
PHYSICAL REVIEW A VOLUME 49, NUMBER 5 MAY 1994

Wigner distribution of a general angular-momentum state:
Applications to a collection of two-level atoms
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The general theory of quantum angular momentum is used to derive the unique Wigner distribution
function for arbitrary angular-momentum states. We give the explicit distribution for atomic angular-
momentum Dicke states, coherent states, and squeezed states that correspond to a collection of N two-
level atoms. These Wigner functions W(e, p) are represented as a pseudoprobability distribution in
spherical phase space with spherical coordinates 8 and p on the surface of a sphere of radius A&j(j+ 1)
where j is the total angular-momentum eigenvalue.

PACS number(s): 42.50.Dv, 03.65.Bz, 31.15.+q

I. INTRODUCTION

The harmonic-oscillator phase-space description of
electromagnetic Selds has had great success in leading to
an understanding of the relationship between semiclassi-
cal and quantum theories of light. It was Sudarshan [1]
who proved the optical equivalence theorem, i.e., he de-
rived the relationship between the quantities measured by
a photodetector and the mean values of the correspond-
ing operators. He showed that the function appearing in
the diagonal coherent-state representation that is calcu-
lated from the density matrix provides a link between the
semiclassical and quantum descriptions. This so-called P
distribution, now denoted by P(a), is generally singular
for nonclassical states [2]. In such cases, the Wigner
function [3,4] has proved to be especially attractive as an
alternative. The Wigner function in harmonic-oscillator
phase space has also proved to be quite useful in discuss-
ing related topics such as the photon-number distribution
and phase distribution. In these problems, the concept of
the area of overlap in phase space has been especially use-
ful [5].

The nonclassical characteristics of atomic systems,
such as a collection of two-level atoms, or the treatment
of bosonic or fermionic atoms in an atom trap or atom in-
terferometer, has been a subject of much investigation
[6,7]. Much of the work has concentrated on the direct
calculation of the variances in the ¹ tom angular-
momentum operators such as J and J+, and J . Very
little has been done on the relationship between the non-
classical aspects and the angular-momentum spherical
phase-space distributions for such atomic operators. For
general angular-momentum systems, Arecchi et al. [8]
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introduced the analog of the diagonal coherent-state rep-
resentation

p= f P(a,p)Ia, p&&a, pIdQ, (1)

where Ia,p) represents the atomic coherent state
1/2 j+m ' j—mc

cos
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~ asin—
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m= —j .

2j +k6= X g Gk, ~k,
k=0 q= —k

where f'„ is the multipole operator defined by

+j j k j
(
—1)J &2k +1

m = —jm'= —j

(3)

xIjm)(jm'I, (4)

where (5 e
J.) is the usual Wigner 3j symbol [10].

The expansion coefficients Gk in the atomic operation
expansion Eq. (3) are obtained from the orthogonality of
the multipole operators

T

Gk,
——Tr Cf'k (5)

xe 'J+ '~Ijm ), (2)

and where
I jm ) is the Dicke eigenstate of J and J,. As

usual, the differential of spherical angle is given by
dQ=sinadadp. Arecchi et al. discussed the utility of
the function P(a, P) in atomic problems, and Scully and
co-workers have discussed the Wigner function for spin- —,

'

particles [9]. Using the general theory of multipole
operators [10], Agarwal introduced the Wigner function
for systems of arbitrary angular momentum in spherical
phase space [11]. To arrive at this distribution, we first
expand an arbitrary atomic or angular-momentum opera-
tor Gas
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FIG. 1. The standard schematic depiction
of the harmonic-oscillator ground state

~
n ) = ~0) as a disk at the origin is shown in (a).

This should be compared to the analogous
spherical phase-space depiction of the Dicke
ground state

~ jm ) =
~ j,—j ) = ~5, —5) as a cir-

cular cap at the south pole (b). The sphere has
a radius A&j(j +1)=Pi&30.

