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A theory of electron-counting processes is formulated in terms of the Liouville space method.
The developed model is based on the quantum Markov processes developed by Davies and Srinivas.
The time evolution of an electron system interacting with an electron counter and the counting
probability distribution are investigated. The average value, Buctuation, and correlation function of
the electron number registered by the counter are calculated, and the sub-Poissonian distribution and
antibunching correlation of the electrons are obtained for an arbitrary noncorrelated initial state of
electrons. For a correlated initial state, depending on the initial correlation among the electrons and
on the electron counters used in the measurement, the statistics for the electron number registered

by the counter is characterized as a sub-Poissonian, Poissonian, or super-Poissonian distribution,
and the intensity correlation function exhibits antibunching or bunching correlation. As an example,
the state with correlation between the up-spin and down-spin electrons is considered. The electron
counting processes under the in8uence of a chaotic electron source are also considered, and the efFect

of the chaotic electron source on the counting statistics is investigated.

PACS number(s): 03.65.Bz, 42.50.Dv

I. INTRODUCTION

The quantum counting probability and the intensity
correlation function are useful for investigating the non-
classical properties of light beams. This is also true
for electron beams. For a light beam, a sub-Poissonian
counting probability and antibunching correlation are
characteristic of the nonclassical states of lights. Al-

though photon-counting processes have been extensively
studied by several authors [1—9], only a few works have
addressed electron-counting processes [10—12]. We calcu-
lated the electron-counting probability for an arbitrary
noncorrelated electron state [13], using a model based
on the quantum Markov processes developed by Davies
[14—17] and Srinivas and Davies [1,2,18]. Using an ax-
iomatic treatment for the quantum Markov process en-
ables us to investigate the electron-counting measure-
ment process systematically rather than having to use
the conventional method [19—21]. It was found that the
statistics for the electron number registered by the elec-
tron counter is characterized by a sub-Poissonian distri-
bution [12,13]. Furthermore, it is shown that the co-
incidence counting probability in the two-counter mea-
surement proposed by Hanbury-Brawn and Twiss [22,23]
exhibits antibunching correlation of electrons [10—13]. It
seems that these characteristics of electrons are due to
the Pauli exclusion principle [24].

This paper further develops the theory of the electron-
counting processes. %'e first present a general theory of
the electron-counting process in the &amework of the Li-
ouville space formulation and the quantum Markov pro-
cess. Using this result, we investigate the time evolu-
tion of an electron system interacting with the electron
counter and the statistics for the electron numbers reg-
istered by the counters. We take into account a chaotic
electron source and consider its influence on the counting
statistics. Although we address only an electron system

in this paper, all the results obtained here are also valid
for an arbitrary fermion system.

This paper is organized as follows. In Sec. II, we briefly
summarize the Liouville space formulation [25—32] for a
fermion system in a way suitable for investigating elec-
tron counting processes. We also review the model of
the quantum counting process proposed by Davies and
Srinivas [1,2,14—18] within the framework of the Liou-
ville space formulation. In Sec. III, for an arbitrary
initial electron state, we investigate the time-evolution
property of a system in contact with a counter and the
counting statistics of the electron number registered by
the counter. As an example, we show that any noncor-
related initial electron state leads to the sub-Poissonian
counting probability and antibunching correlation among
electrons. In Sec. IV, we calculate the electron-counting
probabilities and the intensity correlation functions of
correlated electrons. We show that the counting statistics
for the electron number registered by the electron counter
obeys a sub-Poissonian, Poissonian, or super-Poissonian
distribution, depending on the initial correlation of the
electrons and on the electron counters used in the mea-
surement. As an example, we consider an initial state
in which there exists a correlation between up-spin and
down-spin electrons. In Sec. V, we consider the electron-
counting processes under the influence of a chaotic elec-
tron source which is a model for the thermal or field emis-
sion of electrons. The efFect of the chaotic electron source
on the counting statistics is investigated. A summary is
given in Sec. VI.

II. QUANTUM COUNTING PROCESSES
IN THE LIOUVILLE SPACE

A. Liouville space formulation

The Liouville space formulation is a powerful method
for investigating various kinds of physical phenomena
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[25—36]. Although there are several ways to construct
the Liouville space formulation, in this paper we use the
one based on the tilde conjugation to investigate the elec-
tron counting processes. The Liouville space l'. can be
expressed as a direct product of the two Hilbert spaces
'R |3 'R, where '8 is the usual Hilbert space in quantum
mechanics and 'R is the space derived kom 'R by the tilde
conjugation. When A is an arbitrary operator acting on
state vectors in 'R, the tilde conjugation of A gives an
operator A acting on state vectors belonging to 'R. The
tilde conjugation is defined by

(AB) = AB, (At) = (A) t

(2.1)

(aA + bB) = a'A + b'B, (A) = OFA,

where A and B are arbitrary operators and a and b are c
numbers. In (2.1), crF = 1 for a bosonic operator A and
xrF = —1 for a fermionic operator A. It is assumed that
any bosonic (fermionic) tilde operator commutes (anti-
commutes) with all bosonic (fermionic) operators with-
out the tilde.

Now we consider a fermionic system in the Liouville
space Z. We ignore momentum and spin indices, for sim-
plicity, since the generalization to a many-body fermionic
system is straightforward. Such a fermionic system is
described in the two-dimensional Hilbert space 'R. The
complete orthonormal basis in 'R is given by (Io), Il)),
where Il) = et]0) and clo) = 0. Here c and ct are
fermionic annihilation and creation operators satisfying
[c,ct]+ ——1 and [c,c]+ ——[ct, ct]+ ——0. The tilde con-
jugation then gives a complete orthonormal basis in 'R:
(Io), Il)), where Il) = et[0) and clo) = 0. Here c and ct
are the tilde conjugates of c and ct, respectively, which
satisfy [c, ct]+ ——1 and [c,c]+ ——[ct, ct]+ ——0. It should
be noted from (2.1) that (c) = —c and (ct) = —ct are
satisfied. Thus the Liouville space of a fermionic sys-
tem is spanned by a coxnplete orthonormal set (Im, n) =
lm) In) I

m, n = 0, 1). In this case, the state li, j) is
constructed by operating ct and ct on the vacuum lo, o);
ll o) = c'Io o) Io 1) = c'lo 0) and ll 1) = c'c'Io o)
where clo, o) = clo, o) = 0.

One of the most important state vectors in the Liou-
ville space l'. is

ll)) = lo, o)+ ll 1), (2 2)

which satisfies the relations cll)) = ctll)) and cll))—ctll)). State Il)) gives the relations between the tilde
and nontilde operators, which are called the thermal state
conditions in thermofield dynamics [28—30].

In fermionic Liouville space, an arbitrary state I@)) of
the system can be expanded as

It is clear that if g „ is the matrix element of the sta-
tistical operator p in the Hilbert space 'R, such that
g „=(ml pin), the right hand side of (2.4) is identical to
Tr(Ap), where Tr is trace operation in 'R. Thus we find
that in the Liouville space 8, the average value of A(c, ct)
can be expressed by the matrix element (A(c, ct))
((1IA(c, ct) I@)). For example, when we set gpp = 1 —n,
gii ——n, and gpi ——gip = 0, I4')) becomes

I@)) = (1-n)lo o)+nil 1). (2 5)

This is the chaotic state (or thermal state) of an elec-
tron, in which the entropy of the system is maximized.
It is well known [26,29] that the state vector Im, n) in 8
corresponds to the operator lm)(nl in 'R. In the density
matrix form in 'R, (2.5) is expressed as

p = lo)(1 —n)(ol+ Il)n(ll. (2 6)

In the Liouville space l., the time evolution of a state
vector IC'(t))) is determined by

—Iilr(t))) = —iHI@(t))), H = H —H+iII, (2.7)

where H is the Hamiltonian of the system, H is its tilde
conjugate, and II is a damping operator. This equa-
tion corresponds to the Liouville —von Neumann equation
(or the quantum master equation) in the usual Hilbert
space 'R. The details of the Liouville space formulation
described here are given in Refs. [25—32], and its appli-
cation to quantum optics is discussed in Refs. [37—40].

B. Quantum counting process

0 & ((llhf (t)liIr)) & 1, limh/o(t)l@)) = I4')), (2.8a)

In this section, we describe the quantum counting pro-
cesses in terms of the Liouville space formulation. The
model for the quantum counting processes used here was
first developed by Srinivas and Davies [1,2] and is based
on the theory of the quantum Markov process [14—18].
According to the theory by Srinivas and Davies, the
quantum counting processes in the Liouville space can
be formulated as follows.

