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Nonlinear transverse modes of large-aspect-ratio homogeneously broadened lasers:
I. Analysis and numerical simulation
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Transverse pattern evolution is investigated in single-longitudinal-mode two-level and Raman
lasers with Bat end re8ectors, subjected to uniform transverse pumping. The natural nonlinear
modes of the laser are identified as spatially homogeneous when the detuning from the gain peak is
negative and as "local" plane traveling waves when the detuning is positive. The latter correspond to
an off-axis emission of the laser. Stability characteristics of the underlying patterns are predicted to
be quite different for one-dimensional and two-dimensional (2D) lasers. As an illustration, we provide
direct numerical evidence for weakly turbulent behavior of a 2D Raman laser where Eckhaus and
zigzag phase instabilities act in concert to spontaneously nucleate topological defects and ridgelike
illuminated regions. Our numerics also confirm that the complicated patterns persist for finite
transverse pumping as long as the characteristic width of the pump source contains a sufficient
number of selected pattern wavelengths.

PACS number(s): 42.55.Px

I. INTRODUCTION

Complex pattern formation is commonly observed in
spatially extended, continuous, dissipative systems which
are driven far from equilibrium by an external stress.
Under the inHuence of this stress, the system can un-

dergo a series of symmetry-breaking bifurcations or phase
transitions and the resulting patterns become more and
more complicated, both temporally and spatially, as the
stress is increased. Examples abound in ordinary and
binary Huids, in bquid crystals and chemically reacting
media (for a review, see, for instance, [1] or [2]). Op-
tical systems, both passive and active, are no exception
and considerable effort has been expended recently to
predict and analyze transverse pattern-forming instabil-
ities in lasers [3—12], parametric oscillators [13], bistable
systems [14—32), and counterpropagating waves in Kerr
media [33—45]. Experimentally, transverse instabilities
have been reported in lasers [46—51], photore&active os-
cillators [52], counterpropagating waves in Kerr media
[53—59), and liquid crystals [60].

Wide aperture gas and semiconductor lasers offer the
possibility of producing high power stable coherent out-
puts ranging &om tens of watts to kilowatts and possi-
bly higher. These lasers also provide ideal physical sce-
narios for the observation of spatiotemporal complexity
in spatially extended dissipative systems. Broad area
semiconductor lasers, in particular, are plagued by self-
focusing filamentation instabilities and wide aperture gas
lasers tend to oscillate in higher order transverse modes
of either an induced, or externally imposed, re&active in-
dex waveguide. Attempts to produce stabilized coherent
outputs has led to the development of nearest neighbor
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or globally coupled array geometries [61], although these
lasers also tend to oscillate in an out-of-phase mode or
undergo complex spatiotemporal pulsations.

In these papers we will illustrate, using the two-level
and Raman single-longitudinal-mode lasers as prototype
systems, the rich variety of pattern forming instability
mechanisms that may appear in wide aperture lasers. We
will argue that transverse waveguiding confinement or at-
tempts to impose transverse spatial modes via, say ex-
ternal spherical mirrors, may not represent the optimal
approach in efhciently harnessing the lasers output en-
ergy. Instead, translational invariance transverse to the
laser axis, achieved by uniform pumping and Hat end re-
Hectors, allows the gain medium to excite spatially homo-
geneous or traveling wave modes. We will show that the
dynamics of the Maxwell-Bloch laser equations select an
exact finite amplitude traveling wave solution for positive
detuning (0 ) 0) of the laser and a transverse spatially
homogeneous solution for negative detuning (0 ( 0).
The traveling wave solution for 0 ) 0 manifests itself
as an off-axis far-field emission of the laser. A prelimi-
nary analysis of these solutions for a two-level laser has
already been presented in Ref. [11]. This analysis will
be extended further here with an emphasis placed on
comparing and contrasting the two-level and the Raman
laser models. In particular we will find that it is ap-
propriate to define "local plane wave" transverse modes
of the laser which, in contrast to the usual empty res-
onator modes, are exact solutions to the full nonlinear
laser equations. Our numerical simulations, while car-
ried out in two transverse space dimensions, show the
appearance of a dominant plane traveling wave compo-
nent irrespective of whether the asymptotic state of the
evolution is stationary or weakly turbulent. This trav-
eling wave appears in the far Geld as an oK-axis emis-
sion of the laser. A key idea is that in large-aspect-ratio
lasers, these solutions of the idealized infinitely extended
system, appear as natural states of the laser. One can
imagine local patches or domains of transverse patterns
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appearing &om noise as the laser is turned on. Each lo-
cal patch separated by domain walls or grain boundaries
represents a different state of emission of the laser beam.
The possibility then exists for designing innovative injec-
tion locking schemes whereby an external probe with an
encoded pattern can "lock" a finite region of the laser
emission cross section.

