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The general theory of quantum angular momentum is used to derive the unique Wigner distribution
function for arbitrary angular-momentum states. We give the explicit distribution for atomic angular-
momentum Dicke states, coherent states, and squeezed states that correspond to a collection of N two-
level atoms. These Wigner functions W(6,p) are represented as a pseudoprobability distribution in
spherical phase space with spherical coordinates 6 and @ on the surface of a sphere of radius #V/j(j +1)

where j is the total angular-momentum eigenvalue.

PACS number(s): 42.50.Dv, 03.65.Bz, 31.15.+q

I. INTRODUCTION

The harmonic-oscillator phase-space description of
electromagnetic fields has had great success in leading to
an understanding of the relationship between semiclassi-
cal and quantum theories of light. It was Sudarshan [1]
who proved the optical equivalence theorem, i.e., he de-
rived the relationship between the quantities measured by
a photodetector and the mean values of the correspond-
ing operators. He showed that the function appearing in
the diagonal coherent-state representation that is calcu-
lated from the density matrix provides a link between the
semiclassical and quantum descriptions. This so-called P
distribution, now denoted by P(a), is generally singular
for nonclassical states [2]. In such cases, the Wigner
function [3,4] has proved to be especially attractive as an
alternative. The Wigner function in harmonic-oscillator
phase space has also proved to be quite useful in discuss-
ing related topics such as the photon-number distribution
and phase distribution. In these problems, the concept of
the area of overlap in phase space has been especially use-
ful [5].

The nonclassical characteristics of atomic systems,
such as a collection of two-level atoms, or the treatment
of bosonic or fermionic atoms in an atom trap or atom in-
terferometer, has been a subject of much investigation
[6,7]. Much of the work has concentrated on the direct
calculation of the variances in the N-atom angular-
momentum operators such as fx and J,, and J_. Very
little has been done on the relationship between the non-
classical aspects and the angular-momentum spherical
phase-space distributions for such atomic operators. For
general angular-momentum systems, Arecchi et al. [8]
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introduced the analog of the diagonal coherent-state rep-
resentation

p= [ P(a,B)la,B)(a,Bld, (1
where |a,B) represents the atomic coherent state
+j 2j 2 «a jtm a j=m
|a,B)=m§_j j+m sin— cos—
Xe ~iU+mB|jm ) | )

and where |jm ) is the Dicke eigenstate of J 2 and J,. As
usual, the differential of spherical angle is given by
dQ=sinadadpf. Arecchi et al. discussed the utility of
the function P(a,B) in atomic problems, and Scully and
co-workers have discussed the Wigner function for spin-}
particles [9]. Using the general theory of multipole
operators [10], Agarwal introduced the Wigner function
for systems of arbitrary angular momentum in spherical
phase space [11]. To arrive at this distribution, we first
expand an arbitrary atomic or angular-momentum opera-
tor G as

2j  +k
G =k§0 ,, =2_ ) Gig Ty » 3)
where fkq is the multipole operator defined by
ik ]
—-m q m'

J i . N
Tw=3 3 (1Y "™2k+1

m=—jm'=—j

X |jm ) {jm’'| , 4)
k j

where (Z,, o 7.) is the usual Wigner 3j symbol [10].
The expansion coefficients Gy, in the atomic operation
expansion Eq. (3) are obtained from the orthogonality of
the multipole operators

Gy =Tr 671, | . (s)
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(a)

The Wigner function associated with the atomic operator
G is then defined uniquely by [11]
2 +k
Wo,p)=3 3 Y, ,6,9)Gy, , (6)
k=0g=—k

where Y, are the usual spherical harmonics. This form
for W is derived uniquely by requiring that

1/
2j+1

TrG =
r 4

2
[wie,prda, (7)

and by requiring further that if two operators G ("’ and
G @ are represented, respectively, by the Wigner func-
tions W' and W', then

Tr[G V6P )= [ w(6,p) W (6,p)d0 . (8)

Thus, unlike the P function, the expectation values can be
obtained in terms of the Wigner functions alone.