It is first assumed that there exists an operator 4 (t)
acting on a state vector in the Liouville space l:. This
operator describes a process in which m particles are reg-
istered by a counter during measurement time t. For any
normalized state vector I@)) in 2 such that ((ll@)) = 1,
the operator JV (t) satisfies the following relations:

l~)) = ).).g-I )
m=o ~=o

(2.3)

where the normalization condition of a state vector is
satisfied if gpo+g11 = 1. For an operator that is expressed
only in terms of c and ct, we obtain &oxn (2.2) and (2.3)

(2.8b)

((1IA(c c')I+)) = ) ).(nlA(c c')lm)g- (2.4)
tn=p n=o

where C is a finite constant. When an operator 7 (t) is
defined by
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7(t) = ) A' (t),
m=o

(2.9) Jl+)) = »m -Nl(h) I+)). (2.10)

P (h) = ((il& (t)l@)) (2.10)

which satisfies P p P (t) = 1 and limq~p Pp(t) = 1.
When we define an operator S(t) as

S(t) = JVp(t), (2.1i)

the state vector given by

the relation ((1]7(t)l@)) = 1 is established for any nor-
malized state vector I4')) in 2

By using JV (t), the counting probability distribution
P (t) that m particles are registered by a counter during
measurement time t is given by Jl~(t)))

((il Jl~(t)))
(2.17)

Furthermore, operators S(t), 7 (t), and J satisfy the fol-
lowing relation:

t

7 (t) = S(t) + d~ 7 (t —~)JS(r).
0

(2.is)

When we denote the generator of S(t) as Y, so that

Operator J determines the change in the state when the
counter registers one particle, so J characterizes the one-
count process. Then the one-count process at time t
transforms any state vector I@(t))) into I'k(t+))), defined
by

S(t) = exp[tY], (2.i9)
S(h) I@))

((1IS(t)l~))
(2.12) the following relation between J and Y is established for

any state vector I@)):

I@ (t))) =
P & (t)l@)). (2.13)

When we do not refer to the result indicated by the
counter, though counting is performed, the state I@(t)))
of the system is given by

I4'(t))) = ) .& (t) I@)) = 7(t) I
@)).

m=0
(2.14)

Under the above assumptions, we have the following
results &om the theory of the quantum Markov pro-
cess [17]. The two sets of operators (7 (t) I

t & 0) and

(S(t) I
t ) 0) become one-parameter semigroups which

satis

7 (tl)7 (t2) —7(tl + t2), S(hl)S(t2) = S(tl + t2),

(2.i5)

and 7 (t) and S(t) are strongly continuous. There exists
a bounded positive operator J acting on a state vector
in the Liouville space 8 such that

represents the state of the system at time t if the counter
does not register any particle in the interval [O, t) The.
state I@ (t))) of the system after m electrons have been

A

registered by the counter is expressed in terms of JV (t)
and P (t),

((IIYI~)) = -((il Jl~)) (2.20)

t

7 (t) = S(t)Texp d7 S( l)JS(7) = exp—[t(Y+ J)],
0

(2.2lb)

where T is the time-ordered product and (2.19) is used
in the second equality of (2.2lb).

It can be seen from (2.10) and (2.21a) that the count-
ing probability distribution P (t) that m particles are
registered by the counter during measurement time t is
given by

This relation leads the fact that the probability that the
counter registers more than one particle during an in-
finitesimal time can be neglected. Furthermore, it should
be noted that Y and J are invariant under the tilde con-
jugation (Y) = Y and (J) = J.

It is found that operators Y and J completely deter-
mine the quantum counting processes. Operator S(t) is

given by (2.19), and JV and 7 (t) are expressed as

t trn

N (t)= dt dt
0 0

t2

x dt, S(t —t )J
0

xS(t —t,)J" JS(t,),
(2.21a)

t ten t2

P (t) = dt ch l ch, ((lls(t —t )Js(t —t~ l)J .Js(tl)l@)).
0 0 0

(2.22)
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Furthermore, the elementary probability distribution
P, (t;&, & q, . . . , tq) [1] that one particle is registered
by the counter at each of times t ) t q ) . . ) tz
(t ) t, tq ) 0) and any particle is not registered in the
rest of the interval [0, t) is given by

The moment of particle number recorded by the
counter during time t is calculated by

(2.29)

Pe(ti tm) tm z~. —~ . 1 tg)

= ((Il&(& —& )J&(& —&m —g)J''' J~( t])l@)),

Using relation (2.27), we can obtain the mth factorial
moment of the particle number registered by the counter
during time t as follows:

and the coincidence probability distribution
P,(t;t, t q, . . . , tq) [1] that one particle is registered
at each of times t ) t q ) . ) tq, together with the
other possible counts in the rest of the interval [O, t), is
given by

Pc(t) tm, tm y). . . ) ty)

n(n —1) (n —m+ 1) = P(t; p, + 1) . (2.30)
P p —0

P(t; p+ 1)
P p, —0

n2 =n+
2

P(t; p+ 1)
P p,

—0

(2.31)

Of special interest, A and n2 are given by

=((Il7(& —t )J7(t —t &)J "J7(t,)l@)).

When we define a generating functional by

(2.24)

Thus the quantity P(t; p) completely determines the
quantum counting statistics.

III. ELECTRON-COUNTING PROCESS
t

G(t;]p(r)]) = (]1]Texp dr]Y+p(r)J])]@]],
0

(2.25)

the elementary and coincidence probability distributions
are calculated as follows:

Pe(t) tm) tm g). . . , ty—)

A. General theory of electron counting

Using the general theory of quantum counting pro-
cesses in the Liouville space Z developed in the preced-
ing section, we will formulate the electron-counting pro-
cesses. In this case, we can assume that the one-count
process J for electrons is described by

b&(t )h&(t —)'''b&(~ )
G (t' [ ( )])

Pc(t; tm) tm —g). . . ) ty)

&(t' [ ( ) + 1])
b&(& )~&(& — ) ' ' '~p(t )

1P (t) = —, P(t; p)m! Bp
(2.27)

where we have de6ned

P(t p) = ((11&(t ~)l@)) &(t p) = exp'(Y+ ~J)].
(2.28)

It should be noted that 7 (t) is expressed as 7 (t)
(t;1).

It is easily seen from (2.19) and (2.21a) that the counting
probability distribution P (t) can also be expressed as

J = —) Agcscg,
k

(3.1)

where (As) characterizes the measurement performed by
the electron counter, k indicates the momentum and

spin of an electron, and cg and c&t are the annihilation

and creation operators of the electron; [ci„c&]~ ——by~,

[cs, c~]+ ——[c&,c&]+
—

O, .and cg and c& are the tilde con-

jugates of cg and c~&. It is easily seen that J defined by
(3.1) transforms a state with n electrons into one with
n —1 electrons. This is reasonable since an electron is
removed from the system when it is registered by the
counter. From relation (2.20) and the tilde invariance of
Y, the generator Y of S(t) should be

Y = —i(H —H) —
—,
' ) AI, (ct ci, + c~~cg),

k

(3.2)

where H is a certain Hermitian operator. If we assume
that the time evolution of the system is determined by
the Hamiltonian in the absence of the electron-counting
measurement (AA, = 0), H becomes the Hamiltonian of
the electron system and H is its tilde conjugate. Since
we consider the free propagation of electrons, we have
H = Ps ~qczcq It is easily seen. that the operator H H—
commutes with J and Y. Thus H —H produces only
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unimportant phase factors and we can neglect H —H in
(3.2). Consequently, the time-evolution generator S(t)
without counting electrons during time t is given by

) .Abaci, ci ~@))

) AI, (Ni, )
(3 8)

S(t) = exp 't—)-Ai, (c~~cr, + ct„ci,)
k

(3 3)

It should be noted that S(t) is a nonunitary operator.
This nonunitarity is caused by the backaction of the con-
tinuous measurement with the electron counter [41]. Fur-
thermore, the operator JV(t; y) becomes

Af(t; p) = exp 2t) —Ag(c~~ci, + ctscg) pt) —Ai,ci,ci, .
k k

(3.4)

Let us define generators of su(2) Lie algebra, J+(k),
J (k), and Jo(k), by

J+(k) = ci,c~, J (k) = c„c„,

Js(k) = 2(c„cs + c„c~ —1).
(3 5)

The operators J, S(t), and Af(t; p) can then be expressed
as follows:

where Nz = c&cg and () means the average calculated by
((1~ ~4')). The change in the average number of electrons
in the system caused by the one-count process can then
be calculated as

) ) Ai [(NI,Ni) —(Ni, ) (Ni)]

(N). -(N)= " '

) Ag(Ny)

—1, (3.9)

where N = P& Ni, and ()+ ——((1~ ]ALII+)). If parameter AI,

is independent of k, (3.9) reduces to

(N)+ —(N) = —1,
(N)

(s.lo)

with (dN) 2 = (N2) —(N) 2. We can then obtain (N)—
1 ( (N)+ & (N) if the statistics of the electron number
of the system obeys a sub-Poissonian distribution, (N) =
(N)+ for a Poissonian distribution, and (N) ( (N)+
for a super-Poissonian distribution. For photon counting
process, these results were given in Ref. [5].