In this paper we begin in Sec. II by first introduc-
ing the laser models, comparing and contrasting their
physical characteristics, and reviewing some elementary
bifurcation behavior of the spatially homogeneous solu-
tions. The behavior of the latter is governed by the com-
plex Lorenz equations for the two-level laser and by an
interesting extension of these equations for the Raman
laser. Our review of the bifurcation behavior of these
systems will be necessarily brief, as this has been dis-
cussed extensively for the Lorenz equations in both laser
[62] and general contexts [63] elsewhere. Some results
for the plane wave Raman laser have also appeared re-
cently [64,65]. An interesting observation Rom the point
of view of the present paper is that bifurcation at the
first laser threshold is always supercritical for the two-
level laser but may be supercritical or nearly subcritical
for the Raman laser. As the goal of the present paper
is to investigate transverse patterns, we next proceed to
carry out a linear stability analysis of both laser systems
with transverse degrees of &eedom included in Sec. III.
By linearizing about the trivial (nonlasing) solution, we
note that two cases need to be distinguished: (a) for
negative detuning relative to the gain peak (defocusing)
the spatially homogeneous state has the lowest threshold
whereas, (b) for positive detuning, a transverse traveling
wave pattern with selected transverse wave number is ex-
cited first. Although the latter solution appears as a spa-
tially uniform near-field intensity distribution, it exhibits
an off-axis single-lobed far-field intensity profile at an an-
gle consistent with the selected transverse wave number.
The Raman laser adds the interesting additional feature
that the effective detuning depends on the magnitude of
the stress parameter (external laser pump intensity) due
to the presence of a significant ac Stark shift. Emphasis
will be placed in Sec. IV on analyzing the finite amplitude
lasing traveling wave solutions for the positive detuning
case for both laser systems. We identify both phase and
amplitude instabilities of the underlying traveling wave in
certain ranges of parameter space. Coexistence of stable,
Eckhaus [66], Benjamin-Feir [67,68], or zigzag phase in-
stabilities, and amplitude instabilities, at a fixed value of
the stress parameter just above the threshold for lasing
suggests that extremely rich pattern forming scenarios
are possible. The subsequent paper will focus on de-
riving universal order parameter equations of the com-
plex Ginzburg-Landau or Newell-Whitehead-Segel type,
which describe pattern formation in these systems just
above threshold and a phase equation which indicates
the stability of established patterns well beyond lasing
threshold.

Numerical simulations presented in Sec. V confirm that
complex pattern evolution is possible just beyond the on-
set of lasing for both two-level and Raman lasers. The
nonlinear detuning due to the ac Stark shift in the Ra-

man laser is seen to significantly extend the pattern form-
ing phenomenology. In particular we provide a specific
illustration of the weakly turbulent behavior for a two-
dimensional (2D) Raman laser whereby seas of optical
vortices [7] (topological defects) and rolllike structures
are spontaneously nucleated and transported by the un-
derlying traveling wave. Such complex spatiotemporal
behavior can be related to the different phase and am-
plitude instabilities acting in concert, continually desta-
bilizing the traveling wave. We conclude in Sec. VI with
a discussion of the relevance of such patterns, their sta-
bility and control to other wide aperture laser systems,
such as semiconductor lasers.

II. TWO-LEVEL AND RAMAN LASERS:
BACKGROUND THEORY

Two-level Laser Raman Laser

2
1

(a) (b)

FIG. 1. Energy level diagrams depicting pumping schemes
for a (a) two-level and (b) Raman laser.