(a)

1/2
2j+1

4m f W(8, p)dQ,

and by requiring further that if two operators G "' and
0 ' ' are represented, respectively, by the Wigner func-
tions 8""and 8' ', then

Tr[C'"G" ]=f W'"(8,y)W' '(8, &p)dQ .

Thus, unlike the P function, the expectation values can be
obtained in terms of the Wigner functions alone.

In this paper we shall consider the structure of the
Wigner function associated with important states such as
nonclassical Dicke states

~j,m ), classical coherent states
~a, P), given by Eq. (2), and nonclassical squeezed states
~g, m ). In particular, we will discuss the squeezed atom-
ic state associated with a collection of N two-level atoms
immersed in a squeezed photon bath. We examine how

The Wigner function associated with the atomic operator
G is then defined uniquely by [11]

2j +k
W(8, %')= g g Ykq(8&t)GI q & (6)

k=oq= —k

where Yk are the usual spherical harmonics. This form
for W is derived uniquely by requiring that

the quantum character of the state reflects itself in the
properties of the Wigner function by plotting the distri-
bution f(8,p)= 1+W—(8,y)/[R&j(j+1)] in spherical
phase space.

II. ANGULAR-MOMENTUM DICKE STATES I jm )

Dicke states
~ jm ) are the spherical phase-space analog

of the Fock states
~
n ) in harmonic-oscillator phase

space. For the Fock states ~n ), we have n =0, 1,2, . . . .
The vacuum state ~0) is represented by a disk at the ori-
gin, and an excited state

~
n ), n )0, is represented by an

annulus. Similarly, for fixed j, the Dicke ground state
~ j,—j ) is represented by a cap at the south pole in spher-
ical phase space, and an excited state

~j,m ), m ) —j, is
an annulus [5]. These schematic depictions are illustrat-
ed in Figs. I and 2.

The location of the annuli in spherical phase space can
be determined by the classical angular-momentum vec-
tors associated with the J, eigenvalues m [12], as shown
in Fig. 3. Each annulus corresponds to a single vector.
At the poles the annuli close in to form caps, just as in
harmonic-oscillator space where the ground-state an-
nulus closes in to form the disk representing ~n ) = ~0).

A harmonic-oscillator Fock state
~
n ) has a well-

FIG. 2. An excited oscillator state
~
n ) = ~2)

is depicted in (a) as an annular region in phase
space. Analogously, an excited Dicke state

~ j,m ) = ~5, —2) is shown as an annular region
in spherical phase space. Both states have a
totally imprecise phase y ranging over
yE [ rr,n)—.
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m=0

defined excitation number n. Hence, by the oscillator
number-phase uncertainty relation b,nkvd~ 1, the phase
is totally indeterminate and qE[ —n., m. ). This explains
why the phase-space area is an annulus centered at the
origin. In a similar fashion, in angular-momentum phase
space, a Dicke state ljm & has a well-defined angular
momentum in thezdirection. Hence, (J„& and (J & are
completely indeterminate [10]. Since this translates to
complete ignorance of the azimuthal angle q, once again
the appropriate representation in phase space is an
annulus —this time on a sphere.

The Wigner distribution quantifies our notion of these
areas in phase space. We first obtain the Wigner function
for the Dicke state l jm &. The density-matrix operator p
can be written in the form

p=ljm&(jml .