When the counter registers no electrons during time t,
&om (2.12) and (3.3) the state ~4(t))) becomes

J = —) Ai, J (k),

S(t) = exp t ) Ai, [Jp(k—) + —,']

(3.6a) l~(&))) =
exp —2t) As(Ni, + Ns) ]i'))

k

exp t) Ai, NI, —
k

(s.ll)

By using (3.11), the time evolution of the average number
of electrons is calculated to be

A'(t;y, ) = exp t) Ai, [Jp—(k) + —,'] —pt) AgJ (k) .

(s.6b)

N exp t) Ai, N—I,

(N), =
exp t) Ai, Ni, —

(3.12)

By using the Baker-Campbell-Hausdorff formula [42,43],
Af(t; y, ) can be expressed as

lV(t; y) = exp t ) Ai, [JO—(k) + 2]

where we set ()i ——((l~ ~4'(t))). By differentiating (3.12)
with respect to time t, we obtain the following equation
of motion:

d

q, (N)i = —) ).A~[((N~N~))i —((Ns))i((Ni))i)
k l

x exp —y, ) (g(t)J (k) (3.7)
where we have defined (())z by

(3.13)

with (i, (t) = 1 —e "' . Therefore, the electron-counting
process based on the quantum Markov process in the
Liouville space l: can be well described by su(2) Lie al-

gebra. It is of interest. to remember that the photon-
counting process in the Liouville space can be described
by su(l, l) Lie algebra [13,40]

When one electron is registered by the counter, it is
found from (2.17) and (3.1) that state ~4')) changes into
the following form:

A exp t) AI, Ni, —

((A))i =
exp t) Ai, Ni„. —

k

(s.14)

%'hen parameter AI, is independent of k and we consider a
very short time region (At (( 1), (3.13) can be simplified
to
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—(N} = —A(N) —A[(dN) —(N)].
dt

(3.15)

(3.17)

In deriving (3.16b), we used the relation ((ll7 (t) = ((ll,
which is proven by using eall}} =

cd, ll}) and chill})
—cf, ll)). It should be noted that the coincidence prob-
ability distribution is independent of t. When we set
K), = —cocci, and Ns = ct&c)„where ((1IKs = ((1INs is
satisfied, (3.16a) and (3.16b) can be expressed as

P~(t; t~) t~ i, . . . , ti)

From this result, we draw the following conclusions.
When the Buctuation of the electron number in the sys-
tem obeys a sub-Poissonian distribution, the decay of the
average number of electrons is slower than the exponen-
tial decay ( e "t). On the other hand, when the fiuctu-
ation of the electron number in the systexn is subject to
a super-Poissonian distribution, the decay of the average
number of electrons is faster than the exponential decay.
If the statistics of the electron number in the system is a
Poissonian, the exponential decay is matched.

Next we consider the elementary probability distribu-
tion P, (t;t, t i, . . . , ti) and the coincidence probabil-
ity distribution P,(t;t, t i, . . . , ti) defined by (2.23)
and (2.24), respectively. Using the semigroup property
of S(t) and 7 (t), we can obtain the following expressions:

Pe(t tftl7 tna —1 ~ ~ ~ tl)

= ((1IS(t)J(t )J(t i) J(ti) I@}}, (3.16a)

P(t t t -i" ti) =((1IJ(t )J(t -i)" J(ti)l+))
(3.16b)

where t & t & t i » ti & 0 and J(t) is defined

by

J(t) = S(—t)JS(t) = 7 (—t)J7 (t) = —) Ape "' cycle.

—A(t +t q+ +t"q)((1I AN—
Knelt')) (3 20

Pc(tj tm~ tm —i ~. . . ) ti)

= A~e "'-+'--'+ "+")((1IK~I@}},(3.20b)

where we have set K = P), Ks and N = Ps Ns
From (2.27), (2.28), and (3.4), the electron-counting

probability P (t) that m electrons are registered by the
counter during time t is given by

m

P (t) = —,((1I exp t ) A—sNs ) (s(t)Ks l(lt)),
k k

(3.21)

with $s(t) = 1 —e "' . It should be noted that state ll))
of the system now considered is given by

I1)) = [los os)+ I» 1~}] (3.22)

where Ios, os) is the vacuum state of electrons defined
by c,10„,0s} = c,IO„Os) = 0, and Il)„os}, Ios, 1),}, and
Ilq, ls} are given by

IIi, Os} = cslOs, Os},

Io., 1.) =",Io. , o.},
ll)„ ls) = c~sc), IQ)„os).

(3.23)

Using (3.4) and (3.22), P(t; [(t) can be expressed as

If parameter AI, is independent of k, which means that
the counter is insensitive to the momentum of electron,
(3.16a) and (3.16b) reduce to

P,(t;t~, t i, . . . , ti)

f (k, t)((ll exp t) .As' P(t ) ) = ((1l [1+(~ —1)['s(t)Ns]l~}) (3.24)
Ie kg

x Ks Ks, I%')},

P.(t;t, t „.. . , t, )

(3.18a) = ((1l exp (p —1)) (g(t)K), I@}), (3.25)

=) ".).f-(»t){(1IKs " Ki. l@}) (3.18b)

t
G(t, [p(c)f) = ((l[2'cxp( — dc ) Ac[-'(ctccc + ctcc)

+p(c)cccc])

(3.19)x le})

with f~(k, t) = Ag ~ ~ As, e ("~~ +" +""~ '). The gen-
erating functional (2.25) for the elementary and coinci-
dence probability distributions is given by

where we have used the relations K&2 ——0 and ((llKs =
((1INs. If A), is independent of k, (3.21) simplifies as
follows:

P-(t)= —,&(t) ((1I "'"K l~})

= —,&(t) ((1I "' K l~}) (3.26)

In the second equality, we have used the relation
((1 le

At N ((1le
('(t)K

By using (2.29), (2.30), and (3.21), the mth factorial
moment of the electron number registered by the counter
becomes
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n(n —l)(n —2) {n —m + 1)

m

=((ll ).4(t)K. ]~)) (327)
Ic

Furthermore, using the relation ((1~cs = ((l]c&, (3.27) can
be expressed as a normal-ordered product

n(n —1) (n —m + 1)

—) ) gq (t) 6(t)(c c cq cq ),

performed by the two electron counters. Since the one-
count process is described by J = J~+J2, the nonunitary
time evolution with no-count during time t is obtained
&om (2.20) as

S(t) =exPl —t) [k, (k)+k~(k)](f~cq+ 2~k„)I.

(3.34)
Using the same method as that used for the one-

counter measurement, we obtain the counting probability
distribution P, , (t) that mi electrons are registered by
one-counter and m2 electrons by the other counter during
measurement time t:

(3.28)

n = ) fi, (t)(NI, ), dn' = n+ n (3 —K), (3.29)

with () = ((1] [4)). It is found &om these results that
information about the state of the electrons in the sys-
tem, such as (c& . c& cs, cs ) can be obtained fromt

the statistics of the electron number registered by the
counter, such as n(n —1) (n —m+ 1). Of particular
interest, we have

m, 1 +en 21P, , = „„P(t;pi, p2)m].'m2.' Op~ 'Dp, 2
'

where P(t; pi, p2) is given by

P(t p'i p'2) = ((il&(t pi p2)l@))

JV(t; pi, p2) = exp 2t ) —A(k)(ctsci, + c„c),)
A:

(3.35)

(3.36a)

where dn = n —n2, and 8 and K are given by

~ = =, ).).4(t)6(t)[(NsN~) —(N~)(Ni)]

(rgk)

(3.30)

According to 8 & z, 8 = K or 8 ) r, we have a sub-
Poissonian, Poissonian, or super-Poissonian statistics, re-
spectively, in the electron-counting measurement.

When 6, (t) (( 1, (3.25) can be approximated by

P(t, p) = (1+ 2(p, —1) (8 —~)n }e~" ' ". (3.31)

Thus the counting probability distribution P (t) be-
comes

1P (t) = —,n e "(1+z(d —e)[m(m —1)
mI

—2mn+ n']}. (3.32)

The factor in braces in (3.32) represents the deviation
from the Poissonian distribution.