The essential difference between the two lasers lies in
the method of pumping employed in order to achieve pop-
ulation inversion. Figure 1 shows a schematic of the en-

ergy level schemes and pumping mechanisms for both
lasers. The pump is the principal stress parameter for
the problem. Inversion for lasing in a two-level laser is
created via incoherent pumping (electrical or fiashlamp,
rf discharge, collisions, etc.) whereas, in the Raman laser,
a classic three-wave interaction involving two optical and
one material wave, introduces a strong coherence between
the pump wave (amplitude A) and the laser emission field
(amplitude e). Figure 1(a) shows incoherent pumping of
a broad upper manifold of levels with subsequent decay
to form an excess of population in the upper lasing level

~
2). In the Raman laser depicted in Fig. 1(b), the ex-

ternal pump laser (A) can be detuned either above or
below (h ( 0 or ) 0) an intermediate dipole coupled
level

~
2) and the laser exnission field (e) is generated

via the three-wave interaction. Mirror optical feedback
in both cases ensures that the finite lasing emission field

(e) will build up from noise if the external stress param-
eter r proportional to the pump in each case exceeds
some critical value r, . The distinction between incoher-
ent and coherent pumping ensures that even the simple
plane wave Raman laser should exhibit much richer non-
linear dynamical behavior than its two-level counterpart
[64,65].

The mathematical description of both lasers derives di-
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where F and A are the envelope variables of the electric
and polarization fields, ~ is the cavity damping coeK-
cient, c is the speed of light in vacuum, u, is the &equency
of the single longitudinal mode, mo is the beam waist, 60
is the vacuum permittivity, p1 is the dipole dephasing
rate, u12 is the two-level atom transition &equency, p12
is the dipole matrix element coupling the two levels, N
is the atomic inversion, No is the initial inversion, p2 is
the inversion decay rate, and h is Planck's constant. It
is convenient to make the following changes of variables:

'T =—
)

71

ihy1
e,

2p12

rectly &om the Maxwell equations for the optical fields

and the appropriate material density matrix equations.
For perfectly Bat end reBectors the conventional trans-
verse modes described in terms of Gauss-Laguerre or
Hermite-Gaussian functions are &equency degenerate. A
key idea is that such modes do not represent the optimum
basis for expansion of the laser field. Indeed these mode
functions are derived on the ass»mption of an empty cav-

ity, with the gain medium playing the passive role of sup-

plying photons to the field. Instead we find that the gain
medi»m plays a dominant role in that our "mode" so-
lutions discussed below are exact nonlinear solutions to
the laser Maxwell-Bloch (MB) equations. We therefore
explicitly include the difFraction operator in the model
[4] and write the two-level Maxwell-Bloch equations in
the single-longitudinal-mode approximation [69]:

eq —ia p' e = —0'e + op + ibsen,

p, + (1+i0)p = (r —n)e + ibz [
e

[ p,

ng + bn = —(e'p+ ep'),

(2)

with 0 = (urqz —w~)/pq + rb3
The essential difFerence between the Raman and two-

level laser lies in the presence of a nonlinear det»ning
term in the former. This term arises &om the ac Stark
shift and appears in the definition of 0 as an adjust-
ment to the passive &equency due to the presence of an
external pump and as an active intensity dependent de-
t»mng through the term proportional to bz. The scaling
from the original notation used in Refs. [64,65] to com-
plex Lorenz notation is outlined in the Appendix. The
stress parameter r now depends on the external pump
laser intensity Az, r = &, ,' s (No ( 0), with b represent-$Qp&~

ing the det»ning of the pump laser from the dipole cou-
pled off-resonant intermediate state 2 (see Fig. 1). The
coefficients b;, i = 1, 2, 3, are defined in the Appendix.
When these are set to zero we recover the form of the
two-level complex Lorenz equations (1).

The plane wave (spatially homogeneous in z and y)
solutions to Eqs. (1) and (2) will form the starting point
for the analysis of transverse patterns. Both laser mod-
els admit a trivial (nonlasing) solution (e,p, n) = (0, 0, 0).
Importantly, both laser models admit an exact traveling
wave solution (e,p, n) = [ee's, pe's, n) Note i.n particular
that the standing wave (e,p, n) = [ee' +,pe' +,n] is
not an exact solution We sh.owed in a previous publica-
tion [11]that the traveling wave solution appeared to be
globally attracting for a 1D two-level laser when 0 ) 0.
In a large aspect ratio system (a (( 1) we anticipate that
these traveling waves will act as the natural nonlinear
"local plane wave" modes of the laser due to the fact
that transverse boundaries are remote.

hy1eo]C
p

cP12

2E'0KA+10= 2 nl
cp12 III. LINEAR STABILITY ANALYSIS

OF NONLASING SOLUTION
and write the Maxwell-Bloch equation in complex Lorenz
notation:

eq —ia / e = —oe+ op,

pt, + (1+i0)p = (r —n)e, ~O, + ak2

0+1
(0, —akz)3

r, =1+
(0 + 1)

