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Quantum noise reduction by radiation yressure
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We show that a linear Fabry-Perot cavity with an oscillating end mirror can be used for quantum
noise reduction. For a high-quality factor of the mechanical oscillator the output quantum fluctuations
of the monochromatic light beam can be significantly squeezed at a frequency very close to that of the
impinging light. The analysis is performed by taking into account the coupling of the system with the
external world.

PACS number(s): 42.50.Lc, 42.65.Vh

I. INTRODUCTION

Even though, to date [1], high quadrature squeezing
has been obtained with a transparent crystal having a y' '

nonlinear polarization, the search for high squeezing gen-
erated by materials with y' ' nonlinearities is motivated
by the possibility of building up a quantum-noise-
reduction device. In these materials, the squeezing is
produced without frequency conversion, in contrast to
the y' ' case, where it is usually generated in proximity to
the first subharmonic frequency of the incident beam.
Media with y' ' nonlinearities are the so-called Kerr
media in nonlinear optics [2]. In Kerr media the effect is
proportional to the intensity of the input beam and, be-
cause of small y' ' nonlinearities, an intense input beam is
required. Of course, by using a resonant optical cavity
one can enhance the effect. However, losses limit the
squeezing obtainable both in the free-propagation
configuration [3] and in the cavity configuration [4]. The
advantages and drawbacks of y' ' media for the genera-
tion of squeezed light was recently assessed [5]. The
squeezing of quantum fluctuations in a Kerr medium is a
consequence of the optical-path dependence on the inten-
sity of the light beam. An intensity-dependent optical
path, however, is not related only to Kerr media. It was
shown several years ago [6] that an empty cavity with a
moving mirror in its steady state may mimic a Kerr
medium when it is illuminated with coherent light. The
effect is completely due to the radiation pressure force.
Indeed, bistable behavior, analogous to that of a y' '

medium in a cavity, was experimentally demonstrated in
the optical domain [7] as well as in the microwave
doinain [8] with such a system. More recently [9], the
same configuration was used to select small signals, such
as those due to the gravitational waves. Furthermore it
has been shown [10] that such a cavity with a free oscil-
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lating mirror might be employed as a quantum non-
demolition device for the photon number measurement.
Finally, as a model for squeezing, it was first proposed by
Stenholm [11]without taking into account the effect of
thermal fluctuations on the oscillating mirror. A phe-
nomenological model, including input field fluctuations
and thermal noise, was recently considered in a semiclas-
sical approximation by Hilico et al. [5], with the pes-
simistic conclusion that squeezing is possible only at ex-
tremely low temperatures, while as the temperature rises
it disappears completely. In the present paper we will an-
alyze the same system, starting from a Hamiltonian mod-
el which includes the coupling of the system to the exter-
nal world. We will show that, in the so-called adiabatic
limit and for high quantity factor Q of the mechanical
resonator, i.e., the oscillating mirror, the obtainable
squeezing, in a given frequency range, is not washed out
by the thermal fluctuations and could be very large.

II. THE HAMILTONIAN OF THE MODEL

As is well known [2], a Kerr medium has a refraction
index depending on the light intensity. When one consid-
ers the medium in a resonant cavity, since the optical
path depends on the refraction index, the impinging radi-
ation practically "sees" an equivalent empty cavity with
variable length depending on its intensity. We then con-
sider a linear Fabry-Perot empty cavity with one fixed
mirror with transmissivity T, and one perfectly reflecting
end mirror. The completely reflecting mirror can move,
undergoing harmonic oscillations damped by the cou-
pling to a thermal bath in equilibrium at temperature T.
One could consider such a perfectly reflecting mirror
coated over the surface of a quartz with a high mechani-
cal quality factor Q . We assume that light impinging
on the fixed mirror produces a small detuning with
respect to one cavity mode. The cavity resonances are
calculated in the absence of the impinging field. If L is
the equilibrium cavity length, the resonant angular fre-
quency of the cavity will be
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C
co =nm