Next we consider electron-counting measurement using
two counters, where we can obtain the intensity correla-
tion function which is somewhat similar to the second-
order coherence measured in the Hanbury-Brown and
Twiss setup [22,23]. In this case, we have to take ac-
count of the one-count processes by the two counters, so
we assume that the one-count processes are speci6ed by
two operations:

Ji = —) Ai(k)cycle, J2 ———) A2(k)c)kcik, (3.33)
I]. k

where (Ai(k) }and (A2(k) }characterize the measurement

x exp —) p(k)(s(t)chic~ . (3.36b)
k

Here A(k), ((k), and p, (k) are defined by

A(k) = Ai(k) + Az(k),

(s(t) = 1 —exp[ —A(k)t], (3.37)
piAi(k) + p2A2(k)

Ai(k) + A2(k)

It is thus seen &om (3.35) and (3.36) that the counting
probability distribution P, , (t) becomes

P, , (t) =, , ((1]exp t ) A(k)N—q
m] m2

(
x ) A, (k)(1,(t)K), [

ni(ni —1) . (ni —mi + 1)n2(n2 —1) . (nq —m2 + 1)

/YACC
+fTL2

P(t; pi + 1, pz + 1)
Opi Op2

(3.40)

Substituting (3.36) into (3.40), we can obtain the follow-

ing expression:

m2

x ) Az(k)fs(t)Kg (3.38)
)

where we set A&(k) = Az(k)/A(k).
Since the moment ni 'n2 ' of the electron numbers reg-

istered by the two counters is calculated by

n; n; = ) ) n-, -, P„,„,(t), (3.39)
nl ——0 n2 ——0

and the counting probability distribution P, , (t) is
given by (3.35), we obtain the factorial moment as fol-
lows:
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nl(nl —1) . (nl —ml + 1)n2(n2 —1) (n2 —m2+ 1)

((1l ) Al(k)fa(&)&a ).A2(k)ga(&)&a l@'))

'(
)

) " ) ) ") Al(k, )" A, (k, )A2(L, ) . A2(ll)
%~1 k1 l~q l1

x(a (t) (a, (t)ft (t) 6, (t)(c, c, c„c„ca, ca ct, ct ).t t t (3.41)

The average number, second-order moment, and cross
correlation function of the electron numbers registered
by the two counters are given by

n~ = ) A, (k)(a(t)(ctca),

we obtain the following results:

dn, —n, .= n2[8,; —~„],

nln2 nln2 nln2 [~12 +12]~

(3.44)

(3.42a)

n2 =n, +) ) A, (k)A, (l)(a(t)()(t)(ctacttctca),
k l

nln2 ——) ) Al (k) A2 (l)(a (t)gt (t) (cact ctca), (3.42b)
k l

with j = 1,2. When we define quantities ~;~ and 8;~ by

Thus we find that according to d~~ ( ~~&, sf~~ = ~~&,
or d~~ ) ~~~, the statistics of the electron number reg-
istered by each counter is subject to a sub-Poissonian,
Poissonian, or super-Poissonian distribution. We also see
that the correlation becomes antibunching for 812 ( rc12
and bunching for 812 ) r12.

When (a(t) (( 1, P(t; pl, p2) can be approximated by

) A;(k) A, (k) [(a (t) (Na)]',

) ) A;(k)A, (l)t,a(t)(&(t)
l

(lgI )

x [(NaNt) —(Na)(Nt)],

(3.43a)

(3.43b)

I

+(tj Pl) P2) ~ (1 + 2(pl 1) (~11 &11)nl

+(V'1 1)(P2 1)(~12 +12)nln2

+ 2 (ttt2 1) (~22 tt22)n2)

Xe(P1 —1)ng+(Pg —1)ng (3.45)

Thus the counting probability distribution P, , (t) be-
comes

m] mQ

(t) —
t t

e (1+2(~11 +11)[ml(ml 1) 2mlnl + nl] + (~12 tt'12)(ml nl)(m2 n2)I) fm21

+2(~22 +12)[m2(m2 1) 2m2n2 + n2])) (3.46)

where 8;~ and ~;z are given by (3.43a) and (3.43b). This
shows that the counting probability distribution deviates
slightly from a Poissonian distribution. The results ob-
tained in this section are summarized in Table I.

I

perform more explicit calculations. In this section, we
consider an arbitrary noncorrelated initial state of elec-
trons. In the Liouville space l:, such a state is expressed

B. Electron counting
for a noncorrelated initial state

I@)) = [gpp(k) lo„,o, ) + g„(k)]1„,o, )

+gpl(k) loa 1a) + g»(k)11a 1a)] (3 47)

Thus far, we have not assumed the initial state of elec-
trons ]4')). Consequently, the results obtained in Sec.
III A are valid for an arbitrary initial state of electrons.
Let us now assume the initial state of electrons, so we can

where the normalization condition is given by ((ll@)) =
gpp(k) + gll(k) = 1. For examPle, when we set gpp(k) =
1 —na and gll(k) = na, (3.47) becomes the chaotic state
(or thermal state) of electrons, where na is the fermion

TABLE I. List of the results of the electron-counting measurements.

Counting probability
Fluctuation and correlation

One-counter measurement
Eqs. (3.21) and (3.32)
Eqs. (3.29) and (3.30)

Two-counter measurement
Eqs. (3.38) and (3.46)
Eqs. (3.43) and (3.44)



4150 MASASHI BAN 49

distribution function. When we assume that gpp(k) = 0
and gqq(k) = 1 for k E (k;„,k „) and that gpp(k) = 1
and gqq(k) = 0 for k g (k;„,k ), where k;„and k
are certain constants, then (3.47) is an eigenstate of the

electron number.
When the counter does not register any electron in the

interval [0, t), the state of the system at time t is obtained
from (3.11),

l@(t))) =
~ h ~

k

— goo(k) ~0s, Os) + e 2""'[gio(k)
~

s, oa) + goi(k) ]Ox, 1s)] + e ""gii(k)]Is, s)
1 —(s(t)gag(k)

(3.48)

where we have used the relation gpp(k) + gqq(k) = 1. In the limit as t m oo, (3.48) reduces to the vacuum state of
electrons ~4(oo))) = g& [0&, Os). This means that there are no electrons in the system if the counter does not register
any electrons during an arbitrarily long measurement time. By using (3.48), the average value of the electron number
in the system is given by

(N) ) - gii( )
„-1—

& (t)g (k)
(3.49)

If the initial state [@)) is the electron-number eigenstate, we have (N)g = (N)g —p. This means that the electron
number remains constant if the counter does not register any electron. In general, however, the average number
of electron numbers decreases in time, even if no electron is registered by the counter. This decrease is caused by
the change in our knowledge of the electron system, which is the result of continuous measurement by means of the
electron counter.

If one electron is registered by the counter at time t, we obtain the change in the state from (2.17), (3.1), and (3.48),

e ""gix(p) e ""gpss(k)
l@(t+0))) = ).&, ( (t) ( )

).&
1 ( (,) (k)10

gpp(l)~0~, 0~) + e ~""[g»(l)lit, 0&) + go&(l)IOI~ Ii)] + e ""gal(l)11' 1t)
1 —()(t)gg~(l)

(3.50)

Using (3.49) and (3.50), we can get the change in the
average number of electrons in the system due to the
one-count process at time t,

P (t) = —,) ) b(ki, . . . , k )

(N)~+o —(N)~ =—
). e ""'gpss(k)

1 —(s (t)gag (k)

). e ""'gag(k)
1 —(g(t)gag(k)

(3.51)

(s, (t)g»(k )

1 —(g, (t)gpss(k, )

x ((11~(t)I@))

where b(kq, . . . , k ) is defined by b(k) = 1 for m = 1 and

P(t; y, ) = 1+p
" "

((1~+(t)~@)), (3.52)
1 —gkgggk

It is easily seen that the relation —1 & (N)&+p —(N)& & 0
is satis6ed.

The counting probability distribution P (t) that m
electrons are registered by the counter during mea-
surement time t is calculated by (2.27) and (3.25).
For the noncorrelated state given by (3.47), P(t; p)
((1[X(t;p) [4)) becomes

b(kg, . . . , k ) = (1 —bl, , s,).
|,i,j;™)

for m ) 2, (3.54)

and (i, j;m) indicates that all possible pairs (k;, k~) are
taken from (kq, . . . , k ), such as

h(kg, k2, ks) = (1 —4, a, )(1 —6a, a, )(1 —bg, g, ). (3.55)

Next, we consider the counting statistics for the elec-
tron system. Since we have (NgNt) = (Nq)(N~) (k g l)
for the noncorrelated initial state of electrons, it is found
from (3.29) that the average and fluctuation of electron
number registered by the counter are given by

where ((1]S(t)~@)) = gl, [1—fg(t)gqq(k)]. We thus obtain
the counting probability P (t) from (2.27),

n = ) (g(t)gqq(k), dn = n —) [(g(t)gag(k)] .