In this paper we shall consider the structure of the
Wigner function associated with important states such as
nonclassical Dicke states | Jj,m ), classical coherent states
la,B), given by Eq. (2), and nonclassical squeezed states
[¢&,m ). In particular, we will discuss the squeezed atom-
ic state associated with a collection of N two-level atoms
immersed in a squeezed photon bath. We examine how

FIG. 1. The standard schematic depiction
of the harmonic-oscillator ground state
|n)=10) as a disk at the origin is shown in (a).
This should be compared to the analogous
spherical phase-space depiction of the Dicke
ground state |jm ) =|j,—j)=|5,—5) as a cir-
cular cap at the south pole (b). The sphere has
a radius #Vj (j + 1)=#v30.

the quantum character of the state reflects itself in the
properties of the Wigner function by plotting the distri-
bution f(6,p)=1+W(6,p)/[#V j(j+1)] in spherical
phase space.

II. ANGULAR-MOMENTUM DICKE STATES |jm )

Dicke states | jm ) are the spherical phase-space analog
of the Fock states |n) in harmonic-oscillator phase
space. For the Fock states |n ), we have n=0,1,2, ... .
The vacuum state |0) is represented by a disk at the ori-
gin, and an excited state |n ), n >0, is represented by an
annulus. Similarly, for fixed j, the Dicke ground state
|j,—j) is represented by a cap at the south pole in spher-
ical phase space, and an excited state |j,m ), m > —j, is
an annulus [5]. These schematic depictions are illustrat-
ed in Figs. 1 and 2.

The location of the annuli in spherical phase space can
be determined by the classical angular-momentum vec-
tors associated with the fz eigenvalues m [12], as shown
in Fig. 3. Each annulus corresponds to a single vector.
At the poles the annuli close in to form caps, just as in
harmonic-oscillator space where the ground-state an-
nulus closes in to form the disk representing |n ) =10).

A harmonic-oscillator Fock state |n) has a well-

(a)

FIG. 2. An excited oscillator state |n ) =|2)
is depicted in (a) as an annular region in phase
space. Analogously, an excited Dicke state
lj,m)=|5,—2) is shown as an annular region
in spherical phase space. Both states have a
totally imprecise phase ¢ ranging over
QE[—m,m).

(b)
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m=-5

FIG. 3. Here we show a schematic diagram of the classical
angular-momentum vector for the Fock states inside a sphere of
radius %V j(j +1). The vectors have all length %V j(j +1), but
a z component m#. These vector locations correspond to the
maximal contributions from the Wigner functions shown in Fig.
4. In particular, the Wigner function always has an uncanceled
dominant peak at precisely these locations in the angle §. They
fix the location of the bands of a surface area in phase space, de-
picted in 2(b).

defined excitation number n. Hence, by the oscillator
number-phase uncertainty relation AnA@ X 1, the phase
is totally indeterminate and ¢ €[ —,m). This explains
why the phase-space area is an annulus centered at the
origin. In a similar fashion, in angular-momentum phase
space, a Dicke state [jm ) has a well-defined angular
momentum in the z direction. Hence, (J, ) and (J,) are
completely indeterminate [10]. Since this translates to
complete ignorance of the azimuthal angle @, once again
the appropriate representation in phase space is an
annulus—this time on a sphere.

The Wigner distribution quantifies our notion of these
areas in phase space. We first obtain the Wigner function
for the Dicke state |jm ). The density-matrix operator p
can be written in the form

p=1jm){(jm| . 9)

Upon using Egs. (4)—(6) defining the Wigner distribution,
we find that

. 2 o
Whicke(9,0)='3 Yo(6,¢)(—1Y ™2k +1

k=0
*
i k. j
[__ m 0 m (10)
As expected by symmetry considerations, W, is in-

Gcoherent._ —igB, q L
kq =e “P(tana/2)? Y,

m=-—j
i ik
m —m-—q q

X

1/2
J 2j
|jtm j+m-+gqg
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dependent of @.