Linearization about the trivial (nonlasing) solution
yields the laser frequency shift and critical stress param-
eter at onset of lasing [69],

where

n, + bn = -(e'p+ ep'),
2

~12 —~c
+1

C2

b= —,
3'1

where 0, = (urqz —u, )/pq for the two-level and 0, =
(urq3 —~,)/pq + r,b3 for the Raman laser is the value of
0 at threshold. The formula for the laser oscillation &e-
quency

~L = ~c+ f1&c

2605K+1
a=

22Cucmoy1 = (~, + 0 (uqz + rpqb3) + p] ak )/(cr + 1)

The model for the Raman laser is an extension of the
plane wave model given in Re&. [64,65] to include diffrac-
tion and when scaled using complex Lorenz notation (see
the Appendix) takes the form

is a simple generalization of the classical &equency
pulling formula for a laser (the rp~bs term is missing
for the two-level laser). For 0 positive we then have the
simple physical picture that the laser will seek to develop
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(a) 2-Level Laser

kw0 {traveling wave)

mogeneous)
k =(0/a)

FIG. 4. Sketch of the neutral stability curve for 0 & 0. The
homogeneous state (ks ——QQ, /a) has the lowest threshold.

(b) Raman Laser

kwO (traveling wave)

mogeneous)

FIG. 2. Stability and instability regions for the nonlasing

solution in (A, r, ) parameter space. (a) Two-level and (h)
Raman laser.

~O
a transverse laser pattern with wave number ko ——

which minimizes the detuning, thereby maximizing the

gain. Furthermore for 0 & 0, the spatially homogeneous
0,

state (k = 0) has the lowest threshold with r, = 1+

whereas, for 0 ) 0, the mode with ko —— ~ has the

lowest threshold at r, = 1. The stability characteris-

tics of the nonlasing solution are succinctly captured in

the (A, r, ) plane in Fig. 2 for both lasers. Increasing

the stress parameter r in Fig. 2(a) at a fixed detuning 0
corresponds to moving horizontally to the right in this

figure. Because of the dependence of the frequency 0 on

stress parameter r for the Raman laser, increasing r at a
fixed detuning corresponds to moving on a curve in the

IV. BEYOND LASER THREHOLD:
STABILITY OF TRAVELING WAVE

When r & r, the two-level laser undergoes a super-
critical (Hopf) bifurcation to a spatially homogeneous
lasing state for 0 ( 0 or to a traveling wave state
(e, p, n) = (ee', pe', n), 8 = k. x+ ~t for 0 ) 0 with

6e2=
(1+o)s-(r —1)(l + o) —a2(k2 —k, )2

i1+ —(~+ak')
I

(4)

e2
n = )

b

and tu = —
l +~i (o0+ak ). In the Raman laser a similar

transition to a homogeneous (0 ( 0) or traveling wave

(0 & 0) state is observed, although in this case the bi-
furcation to the latter may be sub- or supercritical. The
lasing emission intensity e (can be assumed real) is now

given as the solution to the following quadratic equation
in e:

(0, r, ) plane.
Different spatiotemporal transverse structures may be

expected to emerge when the laser passes through thresh-
old for 0 ) 0 and 0 ( 0. A graph of the neutral stability
curve [r(k) vs k] for both signs of the detuning is shown
in Figs. 3 and 4. For 0 & 0 a finite band of transverse
wave numbers (in z and y) centered on Ik[ = 0 can be
excited. This case has been discussed in Ref. [7] for a two-
level laser. On the positive detuning side (0 ) 0), two
continuous bands of active modes can be excited lead-
ing to the expectation that a standing wave pattern with
wave number ko ——+QO/a should be excited. We will

see, however, through numerics in this paper and through
weakly nonlinear analysis in the following paper that the
traveling wave state (at either +ko or —ko) is favored.
This traveling wave solution is given explicitly in the next
section.

0,

c

fbg &
' 4, (bg ) (1+o.)'