(3.56)
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This result shows that the statistics of the electron num-
ber registered by the counter is characterized by the sub-
Poissonian distribution (dn2 & n). It is interesting to
note that an arbitrary noncorrelated initial state always
leads to the sub-Poissonian counting probability, in con-
trast with the case of photon-counting processes. In the
photon-counting measurement, a coherent state leads to
the Poissonian distribution and a thermal state to the
super-Poissonian distribution. In these states, we have
(ngni) = (n~)(nl) (k g i) for free photons, where ng is
the photon-number operator of the kth mode.

When (s(k) « 1 or Apt « 1, we can obtain the approx-
imate counting probability distribution P (t) by setting
8 = 0 in (3.32),

1P (t) = —n e "(1—ze[n —2nm+ m(m —1)]},m!

(3.57)

where e is given by e = (n —dn2)/n2 ) 0. This approx-
imate counting probability distribution was 6rst derived
by Saito et al. [12],who used the Mandel formula in quan-

turn optics to derive (3.57) and assumed the chaotic state
of electrons as an initial state.

In two-counter measurement, for the noncorrelated ini-
tial state of electrons (3.47), we can obtain the following
results by substituting d,z. ——0 into (3.45):

AMA. Aj Ag A2
Qg =

nj Ag fL2

(2)
n~, gi2 = 1 —eg2)

(3.58)

where Q~ is the Mandel Q factor and gi~~l is the normal-
ized second-order correlation function. It is found from
(3.58) that the statistics of the electron number registered
by each counter obeys the sub-Poissonian distribution.
Furthermore, it is seen that the electron number correla-
tion nin2 between the two counters is smaller than the
noncorrelated value nin2. This eHect is the antibunching
correlation of electron numbers in coincidence counting
measurement.

When (g(t) « 1, since 8;z ——0 for the noncorrelated
initial state, the probability distribution P, , (t) be-
comes

—7YLg —fag

P, , (t) =, ,
e "' "'(1—2zii[ni —2nimz+ mi(mi —1)]

mg m2

&&2(nl ml)(n2 m2) 2&22[n2 2nzm2 + m2(m2 1)]}. (3.59)

For the chaotic initial state of electrons, this probability
distribution was first derived by Saito et al. [12].

IV. SELECTIVE COUNTING PROCESSES
FOR ELECTRONS

where (A(k, A)} and (A(k, B)}characterize the measure-
ment performed by the electron counters for A and B
electrons. Furthermore, corresponding to J~ and J~,
the nonunitary time-evolution operators without count-
ing electrons during time t become

A. Selective electron counting S~(t) = exp —
2 ) A(k, A)(a&a|, + a&aq),

le

(4.2a)

In this section, we consider selective counting processes
for electrons. By selective electron counting process we
mean that the electron counter used in the measurement
can register only a certain kind of electron. In the fol-
lowing, we investigate the selective counting processes for
electrons with up spin or with down spin. Such counting
processes can be achieved using the Mott detectors [44].
For simplicity, we refer to electrons with up spin as A
electrons and to electrons with down spin as B electrons,
and we set (a~, a&) = (cg~, c&&) and (bg, b&) = (cN, c&i)
Index k represents a momentum of electron. In this
counting process, we have to consider the one-count pro-
cess for both A and B electrons. According to the gen-
eral theory of quantum counting processes based on the
quantum Markov theory explained in Sec. II, it is rea-
sonable to assume that the one-count processes of A and
B electrons can be described respectively by

J~ = —) A(k, A)agag„J~ = —) A(k, B)bshe,
k

(4.1)

Sp(t) = exp —
2 ) A(k, B)(b„bg + b„bg) . (4.2b)

We have ignored here the free Hamiltonian of electrons.
Now we will consider the change in the state of the

system when one A electron is registered by the counter
at time t. After one A electron is registered, the state of
the system can be expressed as

i@(t + 0)))
J&l@(t)))

((11J~l~(t)))

) A(k, A)

agape'

@(t)))

) A(k, A) (a~sag)

(4 3)

where ]4'(t))) is the state of the system before the A elec-
tron is registered and we set () = ((1[ i4'(t))). Using this
state, we can calculate the changes in the average num-
ber of A and B electrons due to the one-count process
for the A electron,
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) ) A(l, A) [(AaAi) —(Ax) (Ai)]

(Nx)~ —(N~) = ) A(k, A)(Ai, )

(4.4a)

).).&(t A) [(BsAi) —(B~)(Ai)]

(Na)~ —(Na) = ) A(k, A)(As)

(4.4b)

where we have defined ()~ = ((1~ ]4(t+0)))~, and we set

As = al, aI„Ng = ) As, Bs = b&bI„N~ ——) BI,.
k Ie

(4.5)

These notations are used Erequently in this section. It
should be noted that the average number of B electrons
does change, though only A electrons are registered. This
change is caused through the correlation between A and
B electrons. Indeed, if there is no correlation, so that
(AsBi) = (Ai, )(Bi), we have (Ng)g = (Ng). When

A(k, A) is independent of k, (4.4a) and (4.4b) can be
simplified to

only A electrons are registered. The one-count processes
of the two A counters are expressed by

Ji ———) Ai(k, A)azaI„J2 ———) A2(k, A)ai, aq,
k A:

(4.7)

where (Ai(k, A)) and (A2(k, A)) are parameters of the
two A counters. The nonnnitary time evolution with no-
count during measurement time t can then be obtained
&om (2.20),

s(t) = ex]—z!) IA~(k, A) + Aq(k, A)](azar' y a as)),

(4 8)

where the &ee Hamiltonian of electrons has been ne-

glected. Equations (4.7) and (4.8) completely describe
this electron-counting process.

Using the same procedure as that used to derive (3.35)
and (3.36), we can obtain the counting probability dis-
tribution P, , (t) that the A counter registers mi A
electrons and the other A counter registers m~ A elec-
trons during measurement time t. The result is given by

(N~2) —(Ng)
(Ng)g —(Ng) =

(Ng)
1)

(NpNz) —(Np) (Np)
(Ng g —NJs =

(N )

(4.6a)

(4.6b) x ((1~&~(&;pi, y2) ~@'))

pz =ps =0
(4.9a)

When we perform the two-counter measurement de-
scribed above, we have several measurement setups. To
describe these setups, we introduce three electron coun-
ters: the A counter, the B counter, and the AB counter,
where the A counter registers only A electrons (up-
spin electrons), the B counter registers only B electrons
(down-spin electrons), and the AB counter registers both
kinds of electrons. The AB counter is insensitive to the
spin of the electron and so it does not distinguish be-
tween A and B electrons. The four measurement setups
are as follows. First, the two A counters are used to
observe the intensity correlation function for the A elec-
trons only. Next, the two B counters are used to observe
the intensity correlation function for the B electrons only.
Then, one A counter and one B counter are used to de-
termine the intensity correlation function between A and
B electrons. Finally, the two AB counters are used to
measure the correlation of both kinds of electrons as a
whole. Since the first and second measurement setups
give equivalent results, we will discuss the electron count-
ing processes for the three difFering cases in the following
subsections. It will be seen that another measurement
setup can be handled in the same way developed in this
section.

B. Counting process for A electrons

Consider the electron-counting process for two-counter
measurement, where two A counters are used, so that

JV~(t; pi, y2) = exp —2t) A(k, A)(a&al, + al, as)
k

x exp —) p(k, A)(s (t, A) as as

(4.9b)

where A(k, A), p, (k, A), and fi, (t, A) are defined by

A(k, A) = Ai(k, A) + A2(k, A),

(1,(t, A) = 1 —exp[ —A(t, A)t],
(4.10a)

yiAi(k, A) + p2A2(k, A)

Ai(k, A) + A2(k, A)
(4.10b)

In (4.9a), the state ((1~ is given by

((1[ = ([(Aa., 0, 0~+ (Ag, 1, 1~]

jg [(B&,0, 0~ + (B&., 1, 1]]), (4.11)

where ]1,1;Aq) = a&a&]0, ; AI, ), [1,1;Bq)
= btzb~&[0, 0;Bq), ~0, 0;Al, ), and ~0, 0;Bq) are the vacuum
states of the A and B electrons with momentum k.