This function is plotted in Fig. 4 as a function
of 60€[0,7] and ¢@€[—m7w) for j=5 and m
=0, —1,...,—5. We plot the distribution both as a
planar surface and as a spherical surface of the form
f(6,p)=1+W(6,p)/[#Vj(j+1)]. If we suppose that
[jm ) is an orbital-angular-momentum state, then quan-
tum mechanically we would expect the angular-
momentum vector of length #V j(j +1) to be oriented in-
side a sphere of the same radius such that the vector’s z
component is m#. This situation is depicted in Fig. 3,
with j=5 and m=0,—1,—2,...,—5. The Wigner
function W(6,p), when integrated over the domain of
spherical angle, 6€[0,7] and ¢ E[—m,m), contributes
the most positive probability at precisely these locations
in 0 corresponding to the classical vectors. At these 6
values there is always one peak on the “wavy sea” that is
not canceled by a trough, and so contributes a large
amount of probability. This peak is a quantitative associ-
ation for the area enclosed by the annular bands. In Fig.
4 we plot the function W(6,p) as a two-dimensional
surface, and also the normalized function
f6,p)=1+W(6,9)/[#Vj(j+1)] in spherical coordi-
nates, so that the oscillations can be viewed as variations
in the surface of a sphere of radius one.

III. ATOMIC COHERENT STATE |a,B8)

In harmonic-oscillator phase space, the ground state
|[n)=|0) is a coherent state represented by a disk at the
origin to indicate variances, {(Ax)?)={((Ay)?). Similar-
ly, the spherical phase-space ground state |jm ) =|j, —j)
is a coherent state represented by a cap on the south pole
to represent equal variances, ((AJ, ?)y={(AJ,)*)
=1[(J,)| (see Fig. 1). Now a general harmonic-
oscillator coherent state |a ), of mean excitation number
|a|?, can be obtained by a simple displacement operation,
ie., l@)=D,|0). Here, D, is the usual coherent-state
displacement operator [5]. In direct analogy, a general
spherical coherent state |a,) is obtained by rotating the
ground state off the south pole, |a,B) =R aglir—J),
where R op 18 the generalized rotation operation [8,10,11],
given in terms of the raising and lowering operators J +
by R s=explale AT, —e +i8] _)]. These rotations are
depicted schematically in Fig. 5. Now to quantify these
ideas, we again turn to the Wigner distribution.

We consider the Wigner function for the atomic
coherent state |a,B), Eq. (2), whose density matrix is
given by

p=la,B){a,Bl . (11)

Using Eq. (2) for the expansion of the coherent state
|a,B8) in terms of Dicke states |jm ), and Eqgs. (4) and (5)
defining the multipole expansions, the coefficients G;, for
the density-matrix operator 5, Eq. (11), are found to be

172

(sina/2)% *2™(cosa /2)% T (—1) ™92k +1)12

(12)
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FIG. 4. Here for 6€[0,7]
and ¢ €[ —,7) we plot the nor-
malized Wigner function f(6,p)
=14+ wPick(g,0)/[#Vj(j +1)],
where WPik¢(§, p) is given by
Eq. (10). The  angular-
momentum Dicke states
represented here are |jm)
=|5,m ), where m =0, —1, —2,
—3, —4, and —5, for (a), (b); (c),
(d); (e), (B); (g), (h); (i), (j); and (k),
(1); respectively. When integrat-
ed over O, the Wigner function
contributes the most positive
probability precisely at the loca-
tions where the angular-
momentum vector for |jm) of
length #Vj(j +1) has a z com-
ponent m#i (see Fig. 2). These
contributions occur where the
dominant positive crest of the
Wigner function—the peak that
is not canceled by any
troughs—contributes. At the
poles the distribution fills in to
form a cap, analogous to
harmonic-oscillator space where
the ground state fills in and is
represented by a disk, and not an
annulus (see Fig. 1). To bring
out all the features of W(6,p),
we plot it first as a two-
dimensional surface function of
W(6,9) in (a), (c), (e), (g), (i), and
(k). This method of presentation
brings out the scale of the local
positive and negative variations
of W with respect to the plane
f(6,9)=0. Then in (b), (d), (),
(h), (j), and (1), we take a global
view by plotting f(6,p)=1
+W(0,p)/[#Vj(j+1)] on a
sphere of radius one.
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(a) (b)

The Wigner function W*"h(8,¢) is then given by Eq. (6),
and is plotted in Fig. 6 for a rotation to a=p=m/4,
where a is measured off the south pole [8]. (Again we
plot f(6,p)=1+W(0,p)/[#V j(j+1)]) The coherent
state appears as a positive perturbation on the surface of
a unit sphere. It is a Gaussian distribution located on the
sphere’s surface at 6=3w/4,p=w/4. The Gaussian
shape is analogous to that found for the Wigner distribu-
tion for coherent states of the single-mode radiation field
corresponding to a harmonic-oscillator coherent state [5].
The coherent state is a minimum uncertainty state in the
sense that it yields an equality for the Heisenberg
angular-momentum uncertainty relation