I

——b2
I

e'+ 2(~ —ak')
I

——b2
I
+ e2

r . &b

+ (0 —ak ) —(r —1)(1+o) = 0 (5)

FIG. 3. Sketch of the neutral stability curve for 0 ( 0.
The homogeneous state (ko ——0) has the lowest threshold

with u = &[ob2e —oO —ak + bze /b], n = e /b,

p = e(1+ ia), and a =
l +zl [e (b2 —~&) —(0 —ak )].
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It is shown in the Appendix that the bifurcation to this
state will be subcritical if the condition [2(D —ak ) (~&—

b2) + +& ] ( 0 is satisfied.
The neutral stability curve in Fig. 4 shows the exis-

tence doxnain for traveling waves as a function of trans-
verse spatial wave number k. We next explore the stabil-
ity of these traveling wave solutions to finite sideband
perturbations by linearizing about the basic traveling
wave solution given by Eqs. (4) for a two-level laser, or
(5) for a Raman laser. Setting

e = (e+ eqe'"'"+eqe ' '")e',

PHASE INSTABILITIES

Eckhaus instability

hy

hx

~phase

h+ amplitude

Benjamin-Feir Instability

Zigzag Instability

hy

hx

hy

CLASSIFICATION OF PA'I I'URN FORMING INSTABILITIES

(
—+ ih ~ + p

—ih «)eis

A = A+AyC +Aye

(6)
Ske~-Varicose Instability

AMPLITUDE INSTABILITIES

hx

where h is the perturbation wave vector, we obtain the
growth rates for sideband perturbations, parametrized by
the traveling wave number k, for regions above the neu-
tral stability curve in Fig. 4. Note that we must assume
a fixed direction for the underlying traveling wave and
consider perturbations at arbitrary directions relative to
this fixed direction for the 2D (z-y) case.

The translational syxnmetry of the problem ensures the
existence of a neutral mode (eigenvalue with vanishing
real part) at h = 0 and we identify long wavelength un-
stable growth bands emanating from this neutrally stable
point as phase instabilities. Amplitude instabilities occur
at shorter wavelengths and correspond to modes which
are not neutral at h = 0. This distinction becomes espe-
cially important in the next paper when we derive a phase
equation which will account for such phase instabilities
but not for amplitude ones. Of course, the amplitude
equations to be derived in the next paper account for
both types of instability, but these are strictly valid close
to threshold. The phase equation, on the other hand, will
be seen to give an accurate description of phase instabil-
ities both near and well above laser threshold. Figure 5
provides a succinct summary of the types of instability
found for the full MB laser equations under considera-
tion here. Of the phase instabilities, the Eckhaus [66]
is the most common 1D instability, occurring along the
direction of the traveling wave. This instability is often
responsible for the spontaneous introduction of topologi-
cal defects in stable patterns by causing a local modifica-
tion of the pattern wavenumber [70,71]. The Benjamin-
Feir [67,68] or modulational instability is less common,
at least for the nonstifF lixnit of the laser equations dealt
with here. By nonstifF hmit we refer to the case where
all daxnping coefBcients in the Maxwell-Bloch equations
have comparable xnagnitudes. The zigzag phase insta-
bility occurring at right angles to the traveling wave di-
rection is the only 2D phase instability found to date in
lasers. We anticipate therefore that the nature of pattern
formation and dynamics will be fundamentally difFerent
for 1D and 2D wide aperture lasers as the zigzag insta-
bility is obviously absent in the former. A variety of
amplitude instabilities have been found in 1D both near
and well beyond lasing threshold. The situation is suf-
ficiently complex even in 1D that we put ofF a detailed
analysis of these instabilities to a future paper. Detailed

a
amplitude

L

FIG. 5. Typical phase and amplitude instabilities of an
underlying traveling wave expected for two-level and Raman
lasers. The traveling wave direction is assumed to be along
the z axis.

numerical simulations will be presented in Sec. V for the
2D Raman laser in a situation where such instabilities
are known to be absent.

As an illustration, we now fill in the phase and am-
plitude instability boundaries above the neutral stabilty
curve for the case of a two-level laser with parameters
given in the figure caption. The symmetry of the picture
allows us to show details only for the right half (positive
k) of the neutral curve plot. The vertical dash-dotted line
in Fig. 6 represents the maximum emission state of the

laser given by It,s —— —.Our earlier numerical studies of
the 1D two-level laser indicate that this appears to be a
globally attracting solution [11].Eckhaus unstable bands
straddle a wide region of stable traveling wave solutions;
the latter we refer to as the Busse balloon, [72] consis-
tent with fiuid dynamics terminology. A zig-zag (2D)
unstable band lies to the immediate left of the maximum
emission solution at k = ko and extends all of the way to
the left boundary out to the neutral stability curve.