Using (3.40) and (4.9), we can calculate the average
values, Buctuations, and cross correlation function of the
electron numbers registered by the counters. Thus n~,
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dn (j = 1,2), and nin2 are given by

nln2 nln2 + nln2[~12 +12]

where 8;~ and ~;~ are defined by

for j = 1, 2 (4.12a)

(4.12b)

) ) A;(k, A)A, (l, A)$&(t, A)6(t, A)
l'

(l~k)
x [(As A~) —(Ai ) (A~)] (4.13a)

I

n~ = ) A~(k, A)(s(t)(Ai, ), dn, =-n~ + n [d,~
—~~, ]

k

r,;~ = ) A;(k, A)Aq(k, A)[(s(t, A)(As)], (4.13b)
ning

le

with A~(k, A) = Az(k, A)/[Ai(k, A) + A2(k, A)]. We find
from (4.12a) that according to d~~ ) IE2~, d~z ——e~~, or

d~~ ( ~~~, the statistics of the electron number registered
by each A counter is characterized by a super-Poissonian,
Poissonian, or sub-Poissonian distribution, respectively.
Furthermore, we can see from (4.12b) that according to
dy2 & K/2) dy2 ——K/2) or dy2 & K/2) the electron num-
ber correlation nqn2 becomes bunching, independent, or
antibunching, respectively. When f&(t, A.) is suRciently
small, the counting probability distribution P, , (t) be-
comes

-my -mg

p, , (t) =, ,
e "' "'(1+-(311—zii)[ni —2nimi + mi(mi —1)] + (812 —~12)(ni —mi)(n2 —m2)

m] m2

+ 2 (+22 +22) [n2 2n2m2 + m2(m2 )]) (4.14)

C. Selective counting process for A. and B electrons

S(t) = exp —2t ) A(k, A)(a&as + a&as)
k

—2t) A(k, B)(b~qbs+btsbs) .
k

The selective counting process for A and B electrons can
therefore be completely determined by (4.15) and (4.16).

We find from (4.15) and (4.16) that the counting prob-
ability distribution P, , (t) that counter 1 registers mi
A electrons and counter 2 registers m2 B electrons during
measurement time t is given by

gmE+nag

~llll1 ( )
/ / g ill/ g lAQmy. m2. p) p2

(4.16)

Now we consider the electron-counting process with
two counters, A counter and B counter, to investigate
the correlation between A and B electrons. In this case,
the one-count processes by the A and B counter are de-
scribed, respectively, as

Ji ———) A(k, A)aqaI„J2 ———) A(k, B)bshe,
le k

(4.15)
where we have assumed that counter 1 is the A counter
and counter 2 is the B counter. The nonunitary time
evolution with no counts during time t is described by

where (s(t, A) and gs(t, B) are defined by

fq(t, A) = 1 —exp[ —A(k, A)t],

(~(t, B) = 1 —exp[ —A(k, B)t].
(4.18)

According to the procedure used to derive (4.12) and
(4.13a) in Sec. IVB, the average values n~, the fiuctu-
ations dn2, and the cross correlation function nin2 of
the electron numbers registered by the two counters are
given by

ni ——) (q (t, A) (Aq), n2 ——) (q (t, B)(Bq), (4.19a)
k k

dn = n~ +n [diaz
—IE2~] for j = 1, 2

nln2 —nln2 + nln2 [~12 + +12]

(4.19b)

(4.19c)

where 8;~ and e;~ are defined by

g22 = —) ) (s(t, B)Q(t, B)[(BsB))—(Bs)(B))],
n2 k l

(leak)

(4.20b)

g» ——,) ) fs(t, A)f~(t, A) [(AsA~) —(As)(A&)],

(l~k)

(4.2Oa)

x ((1 ~~A(t pl)+a (t p2) ~ @))
Vx=gs=o

(4.17a)

) ) fs(t, A)()(tl B)[(AsB)) —(As) (B))]l
ngn2

(leak)

Af~(t; p) = exp 2t) A(k, A)(a&a—s + a&as)
k

x exp —pi ) (s(t, A)asap
k

JUAN)(t; p,) = exp 2t ) A(k, B)(b—tombs + b~qb)

k

x exp —p2 ) (&(t, B)b„b„,

(4.17b)

(4.17c)

~11 ———
2 ) [fi, (t, A)(As)),

k

(4.20c)

(4.2Oe)

(4.20d)
1

r22 ———
2 ) [(q(t, B)(Bq)],

1
&12 — ) fk(t, A)(&(t, B)[(A&B„)—(Aq)(Bi, )].
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The cross correlation function (4.1.9c) with (4.20c) and (4.20e) reHects the correlation between the A and B electrons.

When (s(t, A) and (&(t, B) are sufficiently small, the counting probability distribution P, , (t) becomes

(4.21)

TTL g TAQ

P, ,{t)=,e "' "'{1+2(d»—~»)[n', —2nimi+ mi(mi —1)]+(~12+ &12){ni mi)(n2 m2)
m] m2

+—(822 —(b;22) [n2 —2n2m2 + m2(m2 —1)]}.

D. Nonselective counting process for A. and B electrons

In this subsection, we investigate the electron counting process using two AB counters, each of which can register
both A and B electrons. The total correlation of electrons can thus be measured. In this case, the one-count processes
by the two AB counters are given by

Ji ———) Ai(k, AB)(agag + blab), ), J2 ———) A2(k, AB)(al, aq + bqbI, ), (4.22)

where (Ai (k, AB)}and (A2(k, AB)}characterize the measurement performed by the two AB counters. The nonunitary
time-evolution generator without counting electrons during measurement time t can then be obtained from (2.20),

S(t) = exp —tt+(bt(k, AB) + b~(kAB)](a a , t+tbtbt+ btbt + btbt)). (4.23)

Thus the counting probability distribution P, , (t) that mi electrons are registered by counter 1 and m2 electrons
by counter 2 during time t is calculated by

Bttbb+ttbg

P-,-.(t) =, , B,B,((11&~a(t y y')I@'))
m, !m,! By,, By2 P1=PZ=o

(4.24a)

Af&&(t;pit @2) = exp —2t ) A(k, AB)(a&ag + ai al, + b&bI, + b&bg) exp —) y(k, AB)(k(t, AB)(aqaq + bsbi )
W It: Ic

(4.24b)

where A(k, AB), p(k, AB), and $1,(t, AB) are defined by

A(k, AB) = Ai(k, AB) + A2(k, AB), (i, (t, AB) = 1 —exp[ —A(k, AB)t],
yiAi(kt AB) + y2A2(kt AB)

Ai(k, AB) + A2(k, AB)

(4.25a)

(4.25b)

We can thus obtain the average values n~, Quctuations dn, and cross correlation function nin2 of the electron
numbers registered by the two counters as follows:

n, = ) A, (k, AB)(g(t, AB)(Ng),

nln2 nln2 + nln2(~12 K12)

dn = n, +n, (d~, —r...) for j=1,2 (4.26a)

(4.26b)

where Ng ——A~ + BI„and 8;~ and K;~ are de6ned by

) ) A;(k, AB)A~ (l, AB)6, (t, AB)(t(tt AB) [( N&Ni) —(Na)(Ni)]t
2 I, l

(lgk)

) A;(k, AB)A~(l, AB)(g(t, AB) [(Ng) —2(AI,BI,)],
k

(4.27a)

(4.27b)

with A(k, AB) = Az(k, AB)/[Ai(k, AB) + A2(k, AB)]. When (),(t, AB) (( 1, the counting probability distribution

P, , (t) becomes

Ag A2
TAQ TYLER

(t) —
( (

e {1+2 (t-ill Kll) [ml (mi 1) 2mlnl + ni] + (t l12 +12)(ml nl) (m2 n2)
f8( m2s

+ 2 (822 —K22) [m2 (m2 —1) —2m2n2 + n2] }. (4.28)
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We have considered the three kinds of electron counting
measurements. The results are summarized in Table II. ) A;(k, A)A~(k, A)[gs(t, A)v„] .

a
(4.33)

E. Simple model
for the correlated state of electrons

In this subsection, we explicitly consider a correlated
state of electrons. We assume that the correlated state
of electrons in the Hilbert space 'R is given by

Ie) = [ul +vI A@4)I0;A& I0;B) (4.29)

where IO;As& and IO;Bs) are the vacuum states defined
by asl0; Ag& = bsl0;Bg& = 0. We also assume that us
and vt, are real numbers which satisfy u2s + vs

——1. This
state is similar to the BCS state in superconductivity.
In the Liouville space, since we have IC'» = IvP& Ig&,
we can express the correlated initial state of electrons
corresponding to (4.29) as

When (s(t, A) « 1, the counting probability distribu-
tion P, , (t) is obtained by substituting cf;~ = 0 and

Ic;z given by (4.33) into (4.14). It is found from (4.33)
that since dn2 & n~, the statistics of the electron num-
ber registered by each A counter is characterized by a
sub-Poissonian distribution. Furthermore, it is seen that
since e12 & 0, the electron number correlation n1n2 be-
tween the two counters is smaller than the noncorrelated
value nqn2. The antibunching correlation of electrons is
thus obtained.