(AT AT 2 LT |2,

-7

(a)
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FIG. 5. The harmonic-oscillator ground
state |n)=10) is a special case of a coherent
state. As shown in (a), a general harmonic-
oscillator coherent state |a) can be generated
by displacing the ground state |a)=D,|0),
where D is the usual coherent-state displace-
ment operator. Similarly, a general spherical
coherent state |a,) can be obtained by rotat-
ing the coherent Dicke ground state
|jm)=1j,—j) off the south pole. We show
such a state, |a,8) =R 5lj,—j), in (b), where
R is the spherical angular rotation operator.

where fxr, .’I\y,, and fz, are computed in a rotated coordi-
nate system, where z’ is an axis in the (a,B) direction
through the center of the coherent state [8,10]. The vari-
ances AJ,. and AJ,. measure fluctuation about this axis.
For a coherent state, the minimum-uncertainty condition
is ((AJ.)")=((AJ,)")=1] (J,)|, and the fluctuations
are symmetric about the z’ axis. This is why we represent
the state by a circular cap centered at (a,3).

As we mentioned above, the Wigner distribution of a
coherent state at the south pole is identical to that of the
ground or vacuum Dicke state |j,m ) =|j, —j). The dis-
tribution of any other coherent state may be obtained by
rotation on the phase-space sphere—analogous to dis-
placement in the harmonic-oscillator phase-space plane,
Fig. 5. A cross section through W(6,p) tangent to the

(b)

FIG. 6. Here we plot the Wigner distribution W*"/# v/j(j +1) for the coherent state |a,3), Eq. (2). We choose parameters
a=p=1/4 that correspond to a Gaussian distribution localized at 0= —/4,p=m/4. (The angle a is measured off the south pole.)
This distribution is qualitatively similar to that of the harmonic-oscillator coherent state. Again we present a two-dimensional sur-
face view (a) and a spherical coordinate perspective (b). This state obeys the minimal uncertainty relation and ((AJ,.)*) ={(AJ,)?)
=1((J,)?)!”2, where the prime coordinates are rotated such that z' passes through the center of the coherent state. This distribution

should be compared to the schematic disk representation in Fig. 5(b).
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(@)
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sphere at (a,B) will always be circular for a coherent
state.

IV. ATOMIC SQUEEZED STATE

We compare the squeezed harmonic-oscillator vacuum
state |O,§>=§§|0> to the squeezed angular-momentum
ground state |£)=S8,=|j,—;) in Fig. 7. The squeezed
state is represented schematically by an ellipse in oscilla-
tor space and by an elliptical cap in spherical space. For
the oscillator, a displacement may be applied after
squeezing to generate a general squeezed state
la,&)= a§§|0). For the sphere, a rotation R is applied
after squeezing to generate a more general squeezed
coherent state |a,,) =R aﬁﬁgl j,—j). These states are
depicted in Fig. 8. In addition, there are squeezed Dicke
states given by applying S to |jm ), where m is not neces-
sarily equal to —j. However, if m=—j, then the
squeezed Dicke state reduces to the squeezed coherent
ground state [11]. We now quantify this phase-space rep-
resentation, again with the definition of our spherical
Wigner function.

We then consider the Wigner distribution state [13,14]
of the angular-momentum state defined by

(13)

|&,m )Y =A, exp(6F, )exp(—i‘:rfy/Z)Ijm ),

4107

FIG. 7. A squeezed harmonic-oscillator
vacuum state [{)=S8,/0) is shown in (a),
where § is a typical squeezing operator. The

analogous squeezed angular momentum
ground state |£)=8,=1j,—j) is depicted in
(b).

where A ,, is the normalization constant. This state—a
squeezed Dicke state—represents a collection of two-
level atoms exposed to a squeezed radiation bath. In this
state the x quadrature, i.e., fx, is squeezed, since

(AT =T e Bl < LKT ), (14)

where the squeezing parameter § is defined implicitly by

e?®=tanh(2|¢|) . (15)