The Raman laser at similar parameter values shows
some additional features to the two-level laser. The ex-
ternal pump laser may be tuned above or below the in-
termediate nonresonant dipole coupled level. The case
where the p»mp is tuned below the intermediate level ex-
hibits the closest resemblance to the two-level case with
the large stable traveling wave region (Busse balloon) ex-
tending all of the way down to threshold. This case is
shown in Fig. 7. The dependence of the maxirrn~m emis-
sion state of the laser on external pttmp intensity (stress
parameter r) is evident f'rom the curvature of the dash-
dotted line representing this solution in the figure. The
lower leR-hand dashed curve delimits the region of ex-
istence of traveling waves. It is in general identical to
the neutral stability curve. When it departs from this
latter curve, the bifurcation is subcritical at the corre-
sponding wave vector k. Between these two curves the
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if the aspect ratio of the laser is sufficiently large to in-

corporate a finite number of wave numbers k within any
boundaries, we may expect many features of this ideal-
ized in6nitely extended model to persist.

V. NUMERICAL SIMULATIONS

We now use Fig. 8 to illustrate how patterns may de-
velop across the laser crosssection, when the stress pa-
rameter r is chosen so that Eckhaus, zigzag unstable, and
stable traveling wave solutions coexist. The Maxwell-
Bloch equations have been numerically integrated using
a split-step spectral algorithm. The numerical procedure
was used to confirm that the traveling wave solution (5)
with wave number k selected so as to lie within the Busse
balloon, remained asymptotically stable. Figures 10 and
11 show a sequence of &ames &om a movie of the near-
and far-field x-y output cross sections of a Raman laser,
when the pump is chosen so that the Eckhaus, zigzag
unstable, and stable Busse balloon coexist. The field is
initiated Rom noise and the near-6eld pictures show the
buildup from noise (random pattern) to a finite ampli-
tude emission consisting of a sea of optical vortices [7]
(zeros of the complex field) and bright ridges which arise
from a combination of Eckhaus and zigzag instabilities.
The bright ridges are alligned at right angles to the lo-
cal direction of the traveling wave which moves &om the
top right to bottom left corner in these frames. Frame
(a) shows the noisy transverse spatial pattern which has
grown from the initial noise seed. As the pattern grows in

amplitude, some semblance of regularity begins to appear
initially on small scales [frames (b) and (c)]. Eventually,
large-scale transverse structures appear superimposed on
the uniform plane transverse traveling wave background
[see frames (d) and (e)]. Although the system never set-
tles into a quiescent state, the final frame (f) is indicative
of the weakly turbulent behavior which persists. This
complicated spatiotemporal evolution appears to persist
inde6nitely with no sign of any regular recurrence.

The far-field emission shows the appearance of a weak
ring in Fourier (k, k„)space [Fig. 11(a)] whose radius

initially corresponds to the value k = k at threshold.
This reflects the fact that there is initially no preferred
direction in space. As the amplitude of the noisy state
grows, the ring expands slightly [frame (b)], consistent
with the fact that the critical wave number depends on
intensity for the Raman laser. This degeneracy is broken
in frames (c) and (d) once the amplitude grows and a
direction is established. The far-field emission remains off
axis, appearing as an intense fairly localized spot [frames
(e) and (f)]. This spot tends to shift back and forth in
a random fashion while maintaining a lower amplitude
fluctuating background, indicative of a weakly turbulent
state of the laser emission.

We have also tested the robustness of the plane trav-
eling wave solution to different perturbations by inject-
ing different external patterns via a weak external probe
beam. The degeneracy in wave number selection as ex-
empli6ed by the annular band of excited modes in wave
number space, might suggest that a wide range of pat-
terns may be excited. Probe beams were injected so as to

"'~iii:,
,
i

! 'i'~i~

NEAR-FIELD EMISSION

FIG. 10. Six frames from a movie showing the near-field (x, y) outputs of a Raman laser when the stress parameter r = 3.
The other parameters are those of Fig. 8.
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(c)

(e)

FAR-FIELD EMISSION

FIG. 11. Same as Fig. 10 for the corresponding far-field (k, k„)outputs.