Next, we consider the selective counting process for the
A and B electrons discussed in Sec. IV C. Since 8;z given
by (4.20a)—(4.20c) vanishes, it is found from (4.19) that
nz, LLn (j = 1,2), and nqn2 become

I@)) = ( '10 o A ) Io o B )
"~ = ).~~( ~ )"I ~ "2 = ).~s( ~ )v)~

A: k

(4.34a)

where we set

+v„'I1, 1;A,) 8I1, 1;B&&

+usvg(I1, 0;Ag& 8 I1,0;Bs)
+10 1 As& Io 1 B~&)) (4.30)

nln2 nln2 + &12nl'n2& (4 34b)

where the e;~'s are defined by

= =).K (t A) ]
a

I1, 0;As& =a„'lo, o;A„),
I0 1;Aa& = nql0, 0; As&,

I1 0 B~) = t
g, l0, 0; Bl,&,

I0 1 B~) = t'kl0 o Bi &

(4.31a)

(4.31b)

n~ = ) (s(t, A)A~(k, A)vq,

2 — —2n. = nz —
K&&

12 12 +12~12 y

(4.32)

where the positive quantity ~;& is de6ned by

with IO, O;Aq) = IO;As& I3 IO;As& and I0, 0;Bs&
IO; Bs) IO; Bg). The normalization in the Liouville space
is satisfied since ((1l%'&) = Ps(u2& + v&2) = 1.

We first consider the counting process for only A elec-
trons as discussed in Sec. IVB. Since 8;~ de6ned by
(4.13a) vanishes for (4.30), the average numbers, fluc-
tuations, and cross correlation function of the electron
numbers registered by the two A counters can be ob-
tained from (4.12)

~» = =.).Ns(t B)v']'
k

) 6(t, A)(s(t, B)(ul,vt, )'.
A1%2

(4.35a)

(4.35b)

In deriving (4.35b), we used the relation u2& + v&2
——1.

When $1.(t, A) « 1 and gs(t, B) « 1, the counting prob-
ability distribution P, , (t) can be obtained by s'ubsti-
tuting 8;~ = 0 and (4.35) into (4.21). From the above
results, the statistics of the electron number registered
by each counter is characterized by a sub-Poissonian dis-
tribution. It is also seen from (4.34b) that the electron
number correlation nqnz is greater than the noncorre-
lated value nqn2. This effect is the bunching correlation
between the A and B electrons. It should be noted that
the correlation among the same kind of electrons becomes
antibunching while the correlation between A and B elec-
trons becomes bunching. These electron-counting mea-
surement results reiect the characteristics of the initial
state of electrons.

Finally, in the nonselective counting process for the
A and B electrons, the average n»~bers, Buctuations,
and cross correlation function of the electron numbers
registered by the counters are obtained from (4.26):

TABLE II. List of the results of the selective electron-counting measurements.

Counting probability
Fluctuation and correlation

A-A (B B) counting-
Eqs. (4.9) and (4.14)
Eqs. (4.12) and (4.13)

A-B counting
Eqs. (4.17a) and (4.21)
Eqs. (4.19) and (4.20)

Nonselective counting
Eqs. (4.24a) and (4.28)
Eqs. (4.26) and (4.27)
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n~ = 2) A,.(k, AB)(i, (t, AB)vt„dn, =.n~ —~~~n,
A:

12 —&12 &12~12

where the K,~
's are de6ned by

(4.36a)

(4.36b)

If (&(t, AB) « 1, the counting probability distribution
P, , (t) is obtained by substituting cf,~ = 0 and (4.37)
into (4.28). It is important to note that K,~ defined by
(4.37) is not always positive. This is due to the synthetic
efFect of the two correlations: the bunching correlation
between the A and B electrons and the antibunching
correlation among the same kind of electrons. It is clear
that t",

~ becomes negative if v&2 & 1j2 for all k. In this
case, the statistics of the electron number registered by
each counter obeys a super-Poissonian distribution, and
the electron number correlation n1n2 becomes bunching.
Furthermore, under certain conditions it may be possi-
ble that K,z

——0. In this case, we have dn2 = n~ and
n1n2 ——n1n2, and so obtain Poisson-like statistics. We
would like to remark that correlation among electrons is
indispensable for getting Poisson-like statistics, in con-
trast with the photon-counting process.

K,,. —— ) A;(k, AB)Aq (k, AB)(g (t, AB) (2vt, —1)vq.
lc

(4.37)

II = —) 2~i, [(1 —2ng) Jo(k)

+(1 —nt, )J (k) + nl, J+(k) + -], (5.2)

x exp[in Ap(k; t) Jo(k)]
x exp[A. (k; t)J (k)]}liIt)), (5.3)

where Ay(k; t) and Ao(k; t) are given by

(1 —ng)(1 —e ""')
nl, (1 e 2~1,t)—

(5.4)

Ap(k; t) = e
—rCk t

1 —n, (1 —e- -")
- 2

(5.5)

I et us assume the initial state of electrons, for simplic-
ity, to be

where J~(k) and Jo(k) are the generators of the su(2) Lie
algebra defined by (3.6), vg is a positive constant, and
nI, is a certain distribution function. Using the Baker-
Campbell-Hausdorff formula, (5.1) can be solved as fol-

lows:

l@(t))) = (e ""'exp[A+(» t)J+(k)]
~ 4 ~

k

le)) = [(1 —m, )lo„o,) + m, l1„1,)]. (5.6)

V. COUNTING PROCESS
W'ITH CHAOTIC ELECTRON SOURCE

A. Chaotic electron source

Substituting (5.6) into (5.3), we obtain

l4'(t))) = ([1—ng(t)]lOA, , Oi, ) + ni, (t)lip, lg)}, (5.7)

Up to now, we have treated only the relevant system
(the cavity) of electrons and the counters, but have not
considered the source of electrons which is an important
consideration in electron counting experiments. Without
an electron source, the electron number in the system de-
creases in time as counting measurement proceeds, since
the counter removes electrons &om the system as it reg-
isters them. As a result, the state of the system becomes
a vacuum as t ~ oo, and the electron number registered
by the counter approaches the total electron number in
the initial state of the system. In this section, we show
that an electron-counting process including an electron
source can be formulated in the same manner as devel-
oped in Sec. III. We assume a chaotic electron source,
which is a model for a thermal or 6eld emission of elec-
trons, since this seems to be the most important case in
a real experiment.

We 6rst consider the following time-evolution equation
for state l4'(t))) of the electron system in the Liouville
space:

q, I@(t))) = Ill@(t)))

with n~(t) = nt, + (mi, —n)e 2"' . For Ki,t )) 1, we

obtain the chaotic state of an electron,

l@(~))) = [(1 —n~)IO~ 0~) + n~l1~ 1~)] (5 8)

This result is independent of the initial state of electrons.
Indeed, we can show that an arbitrary state of electrons
approaches (5.8) through the time-evolution generator
(5.2). Thus (5.1) can be considered to describe the time
evolution of the state of the system caused by the chaotic
electron source.

B. Electron-counting process with a chaotic source

In this subsection, we consider the time evolution of
the system interacting with the chaotic electron source
and the electron counter and investigate the electron-
counting statistics. In this setup, the one-count process
J is given by (3.1) and the generator Y of time evolution
without detecting electrons defined by (2.19) becomes

with

(5.1)
Y = II + Yo, Yo = —

2 ) Al, (c&cl, + c&cg),
k

(5.9)
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where II is given by (5.2). It is easily seen that relation

(2.20) is satisfied since ((llII = 0. In (5.9), we have ig-

nored the free time-evolution generator Hp —Hp of elec-

trons, since Hp —Hp commutes with Il and Yp, thus

giving unimportant phase factor. Here Hp is the &ee
Hamiltonian of electrons and Hp is its tilde conjugate.

We 6rst consider the time evolution of the electron
system without referring to the result indicated by the
counter. In this case, by using the operator 7 (t) defined

by (2.9) and (2.21b), the state of the system during time
t is given by

l4'(t))) = 7 (t) lkl)'(0))) = exp[t(Yo + II + J)]I@'(0))).

(5.10)

Using the generators of su(2) Lie algebra defined by (3.6),
we have

yj) + II + J = —) [i(;i, + 2 Ai, + a+ (k)J+ (k)

+ao(k) Jo(k) + a (k)J (k)] (5.11)

with a~(k) = 2Ki,ni„ao(k) = 2eg(1 —2ni, ) + Ai„and
a (k) = 2K', (1 —ni, ) + Ag. When we assume that the
initial state of the systexn is given by (5.6) and we use the
Baker-Campbell-Hausdorff formula of su(2) Lie algebra,
we obtain the following result:

(t; p) le(0))) " [(Ai +miBk)lok, oi)

+(Cg + mi, Di, ) l
li, li )]j, (5.15)

where Ap, BI„CA,, and Dp are given by

Ai, = cosh»tel + ai, (p —1)

fy —2AgKA+»Ql+ ai. (y —1)

x sinh»tel + ai, (p —1), (5.i6a)

Bi, = —cosh pi, tel + ag(p, —1)

+ »+ (p —1)As

» Ql + ai, (p —1)

x sinh»tel + ai, (p —1) (5.16b)

2AgKA sinh»t/1+ ag(y, —1),1+ i (p —1)
(5.16c)

Di, = cosh»tel + as(p —1)

Ql + ag(p —1)

x sinh pi, tel + ai, (p —1) (5.16d)

where n(t) = mi, + [ei,ni, /» —mi, ](1—e 2~k') and» =
~g + 2Ag.

