

ready been noted in Eq. (35) that the entropic lower
bounds for the conjugate pairs (X,P) and (N, N) become
equivalent in the high noise limit. Similarly, the Heisen-
berg bounds (19) and (43) for these conjugate pairs both
scale linearly with n in this limit. This again suggests an

to calculate the normally ordered characteristic function
of A(p) as

g„(g)=tr[e'~ ' e'~'A(p)]

=tr[e' e'~ ' e'~'e ' )ps ~0)(0~]

(2ir) 'f f dx dpD, pD„=1, (51a)

(2ir) ' g f dPD„~Dt~ =1 .
n = —oo

(51b)

In relations (51) (noted here without proof, p is an arbi-
trary density operator; D is the Glauber displacement
operator (10); and D„& is the "number-phase" displace-
ment operator

( Ug)n iNP & 0
n, P U

—neiNQ (52)

where U denotes the Susskind-Glogower phase operator
[17]

U= y ~n)(n+1~ . (53)

Finally, the entropic uncertainty relation (34) may be
applied to determine an upper bound for the information
I(@~I (p)) obtained by a measurement of phase, regard-
ing the value of a random phase shift applied to the noisy
state I (p) [22]. In particular, using relations (33) and
(34) above and Eq. (27b) of [22), one has the inequality

approach to classical behavior with increasing noise lev-
els, in that the coordinatizations (x,p) and (n, P) of phase
space become equivalent in the limit n » l.

Coherent states have been interpreted by Zurek, Ha-
bib, and Paz in [27] as the closest quantum counterparts
to classical phase-space points, based on a minimum en-
tropy property of these states under Brownian motion
[see also inequality (40) of this paper]. The coherent
states are seen here to also have a minimal spreading in
area and entropy with respect to position and momentum
[i.e., they saturate (19) and (20)], but not with respect to
number and phase [they do not saturate inequality (34)].
This distinction between position-momentum and
number-phase could be connected to the fact that classi-
cal phase-space points play two distinct roles: first, as
states with zero statistical dispersion (and therefore
minimum dispersion in the presence of noise) and,
second, as measurement results of ideal measurements on
phase space.

The minimum entropy property of coherent states dis-
cussed in [27] corresponds to the first role mentioned
above, i.e., to the sharpest possible state specification for
a noisy oscillator, as measured by the statistical entropy.
However, the minimum-uncertainty property of coherent
states for uncertainty relations (19) and (20} may be more
closely connected with the second role, i.e., to the best
possible joint measurement of position and momentum
for the oscillator (which need not correspond to the best
possible joint measurement of number and phase). It is
hoped that this will be investigated elsewhere, aided by
the two remarkable completeness relations
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1(+II (p)) =»2~ —S(~lr(p))
~S(lV ~l (p)) —1n(nr+1) —nrln(1+n ') .

(54)

It mould be of interest to determine the sharpness of this
inequality for the coherent phase states [20,22], which
maximize the upper bound in (54) for a fixed value of the
energy tr[Hp].
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