(o) (b) (c)

(e)

NEAR-FIELD EMISSION

FIG. ]2. Near-field outputs of a Raman laser for a super-Gaussian pump, with an effective r = 4. The other parameters are

those of Fig. 8.
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lie within the annulus and a two and hexagonal spot pat-
tern were excited. These persisted as long as the probe
beams remained on. Once the injected beams were re-
moved, the pattern quickly degenerated to a pulsating
single far-field ofF-axis spot. When the probe is injected
so as to excite the zigzag instability at right angles to
the traveling wave with the most unstable wave number
for this instability as a seed, we observe the growth of a
spatially modulated pattern at right angles to the travel-
ing wave direction. This grows into a saturated solitary
wave train. Figure 12 shows that the same qualitative
spatiotemporal features persist even when the transverse
pumping domain is finite. This shows a series of six
&ames of the laser output for a super-Gaussian pump
where the outer dark region is strongly absorbing. The
pump parameter r(z, y) is assumed to have a Bat topped
shape with a rapid fallofF at the edges. The traveling
wave and weakly turbulent patterns persist when the as-
pect ratio of the laser is large enough.

VI. CONCLUSIONS

Both two-level and Raman wide aperture lasers are
capable of displaying a rich variety of pattern forming
instabilities. The nonlinear detuning term in the Ra-
man laser is responsible for promoting a broader range
of instability behavior than can occur in the two-level
laser. The nature of the instability depends on the trans-
verse dimension of the laser system and it is anticipated
that much of the spatiotemporal behavior of these lasers
will carry over to technologically important wide aper-
ture semiconductor laser systems. The latter systems
require a much more complicated material description,
involving many-body interactions between carriers and
holes at the microscopic level and a major challenge that
remains is to derive order parameter equations near on-
set that are capable of predicting and suggesting means
of stabilization of novel pattern shapes in broad area and
vertical cavity surface emitting semiconductor lasers.

Et + pE —iaV E = — A—P —i E—(N —Ns),
g . g
b 28

1 1
Pt + py(1 + iO)P = —AENs + —AE(N —Np)

+i~i —IEI'»

Nt, + p2(N —No) = A—(E—'P+ EP'),
b

where the electric field E and the polarization P are com-
plex quantities, and the population inversion N is real.
In the following, we use dimensionless equations:

eq —iaV' e = oe—+ crp+ ibsen,

pg + (1+ iO)p = (r —n)e+ ib2~e~2p,

n, + bn = —(e'p+ ep'),
2

(A1)

where

a
t)

+1
2A

b
+1

2gA2 gA2p= — P, n= (N —Np),
b v'7i ~ P'7~

b' p,'o

pb
~

p6p,'
1 2A2) 2 4A2

0 = —4, + —A' = 6 + -A'.

1. Stability of the nonlasing state

eg ——(—o —iah')e+ op,
pg ———(1+ iO)p+ re,
nt, ———bn,

The rest state is given by e = 0, p = 0, and n = 0. The
linearized system obtained from (Al) linearized about
(e = 0, p = 0, n = 0) is

where h is the wave vector of the perturbation. The
corresponding eigenvalues are then
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A„=—b,

1+ iA+ o + iah
2

a+i

where

(1+i' —iah' —o ) '
o+iP=

~ ~

+or,
)

n)0.

(A2)

APPENDIX: BASIC PROPERTIES OF SIMPLE
SOLUTIONS TO THE RAMAN LASER MODEI

The nonlasing state becomes unstable when one of the
eigenvalues has a positive real part, i.e., when

The three coupled partial diBerential equations that
model a Raman laser [64,65] are

~(
+
2 )
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Using (A2), we find that o.3 is solution to P(a3) = 0
where P is a polynomial of degree 2:

of the form
— i(h r+wt)

4
r

——(1 —o) (0 —ah ) .
1 2 2 2

16

The condition o.2 ) [(1+cr)/2] is then equivalent to

P([(1+ o ) /2] j & 0. Since

2

P
~ ~

= — (1+o)'(1 —r) + (0 —ah')',
2 ) 4-

where e and n are real numbers whereas p is a complex
quantity. The amplitude e of the electric field is solution
to the following equation:

t' bg') 4, (bg ) (1+o.)'
~

—-b.
~

.-'+ 2(n-ah')
~

——b, ~+ e2
qb ) I b ) b

+ (n —ah')' —(r —1)(1+o)' = 0, (A3)

where

1 -2
-2

(d = o'b2e —oQ —ah + bg—1+0 6

the neutral stability curve is given by

(1+o)'(1 —r) + (0 —ah')' & 0,

1.e.,

G(r, h ) =(1+o') (1 —r)+(—6, —ah +rb3) &0,

p = e(1+ in),

n = —((u+ ah —bgn)
1 2

where
pbbs'1

gl&ol

, ( baal
e ib3 ——

i

—(0 —ah )
2

b)