It is found from (5.7) and (5.12) that the interaction
with the electron counter changes the distribution func-
tion from n&(t) to n&(t). The stationary state of the
system then becomes

with ai, = 2ni, A), zi, /p&~. Using (5.15), we can calculate
the state of the system after m electrons are registered.
The quantity P(t; p+ 1) then becomes

P(t;p+1) = e ~" cosh»tgl+ai, p

and the equilibrium value of the average electron number
in the system interacting with the electron source and the
counter is given by (N),k~k;o„~,„——P& ei,ni, /».

Next, we consider electron counting measurement us-
ing one electron counter. For a counting process with
a chaotic electron source, P(t; p) is given by P(t; p) =
((ill, (t; p)l@)) and JV, (t; p) is expressed in terms of the
su(2) generators J~(k) and Jo(k),

4' (t; tt) = ettp( t ) (fp(k) Jp(k) + f (k)J (k)

+fe(k) ~e(k) + ~p) I, (5.14)

with fp(k) = 2tcg(1 —2ni, ) + Ag, f (k) = 2tcg, (1 —n), ) +
pAi„and f+(k) = 2+gn), When we a.ssume that the
initial state is given by (5.6) and use the Baker-Campbell-
HausdorfF formula, we obtain

+ 1+( mi Ai p'))»
sinh pi,tel + ai, p,

5.17vtl+ asap

Let us assume that we begin recording the results indi-
cated by the counter after the system reaches its station-
ary state given by (5.13) and that we set t = 0 when
recording begins. In this case, P(t; p + 1) is obtained by
replacing mi, in (5.17) with a stationary value ~i,ng/».
We thus get

P(t;tt+1) = "(pek pettt'1+ ptt

+(1+ zai, p)

sinh»tel + a),p,

X (5.18)gl + aitp
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To calculate the average value n and Quctuation dn of
the electron number registered by the counter, we expand
(5.18) up to the second order with respect to p, , and we
use (2.31). We then obtain the following results:

) +k+k
A

Qk

(5.19)

C. Electron counting with two counters

In this subsection, we consider electron-counting mea-
surement using two electron counters with a chaotic elec-
tron source. This is done by taking into account the time-
evolution generator II due to the chaotic electron source
in (3.35) and (3.36). Consequently, we obtain

2-).(~kAknkl

)
1 8

—27k t Ilmy+rngP, , (t) = . . .P(t; pi, p2)

These expressions are quite difFerent from those obtained
for counting measurement without an electron source.
The average of the electron number registered by the
counter per unit time is given by pk~kAknk/» It .is
easily seen from (5.19) that the relation dn2 ( n is es-
tablished for all times t ) 0. We thus obtain the sub-
Poissonian statistics for the counting measurement, even
though there is a chaotic electron source.

We now compare the results (5.19) with those ob-
tained for counting measurement without a chaotic elec-
tron source. In the absence of an electron source, the
average value no and Huctuation dno are obtained &om
(3.56) by substituting the equilibrium value rknk/» into
gg, (k),

k k

Pk

(5.22a)

P(t pl p2) = ((1]exp[tY.(pi p2)]l@)) (5.22b)

where Y, (pq, y2) is given by

+g+(k) J+ (k) + ~k

Ag(k) + A2(k)+ ) (5.23)

with

Y, (P1, 112) ) gp(k) Jp(k) + g—(k)J (k)

dnp =np —) (1 —e '
)

2=- KkAk —Apt

Qk

- 2

(5.20)
g (k) = 21rk(1 —nk) + p&A&(k) + p2A2(k),

g+(k) = 2Kknk,

gp(k) = 2Kk(1 —26k) + Ay(k) + A2(k),

(5.24a)

(5.24b)

Let us consider the result for a very short time region
(1 » ekt, Akt). Thus we have from (5.19) and (5.20)

~ Kk&knp-n=) Akt,
Qk

(5.21)
2.f Irknk

dip —np-dn —n= —) i
Akt

~

.E»
It is found from these expressions that in an extremely
short time region, the average value and the Huctuation
of the electron number registered by the counter with an
electron source are equal to those obtained without an
electron source. This result is reasonable since in such a
short time region, the change in the initial state of elec-
trons due to counting measurement is negligible and the
role of the electron source is not so important. When we
perform measurement using a highly sensitive electron
counter, where the parameter Ak takes a large value, the
difference becomes remarkable even for a short time re-
gion.

and where Aq(k) and A2(k) are the parameters which
characterize the two electron counters. Furthermore,
since we investigate the counting process in a station-
ary situation, we can assume that the initial state of the
electron system is given by (5.6) without a loss of gener-
ality.

Before considering the counting measurement, we first
investigate the time evolution of the system when we do
not refer to the result indicated by the electron counters.
In this case, the state of the system at time t is given
by ~4(t))) = JV, (t; y, q

——1, p2 ——1)~@)). By using the
decomposition formula of su(2) Lie algebra, this state is
calculated to be

~@(t))) = ([1 —nk(t)]~0k, ok) + ~k(t)~lk, lk)), (5.25)

where nk(t) = mk + [mknk/pk —mk](1 —e ~" ) with

Ak = Ag(k) + A2(k) and pk = rk +. 2Ak.
Using the same procedure as that used in Sec. VB,

P(t; p, z + 1, p2 + 1) is calculated as follows:

P(t;pi+1, @2+1)=
P 1
e ~" cosh pktgl + nky, k + 1+okgk

slnh pktgl + 6k@k

mkAk P+ Sinh PII/I+DISCI ),'Yk 1+oikPk
(5.26)
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P(t; pi + 1,p2 + 1)

cos q&t 1+6&f &

+(I+ 2~aye)

sxnh fstgl + clgps

QI+ I Pa
(5.27)

We can thus obtain the average values nz, Huctuations
dn, and cross correlation function nqn2 of the electron
numbers registered by the counters,

n~ = ) p~(k) Al t,
Pk

(5.28a)

4lel 2

'4 )
(5.28b)

(rgAhnh l 2

n, n, = n, n, —) P, (k)P, (k) ~ '4 )
—27' t

x pqt—
2

(5.28c)

with Ps(k) = As(k)/Ag. Therefore, we can obtain the
sub-Poisson statistics and the antibunching correlation.

where pi, = [pqAq(k) + p2A2(k)]/pg and as
21cI,Agns/p&. Since we consider the counting process in
the stationary state, we can substitute mg = Ag(oo) =
icqn~/p~ into (5.26) and obtain

VI. SUMMARY

We have investigated the electron-counting processes
in terms of the Liouville space formulation. The model of
the electron-counting processes considered here is based
on the quantum Markov processes developed by Davies
and Srinivas. After presenting the general theory of the
electron-counting process in the Liouville space, we con-
sidered the counting statistics for the two initial states of
electrons: the noncorrelated state and the state having
a correlation between up-spin and down-spin electrons.
The time evolution of the electron system interacting
with the counter and the statistics for the electron num-
ber registered by the counter were calculated. For a non-
correlated initial state, the results show a sub-Poissonian
counting probability and antibunching correlation among
the electrons. It seems that these results are explained
by the Pauli exclusion principle [24]. For a correlated
initial state of electrons, we used the two-counter mea-
surement, somewhat similar to the Hanbury-Brawn and
Twiss setup, and calculated the average values, fiuctu-
ations, and cross correlation functions for the electron
numbers registered by the counters. In this case, depend-
ing on the properties of the initial correlation among the
electrons and of the electron counters used in the mea-
surement, the statistics for the electron numbers regis-
tered by the counter obeys a sub-Poissonian, Poissonian,
or super-Poissonian distribution and the intensity corre-
lation becomes antibunching, independent, or bunching.
In particular, for a BCS-like state given by (4.29), the
correlation between up-spin and down-spin electron num-
bers registered by the counters becomes bunching. Fi-
nally, we investigated the counting process with a chaotic
electron source and obtained the sub-Poissonian statistics
and the antibunching correlation, even though there is a
chaotic electron source. In this paper, we confined our-
selves to investigating a homogeneous system, so position
dependence does not appear in our results. To investi-
gate an inhomogeneous system, we would have to use the
electron field operators Q(z) and gt(z) instead of cq and
c~&. We could then apply the method developed in this
paper.
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