Upon using Eqs. (4)—(6) defining the Wigner distribution,
we find that

2J

WJ (8 q))= g Yko(8 y)( 1)~ &2k+1
k=0

X —m 0 m (10)

As expected by symmetry considerations, 8'. is in-
I

m=-5
FIG. 3. Here we show a schematic diagram of the classical

angular-momentum vector for the Fock states inside a sphere of
radius fi&j(j+1). The vectors have all length A&j(j+1},but
a z component mA. These vector locations correspond to the
maximal contributions from the Wigner functions shown in Fig.
4. In particular, the VA'gner function always has an uneaneeled
dominant peak at precisely these locations in the angle 8. They
Sx the location of the bands of a surface area in phase space, de-

picted in 2(b).

dependent of y.
This function is plotted in Fig. 4 as a function

of 8C[O, n. ] and pE[ —n, m) for j =5 and m
=0, —1, . . . , —5. We plot the distribution both as a
planar surface and as a spherical surface of the form
f(8,p)= 1+—W(8, q&)/[fi&j (j + I)]. If we suppose that
jim & is an orbital-angular-momentum state, then quan-
tum mechanically we would expect the angular-
momentum vector of length fi&j (j +1) to be oriented in-

side a sphere of the same radius such that the vector's z
component is mA. This situation is depicted in Fig. 3,
with j =5 and m =0, —1, —2, . . . , —5. The Wigner
function W(8, p), when integrated over the domain of
spherical angle, 8C[O, m] and qrE[ n, m—), .co.ntributes
the most positive probability at precisely these locations
in 8 corresponding to the classical vectors. At these 8
values there is always one peak on the "wavy sea" that is
not canceled by a trough, and so contributes a large
amount of probability. This peak is a quantitative associ-
ation for the area enclosed by the annular bands. In Fig.
4 we plot the function W(8, y) as a two-dimensional
surface, and also the normalized function
f(8,p)—= 1+W(8, y)/[fi&j(j+I)] in spherical coordi-
nates, so that the oscillations can be viewed as variations
in the surface of a sphere of radius one.

III. ATOMIC COHERENT STATE la, P &

In harmonic-oscillator phase space, the ground state
l n &

= l0& is a coherent state represented by a disk at the
origin to indicate variances, ((hx ) &

= ((hy ) &. Similar-

ly, the spherical phase-space ground state
l jm &

=
lj, —j &

is a coherent state represented by a cap on the south pole
to represent equal variances, ((4J„) &

= ((hJ„) &

=
—,
'

l (J, & l (see Fig. 1}. Now a general harmonic-

oscillator coherent state la &, of mean excitation number

lal, can be obtained by a simple displacement operation,
i.e., la& =B,l0&. Here, 5 is the usual coherent-state
displacement operator [5]. In direct analogy, a general
spherical coherent state la, p& is obtained by rotating the
ground state off the south pole, l a,p &

=P & ~j, —j &,

where P & is the generalized rotation operation [8,10,11],
given in terms of the raising and lowering operators J+
by P~& ——exp[a(e '~J+ —e+'~J )]. These rotations are
depicted schematically in Fig. 5. Now to quantify these
ideas, we again turn to the Wigner distribution.

We consider the Wigner function for the atomic
coherent state la, p&, Eq. (2), whose density matrix is
given by

p=l~, p&&~, pl . (11)

Using Eq. (2) for the expansion of the coherent state
lu, p& in terms of Dicke states ljm &, and Eqs. (4} and (5)
defining the multipole expansions, the coef6cients Gkq for
the density-matrix operator p, Eq. (11),are found to be

J 2J6coherent e
—

ivy(tan~ /2 )9
kq j+mP1= J

' 1/2
2J

J +m +q

' 1/2

(sinu/2) ~+ (cosa/2) J ( —1)~ ~(2k+1)'~

X
m —m —

q q
(12)
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w(e

(a)

(c)

(b)

FIG. 4. Here for 8C[0,e]
and yE [—m, n ) we plot the nor-
malized Wigner function f(9,q&)

=1+Wn""'(O, q)/[fi&j(j+1)],
where W ""'(O,y) is given by
Eq. (10). The angular-
momentum Dicke states
represented here are

~ jm )
=~5, m), where m=0, —1, —2,
—3, —4, and —5, for (a), (b); (c),
(d); (e), (f); (g), (h); (i), {j);and (k),
(1); respectively. When integrat-
ed over 8, the Wigner function
contributes the most positive

probability precisely at the loca-
tions where the angular-
momentum vector for

~jm ) of
length A&j (j + 1) has a z com-

ponent mh (see Fig. 2). These
contributions occur where the
dominant positive crest of the