For each h, we need to find the value(s) of r for which
the nonlasing state becomes unstable. The smallest value

of r will give the instability threshold and the critical
wavevector. G is minimal for

h',„=(rbs —b„)—.
a

Two situations can occur.
If 1/ r ) ro ——~&, then

G;„(r)= G(r, h;„)= (1+o) (1 —r)
If 2/ r & ro ——~s, then

G;„(r)= G(r, o) = (1+o)'(1 —r) + (rb, —S,)'
= (1+&) (1 —")+bs("—ro)

If rp & 1 G ' vanishes at r = r, where r, g 1 and
r, is solution to (1 + o)3(1 —r, ) + bz(r, —ro) = 0.
The critical wave vector is then h = 0. With 0, =

+ rb3 we get 0, &'0 and (1+o) (1 —r,)+0, = 0
0i.e. , r, = 1+ (y+ ), . The imaginary part of the eigenvalue

A+ whose real part vanishes at threshold is then —v
—o.A./(1+ o).

If rp ( 1, G;„vanishes for r, = 1 and h, =
—'. The &equency of the Hopf bifurcation is then —v, =
—(0, + ah3)/2.

In the plane (0, r, ), the critical curve is made of part
of the straight line r = 1 and of a piece of the parabola
r, = 1+0,/(1+ o) (see Fig. 2). The two formulas for
v can be condensed in

aO, + ah2

1+0
2. Solutions ahorse threshold

and h = - Above
threshold, system (Al) admits traveling wave solutions

3. Nature of the bifurcation

The product of the two roots of (A3) (taken as a poly-
nomial of degree 2 in e ) is equal to

(n —ah ) —(.—1)(1+o)
(b& 2 2 2

qb

t'bg=i —' —b3i G(rh)
&b )

and is always negative above threshold. However, at
threshold, one root is zero and the other one is equal
to the sum of the roots of (A3), i.e., to

fbg l, I'0'g 5 (1+o)'
2(n - ah')

~

——b,
~
+

)
If this other root is positive, the bifurcation is subcritical
for some values of 6 since the system then admits non-
zero solutions below threshold. On the neutral curve, the
product of the two roots is equal to zero, i.e.,

0 —ah = sv'r —1(1+o),

where c = +1. With

pbbs, ~No ~g
t'o b~,' &

4A b p or (2 4

the bifurcation is subcritical if

2e/r —1 3 ~

—+ —~, ~

—(1+o) ) 0,
b

be~or i 2 4 )
which requires eb & 0. The condition can also be written
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(1+o)(r —1) —2/r —1 z ~

—+ —pyi
]Nplg «

)

+1+0 & 0,

which means the bifurcation is subcritical for the cor-

responding h's if r is between the two roots r~ of the
following polynomial

i.e.,
(b' ) 1 d17

2ai ——bz i+ =0.
qb j 2 &dhz

The value of h for which ez is maximal is given by

d8
)

(1+o)(gr —1) —2/r —1 z ~

—+ —pyi ~

]Np]g (n b

4

With

d17 t'bi i (1+0)z

+1+o = 0.

The value of ry depends on the laser parameters. How-

ever, it can easily be shown that 1 & r & 2 & r+. The
bifurcation is then never subcritical at threshold (i.e., at
h = h, ), but may be subcritical for h's very close to h, .
This fact strongly afFects the validity range of the ampli-
tude equations computed in the next paper.

we get the equation for the curve on which laser emission

is maximal:

1= 1 (1+a)'
b

1.e.)

0 —ahz = (bi —b62)(l —r).

4. Properties of traveling wave solutions

Above threshold, the amplitude of the electric field is

given by

Finally, it is worth noting that when e2 is maximal, the
electric field and the polarization are in phase. Indeed,

with ~17 = &, we get

1 fbi
8 2 gb

2(~ ah ) bz ).

where

x -2(n-ah')
~

—-S,
~

— +WXfbi ~ (1+0)'
)

which reads

t'bi
(~ —ah'),

&b )

27= 2(O —ah ) I

——bz i+ (1+0)z

t, b ~ b

2

-4l ——h,
~

(fl —ah ) +(1—r)(1+ ~)
(bi 2 2 2

~b

( b, le'
I

bz ——'
i

—(0 —ah, ') = 0,1+0 I, b)

that is, p = e.
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