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State preparation via quantum coherence and continuous measuremen~
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The theory of continuous measurement is generalized so as to be applicable ta a two-mode radiation
field whose properties are monitored by using a A system with initial coherence between two ground
states. The two-mode system is shown to offer the possibility of generating a number of new quantum
states. Quantum statistics of the field following continuous measurements is calculated. Results for the

phase distribution, quasiprobability distribution, and the photon-number distribution of the resulting

field are also presented.

PACS number(s): 42.50.Dv, 42.50.Ar, 03.65.Bz

I. INTRODUCTION

In a series of papers [1,2] Ueda and co-workers have
generalized the quantum theory of continuous measure-
ments [3] and shown how the measurement process, with
either a "yes" or "no" result, afFects the quantum-
statistical properties of the field [4,5) on which measure-
ments are made. In particular, they discussed the new
features the single-mode radiation field acquires if such a
field is continuously monitored by a photodetection.
Some of the key elements of the continuous measurement
theory are as follows.

A "yes" event, i.e., detection of a photon, changes the
input field state p(0) into

(p+ )
Ip(0)&

(1)
Tr[p(0)8 8]

whereas a "no" event changes the input state to

P(()+ )
—(1/2)g v a a (p)e

—(1/2)g v a a (2)

Equation (2) holds up to a normalization constant. Here
g is the coupling constant between the single-mode field
and the atom, and v is the interaction time. It is assumed
that the detector works by the absorption of a photon.
Thus if the photodetection is carried out on a time inter-
val t and if t„t2,ti, . . . , t„arethe times when the pho-
tons are detected, then the net density matrix after n
detection events becomes

g(w/2)ts ap —n (pp tne —g (r/2)ta a

p(t) =
2

Tr(p(0)Q t e + ad )
(3)
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All of the physics relevant to the present problem is con-
tained in Eq. (3). Ueda et al. [1] considered the case of
an input field in a squeezed coherent state and predicted,
for example, the possibilities of measurement-induced os-
cillations in Mandel's Q parameter and the production of
"CAT"-like states.

Note, however, that if the input field is either in a
coherent state Ia) or in a Fock state IN ), then the "na-
ture" of the state does not change as Eq. (3) shows

Ia) ~Iae g" ")
IN)~IN n) . — (4)

Note further that if the usual photodetector is replaced
by a quantum counter which operates via stimulated
emission, then an equation like (3) also holds with 8~8 .
In such a case even a coherent-state field is transformed
into a nonclassical state by the process of measurement
[6].

In this paper we consider the generalization of the con-
tinuous measurement theory to a radiation field consist-
ing of two modes, and we demonstrate several new possi-
bilities such as (a) production of an entangled pair of pho-
tons, (b) production of bifurcations in the phase probabil-
ity distributions, and (c) transfer of coherence from one
mode to the other mode. The organization of this paper
is as follows. In Sec. II we introduce the scheme of con-
tinuous measurements on a two-mode system. We gen-
eralize the theory of continuous measurements to two-
mode fields. In Sec. III we derive the result for the state
of the two-mode system after a certain number of mea-
surements in the long-time limit. We discuss how the
coherence is transferred from one mode to the other. We
show the production of an entangled state and discuss its
properties. In Sec. IV we show the quasidistribution (Q
function) of the resulting field. And, finally, in Sec. V we
examine the phase characteristics of the field after mea-
surements.
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II. CONTINUOUS MEASUREMENTS
ON A TWO-MODE SYSTEM

Let us consider the interaction of a three-level A sys-
tem with a two-mode radiation field in a high-Q cavity
Let us assume that the A system is prepared in an equal
superposition of the two ground states lg ) and lg'), i.e.,

l@„(0))= [Ig&+e '+Ig'&].
v'2

This can be done, for example, by using a microwave field
before the atoms enter the cavity [7,8]. We now assume
that the transition Ig')~le ) is resonant with the cavity.
We further assume that the transition lg )~le ) is driven

by a coherent field Ia ). The Hamiltonian for the interac-
tion between the atom and fields in the interaction pic-
ture can be written as

l&~(o)& =
~2 [le}+ e "lu'& ]

~e& detected

Excited atom detected

H, =ale&&gl+gble&&g'I+H c
f2 t3 tn

——[Ht, [H„p,f(0)]], (7)

where the initial density matrix for the combined atom-
field system is given by

p, f (0)= I f„(0))p(0) & g „(0)I . (8)

From Eqs. (7) and (8) we find that the state of the field

immediately after the measurement (atom detected in an
excited state) will be &elp(r)le ) =p,„(r)up to a normali-

zation constant, i.e.,

where 8 is the annihilation operator of the coherent field

resonant with the transition Ig )~le ), and b is the an-

nihilation of the field resonant with the lg )~le ) transi-
tion.