Wigner function —the peak that
is not canceled by any

troughs —contributes. At the

poles the distribution fills in to
form a cap, analogous to
harmonic-oscillator space where

the ground state fills in and is

represented by a disk, and not an

annulus (see Fig. 1). To bring

out all the features of 8'(H, q),
we plot it first as a two-

dimensional surface function of
8'(0,q) in (a), (c), (e), (g), (i), and

(k). This method of presentation

brings out the scale of the local

positive and negative variations
of 8' with respect to the plane

f(g, qr):—0. Then in (b), (d), (f),

(h), {j),and (1), we take a global

view by plotting f(6, q&)
= 1

+6'(O, qo)/[& j(j+1)] on a

sphere of radius one.
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(g)

FIG. 4. (Continued).
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FIG. 5. The harmonic-oscillator ground
state ~n ) = ~0) is a special case of a coherent
state. As shown in (a), a general harmonic-
oscillator coherent state ~a) can be generated

by displacing the ground state ~a) =8 ~0),
where 8 is the usual coherent-state displace-
ment operator. Similarly, a general spherical
coherent state ~a,p) can be obtained by rotat-
ing the coherent Dicke ground state

~ jm ) =
~j,—j ) off the south pole. We show

such a state, ~a, P) =R /»~j,
—j), in (b), where

P is the spherical angular rotation operator.

(a)

The Wigner function W""(8,y) is then given by Eq. (6),
and is plotted in Fig. 6 for a rotation to a =p =n /4,
where a is measured off the south pole [8]. (Again we
plot f(8,y)= 1+W(8—,y)/[le'j(j+1)]. ) The coherent
state appears as a positive perturbation on the surface of
a unit sphere. It is a Gaussian distribution located on the
sphere's surface at 8=3n/4, y =n./4. The. Gaussian
shape is analogous to that found for the Wigner distribu-
tion for coherent states of the single-mode radiation field
corresponding to a harmonic-oscillator coherent state [5].
The coherent state is a minimum uncertainty state in the
sense that it yields an equality for the Heisenberg
angular-momentum uncertainty relation

where J, J„,and J, are computed in a rotated coordi-
nate system, where z' is an axis in the (a,p) direction
through the center of the coherent state [8,10]. The vari-
ances AJ„and AJ„. measure Quctuation about this axis.
For a coherent state, the minimum-uncertainty condition
is &(hJ„) ) =&(bJ ) ) =

—,'~& J, ) ~, and the fluctuations

are symmetric about the z' axis. This is why we represent
the state by a circular cap centered at (a,p).

As we mentioned above, the Wigner distribution of a
coherent state at the south pole is identical to that of the
ground or vacuum Dicke state

~ j,m ) =
~j,—j ) . The dis-

tribution of any other coherent state may be obtained by
rotation on the phase-space sphere —analogous to dis-
placement in the harmonic-oscillator phase-space plane,
Fig. 5. A cross section through W(8, y) tangent to the

(a) (b)

FIG. 6. Here we plot the Wigner distribution W""/A &j (j +1) for the coherent state ~a, p), Eq. (2). We choose parameters

a=p=m/4 that correspond to a Gaussian distribution localized at 0= vr/4, y=m/4 (T—he angle a is m. easured off the south pole. )

This distribution is qualitatively similar to that of the harmonic-oscillator coherent state. Again we present a two-dimensional sur-

face view (a) and a spherical coordinate perspective (b). This state obeys the minimal uncertainty relation and ((bJ, ) ) = ((hJ» ) )
=

z ((J, ) ) '/', where the prime coordinates are rotated such that z' passes through the center of the coherent state. This distribution

should be compared to the schematic disk representation in Fig. 5(b).
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(a)
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