Thus the squeezed Dicke states of Eq. (13) can be con-
sidered suitable candidates for squeezed states of the gen-
eral angular-momentum system. In addition, Agarwal
and Puri [13] have shown that the states of Eq. (13)
are the eigenstates of the operator (J_cosh|{|
+J , sin|£|) /v 2sinh2[£], with the eigenvalue m, and that
these states are the analog of the two-photon coherent
states [2] for photons. Note further that Eq. (13) for the
squeezed Dicke state can be written in terms of the ele-
ments of the rotation operator dJ,,.(7/2), defined impli-
citly by

(jm |§p)=.>4pe'"ed,{,p(17'/2) ,

where, explicitly, we have

(16)

=E\E FIG. 8. A general squeezed coherent state,

/ 4 % shown in (a), is the product of a squeezing K
P ss&& and a displacement D of the ground state in
| /% q .';.\;\\’0’ harmonic-oscillator phase ) space,
\T’ ",:o;??’ le,&)=8,D,10). In (b) we depict a general

(a)

b)

A0
AW
AL

squeezed coherent angular-momentum state
la,B,6) =S8R ,5lj,—j) that is the product of
a squeezing S and a rotation R in spherical
phase space.
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(@) (b)

FIG. 9. Here we plot the Wigner function for a squeezed angular-momentum Dicke ground state |£, —5) defined by Eq. (13). The
function W*¥(6,¢) is computed using Egs. (6), (17), and (18) for a squeezing parameter of 6= —2.13X 107 corresponding to a mean
occupation number of 7 =50. In (a) we plot the function as a surface W(8, ) as before. We have normalized the variation in the sur-
face in spherical coordinates to a sphere of radius %V j(j + 1) in (b), so that the elongated Gaussian appears here as a “Wigner bana-
na” draped across the surface of the sphere of radius one at the south pole. Notice that the squeezed state is more localized in the x
direction at the expense of decreased localization or increased noise in the y direction. This corresponds to a decreased uncertainty in
{(AJ,)*) as given in Eq. (14).

JjHmMG —mG+p)G—p)? Y (—1)7
2J *; G—p—q)qlg+p—m)(j+tm —q) ’

(17)

d},(m/2)= u

q=

Upon using Egs. (13), (16), and (17) in the Wigner equations (4) and (5), we find the squeezed state expansion coefficients
Gy, to be

j j , ] k ] e(m+m')9dj dj/
quueezed= — 1V "2k +1 172 , i mp :"P , 18
kq mg—jm'§~j( Y™ ) —m q m Zfd,’,.wpizezm 5 (18)
m
I

where we have also introduced the value of the normali- band squeezed vacuum photon bath, and if one concen-
zation constant. The Wigner distribution W*(0,¢) ob-  trates only on the steady-state solution for the collective
tained from Eq. (6), using Eqgs. (17) and (18), is plotted in system. The parameter § characterizes the squeezed bath
Fig. 9 for j=5 and p=—5. This corresponds to squeez- with average photon number equal to sinh?C.
ing the Dicke ground-state coherent state
la,B)=|jm)=15,—5) at the south pole of phase space. V. CONCLUSION
We take the squeezing parameter © equal to
—2.13X 107> which corresponds to a mean occupation In summary, the Wigner distribution for a general

number of 7 =sinh’*(larctanh(e’®))=50. The plot is angular-momentum state has been derived and explicitly
again normalized so that the elongated Gaussian of the  given for a Dicke state, a general coherent state, and a
squeezed state appears as a ‘“Wigner banana” draped squeezed ground state. Represented as a pseudoprobabil-
across the surface of sphere of radius one at the south ity distribution on the sphere of radius one in angular-
pole. [To see this, one must take the surface in Fig. 9(a) momentum phase space, the Wigner function is plotted
and mentally map it onto a sphere of radius one, as in for these three situations. These plots enable us to under-
Fig. 9(b).] Notice that the localization of the state is  stand the nonclassical nature of the states of a collection
squeezed in the x direction at the expense of knowledge of identical two-level atoms, since the collection is de-
about the y location, in accordance with Eq. (14). scribed by the addition of the spin operators for each
Agarwal and Puri [13] have shown how the squeezed atom. In addition, this formalism applies equally well to
Dicke atomic states given by Eq. (13) can be produced if  any collection of fermions or bosons in, say, an atomic
a collection of two-level atoms interacts with a broad  trap or atom interferometer [7].
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