Let us first discuss a simple measurement scheme. The
atom with the initial state, given by Eq. (5), interacts with
the fields for a short time ~, which is the time of Qight

through the cavity. After the interaction we measure the
atom to see if it is in the excited state le ). The process of
measurement will reduce the state of the field in the cavi-

ty. Let p(0} be the state of the field before the atom enters
the cavity. Solving for the atom-field density operator

p, f up to second order in the coupling constant, we find

p f(r) p, f(—0)= —ir[Ht, p, f(0)]

FIG. 1. Schematic diagram of the scheme proposed in this

paper.

find from Eqs. (5)—(7) that the density matrix for the field

1S

p«d(r) = &glp. ,f(r) lg &+ &g'Ip. ,f(r) lg' &

2

=p(0) — [A Ap(0)+p(0)A A ]
2

-=exp( 2R&A A —)p(0)exp( 2RrA —A ),
where we have defined R =g r/4.

We now imagine the following measurement scheme

(Fig. 1). A regular beam of well separated coherently
prepared [Eq. (5)] atoms passes through the cavity. We
assume that at any given time there is only one atom in
the cavity. We continue to assume that the cavity Q is so

large that the relaxation of the field inside the cavity is

negligible.
Next we ask for p'"'(t), the density matrix for the field,

given that n atoms are excited at times t, , t2, . . . , t„dur-
ing a time interval' 0 to t. From (10) and (11) we see that
this is given by

p'"'(t)=Q„p(0)Q„/Tr[p(0)Q„4„], (12)

p,„(r)=-g r A p(0) A

where

(9) where

Q„=exp[—2R (t t„)A A ]A—

A = —(it+be '~) .
2

(10} X exp[ —2R (t„—t„,) A A ]

X A exp[ —2R (tz —t, }A tA ]A exp( 2Rt~ A A ), —
Note that p,„(v) is the conditional density matrix, i.e.,

it is the density matrix of the combined a-b system sub-

ject to the condition that the atom was detected in the ex-
cited state.

We next examine the density matrix subject to the con-
dition that the atom is not found to be in the excited
state. Note that not finding the atom in the excited state
is also information [9] and hence the field density matrix
changes. Given that the detected atom is not excited we

(13)

'Actually the interaction time of the atoms detected in the ex-

cited state is not counted, making, in this approximation

(g~&(1), the formulas easier to read. In the same sense the

atoms are assumed to have a separation equal to the cavity

length.
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and using the fact that exp(+xA A)A exp{ —xA A)
=A exp( —x) we have

p'"'(t) = exp( —2Rt A A ) A "p(0)A t"exp( —2Rt A t A )

Tr[p(0)A "exp( 4—RtA A )A "]
(14}

p{0)= ly&(yl,

lf) = f fd ad pf(a, p)Ia, p), b,
(16)

where we use the expansion of lg) in terms of the
coherent states of a and b modes. On using (16) in (14)
we get up to a normalization constant

This is our key result and is the generalization of the
previous results to a field with two modes and to atoms
which are prepared in a coherent superposition of two
ground states. In the next few sections we discuss [10]
the important physical consequences of (14).

p(n) I@)(@l

where

~e&—= f f d eed Pg(aP)e "'" "S"~lee, P&, e .

Note that

(17)

(18)

III. MEASUREMENT-INDUCED CORRELATIONS
IN THE LONG-TIME LIMIT

We first examine the characteristics of the density ma-
trix (14) in the limit of long counting intervals. Clearly in
the long-time limit the solution p'"' must be such that

ap'"' ——0 p'"'W'=O (15)

Note that since A is a linear combination of a and h

modes, the condition (15) is not enough to determine the
solution uniquely. In fact the longtime solution will also
depend on the initial condition and thus this system has
memory of initial correlations. We derive the long-time
solution assuming that

+ llP

AIa, p&. b=AIa, p&. b (19)

Ia,p&, b=IA, B&„s,B= (21)

Using (19}-(21)we now have

Next we have to simplify the term

exp( —2RtA tA )la, p), b. To simplify this we introduce
the operator 8

tt be—
(20}

v2

and the coherent states I A, B )„sof the modes A and B
It can be shown that

exp( 2RtA A—)la, p), b =exp( 2RtA A }—
I A, B )„s

gf —+ oo

=ex [ —-'IAI'(1 — '"')]IAe '"'B& e""'~"~-IO, B&„

On substituting (22) in (18) we get
I

p'"'= Ix& &xl;

V'Z' V2' .b

(22)

IC )=fd'B, — e'' e(B),
2 2 a, b

where

(23) a —Pe '+ a —Pe e'~ . (26)
2 2 g b

In the special case of the b mode in the vacuum state we

get a very interesting result:

Ey(B)= fd2A e 2' 2'
(24)

IO) ~ ——e'r
b (27}

Equation (23) is the key result of this section. The form
(23) makes it clear that

Ale&=0. (25)

The weight function 4 in (23} is determined from the ini-
tial conditions which enter through the function g(a,P).
Note that the final state in general is an entangled state
with strong correlations. Note further that (23) shows
that the modes a and b will essentially have identical pho-
ton statistics irrespective of their initial state.

If initially both modes a and b are in coherent states
la) and IP), then

We thus have transferred coherence from the a mode to
the h mode Note further .that the result (26) is indepen-
dent [11]of the index n leading us to conclude that the
results {26) and (27) are obtained even if we do not ever
find the atoms in the excited states.

The idea of transfer of coherence is quite interesting
and we now examine the transformation of the Fock state
of the b mode by this coherence transfer. Thus we con-
sider the initial lg) to be

Iy) =Ia).IX)b= fd'pe ""' -Ia,p). b, {28}
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and hence by using (22)

I@) Idee
—(I/2)!P! 0 g n

~NI

X~
—(1/2)/ A/ B B

v2' v'2 .b

and where A and B are defined by (19) and (21). On using
binomial expansions, (30) reduces to the moments of the
Gaussian distribution with the result

—(I/2)lnl' v N)( —e'~} ( —e ' }
)2n21+ m

= gc, Il m &. , (29}
n l+m

X~n+I+m N—y ( 1)k
k N —k

k

(31)

where

(30)

d Zp
—()/2)lpl~ 0 g n —(1/2)l Al —()/&)l&l

eN 2

c&m e ~ e

1 B 1 B
vT! v2 v'm! v 2

, , Im &„(m'Ic, c,'p'"""=
Ic,

(32)

Using (17) and (29), and on restoring the normalization,
the density matrix for the b mode can be written in the
form

0.08— 0.16—
(b)

0, 12—

0.04— 0.08—

0.04—

0.00 I I I I I I I I I I I I I I I I I I I I
I I I I ! I I I I ! I I I I ! I I I I I I I I I

15 20 25 30 35 40 45 50 55 60
photon number (1)

15 20 25 30 35 40 45 50 55 60
photon number (1)

0.16—

(c)

0.12—

0.08—

0.04—

P,P0 I I I I ! I I I I I I I I I I I I I I I I I I I I I I I I ! I I I I ! I I I I ! I I I I

15 20 25 30 35 40 45 50 55 60
photon number (1)

FIG. 2. (a) The number distribution P(l) for both modes {it is the same) in the long-time limit with the parameters N=40, n =5;
and for the eigenvectors of these modes in this limit, (b) P+ (1) and (c) P (l).
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for the b mode is thenThe photon distribution for

p(n)(b)
m

y, lc,
(33)2

d;stnbution like the QUsing (32) the quasiprobabihty
func ion can an also be evaluated:t

(n)(b)Q(ji)(p pe )—
m, m'

(34)

'1
~ ' ~ '

3weshowt ep o
' ' '

ndh h ton distribution and
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bi od 1. Tll dthe distribution is im
f 'b' ""n'h'd

(32) 11o tll t
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(35)

(b)

e ei envectors of '"" ' We also showg
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'

in Q distributions, i.e.,I A+ and in ig.d
'

Fig. 3 the corresponding
we show the quantities

1 2P&"N»=I&llA &I', Q =—I&plA &I . (36)
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~ ~ ~
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0.30—

(c)

0.20—

1
1 ~

I
I

0.10—
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=40 n=5 at an intermediate I =3.mode for =,n—
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d2 —()/2)lpl ~ A II —2R A
l p)le= d

~N)

—A "e "'" " A,B)„d e

2 —(1/2~IPI g &e (1/2~I Al (1—e ) g 2Rt g

—(1&»IPI' g ~e —(1 'I "I " ' ' a t, t (37)

where

Ae "'+8 Ae
—2Rt

tr(r)= —,(t = — ev'2 (38)

and (21). The result (37) can again be expressed asand where A and 8 are defined by (19) an

la ) = gc,.(r)lt m),
1,m

where

g 2(1 — 4~') —(1/2) Iy( g) I2 —(] //2)
I (g)'- ) 2) P(I) ' l (t) i' t&(r) l2 —&)/2)lpl' ~ A II —()/ )l~l &)c) (t)= d tI)e

(39)
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On carrying out the binomial expansions and the Gaussian integrals we find that

c, (t =e —(1/2)~tt~' N!(—e' ) (
—e ' } n+i+m N—a

QI itn }2n2™
n

„

I
Xg k ( —I)"g

k q

which in the limit Rt && 1 reduces to

m —2R t
)

m +k N+ Z—
q( I + 2R t—}N + i —k 2q-

N —k —
q

(41)

r

(t)
—(1/2)~tt~& N. ( —e ) (

—e ) n+I+m —N
( —1)"(Rt}m+k + q

iq m iy—N n I m

k q N —k —
q

(42)

The time-dependent density matrix for the b mode is then
obtained by using (41) in (32).

For numerical work we choose the initial excitation in
the two fields to be equal N = la l . We also introduce the
parameter

behavior for relatively high number states and the evolv-
ing field distributions, we show in Fig. 6 for completeness
this distribution only for a small initial number of pho-
tons (N= 10) where a bifurcation is still recognizable.

(43)

which is equal to the excitation rate (in the field a) multi-
plied by the counting interval. The characteristics of the
resulting field depend on the parameter I' and the num-
ber of "yes" measurements. In Fig. 4 we display the dis-
tribution of photons in the b mode starting from an initial
Fock state with the number of photons equal to 40. Note
that the variance of this distribution is quite small rela-
tive to its mean. The numerical calculation gives mean
equal to 37.45; variance equal to 4.07. The variance gen-
erally increases with an increase in the parameter I .
This can be understood from the fact that as the counting
interval increases, a Fock state evolves into a superposi-
tion of more and more Fock states. In Fig. 5 we show the
Q distribution of the field for two difFerent counting
times. For comparison we also show the Q distribution
for the input field as well as the Q distribution for a field
which is the uniform superposition of

l
n )

(44)
n =35

As Wigner distributions show a rather oscillatory

V. PHASE DISTRIBU11ON OF THE FIELD
FOLLOWING CONTINUOUS MEASUREMENTS

In the literature considerable attention has been paid
to the phase properties [12] of the radiation field. The b
mode of the field has been taken to be in a Fock state.
This mode has a uniform phase distribution, i.e.,

(45)

We have already seen in the earlier section that in the
present model there is transfer of coherence from the a
mode to the b mode. We would thus expect the phase
distribution of the b mode to undergo remarkable
changes. The phase distribution can be calculated using
(32) and (41) in (45}. Some typical results are shown in
Fig. 7. We find that the phase distribution first narrows
and then bifurcates [13]. One can give an elementary ar-

2.0—

p(n)(g)

1.5—

1.0—

0.5—

'
I

if
0.0

FIG. 6. The Wigner distribution of the b mode for the pa-
rameters N=10, n=5, and I =1.5.

FIG. 7. The phase distribution of the b mode for the parame-
ters N=40, n=5 and the various I values: (a) I =0.5, (b)
I =1, (c) I =3, and(d) I ~~.
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la, N). ,~ala, N&,
la, N &. ,-&N la, N I &—,

(46)

Now one also has the probability of interference between
these two pathways since the atom is initially prepared in
a coherent superposition of two ground states. Thus after
the absorption the state of the b mode is

gument to understand how the changes in the phase dis-
tribution come about. Consider the excitation of the
atom by the two-mode field in the state la, N ) . One has
two pathways of excitation —the photon can be absorbed
either from the mode a or from the mode b. These two
pathways change the state of the field to

more Fock states. However "no" absorption events de-
grade such a superposition and a combined efFect of both
"yes" and "no" events results in a distribution like the
one shown in Fig. 7. This is also clear from our compar-
isons of Figs. 5(d), 5(a), and 5(b). It is interesting to ob-
serve that each peak of the bimodal distribution narrows
as the counting time increases.

In conclusion we have shown how the continuous mea-
surements on a two-mode radiation field have potential
for the production of a variety of quantum states of the
field.
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