H;„,= —Aga ax,
where the coupling constant is given by

(3)

toe

H;„, represents the effect of the radiation pressure force
Fs =(fico, /L)a a which causes the instantaneous dis-

placement x of the mirror. H;„, can be understood easily

as follows. The cavity length will vary because of the ra-
diation pressure force of the radiation inside the cavity. A
variation of length will correspond to a variation of fre-

quency through Eq. (1), i.e.,

where n is an arbitrary integer number and c the speed of
light. Furthermore, we assume that at the frequency of
the impinging field coo/2~, the fixed mirror with
transmissivity T, does not introduce any excess noise ex-

cept for the input field noise. We also assume that retar-
dation effects, due to the oscillating mirror, in the intra-
cavity field are negligible. We will use a field intensity
such that the correction to the radiation pressure force,
due to the Doppler frequency shift of the photons [12] on
the moving mirror, is coinpletely negligible. This means
considering the damping coeScient of the oscillating mir-
ror to be due only to the coupling with the thermal bath.
We are thus able to write the system Hamiltonian [9,10]
as

2

H,„,=fin), (ata+ —,')+ + ,'mco' x—+H;„,,
2m

where a and a ~ are the boson operators of the resonant
cavity mode at frequency co, /2m", p and x are the momen-

tum and the displacement, respectively, from the equil-
brium position of the oscillating mirror with mass m and
oscillation frequency co /2m. H;„, accounts for the in-

teraction between the cavity mode and the oscillating
mirror. Since we have assumed no retardation effects,
this is simply

P2 Q2
Hb=g +«

n ' n

(7)

while the coupling bath mirror within our assumptions
will be

Hb = —gsc„Q„x .

H„,=i' f deus(co)[bt(co)a b(co) a—t], (10)

where b(co) and b (co) are the Bose operators for the
infinite modes of the external radiation field at frequency
co/2m, and s(co) is the coupling constant. The RWA is
valid as long as the measurement time is large with
respect to co, , as it usually is in the optical regime. The
RWA cannot be used for the coupling of the oscillating
mirror to the thermal bath because the mechanical fre-

quency c0 /2n will be many orders of magnitude smaller

than co, /2~. This is the reason why we used the more
realistic [14] interaction in Eq. (9). This choice of
mechanical frequency also ensures that the number of
photons generated by the Casimir effect [16] is complete-

ly negligible, and we actually are in the so-called adiabat-
ic approximation, i.e., the cavity round trip time is much
smaller than the mirror's period of oscillation. Finally,
within the assumptions given above, the Hamiltonian of
the system coupled to the "rest of Universe" [17] is

2

H =fico, ata+ + ,'mcus' x figatax——

After a convenient canonical transformation of the bath
variables, and considering a continuum spectrum for the
bath frequency [14], we obtain the following thermal
bath-mirror interaction Hamiltonian:

Hb = ,' f—dQ[[P(Q)—«(Q)x] +Q Q~(Q)] . (9)

We have also to take into account the cavity loss due to
the coupling of the internal mode with all external modes
of the radiation through the first mirror. This is usually
obtained [15] in the rotating-wave approximation (RWA)
as

thus

Bco~ co~

H;„,= —Ag(a a+ —,')x .

+ ' f dQ—[[P(Q) «(Q)x] +Q Q—(Q)]

+i%f deus(co)[b (co)a b(co)a ]—
+A dco Nb co b co

In Eq. (3) the very small vacuum contribution was
neglected.

We have to take into account the damping of the oscil-
lating mirror due to the coupling with the thermal bath.
We model that bath with a large number of harmonic os-
cillators [13,14]. With this choice the frequency spec-
trum of the bath is dense and regular, and the coupling
between system and bath can be considered linear, with
the coupling constants x„being nonsingular functions of
the frequency [14].

The bath Hamiltonian is then

and we have neglected the vacuum terms.

III. THE DYNAMICS OF THE SYSTEM

With the standard procedure, well described in
Gardiner's book [14],of solving dynamical equations, we

can eliminate the thermal bath variables and the variables
of the radiation bath. In a frame rotating at the frequen-

cy coo/2~ of the impinging field we can write the equa-
tions of motion for the cavity mode and the mechanical
oscillator



49 QUANTUM NOISE REDUCTION BY RADIATION PRESSURE 4057

dQ . Yci—(co, —coo —gx}a — a+Qy, a;„(t),
are valid after an initial transient, and must then be con-
sidered for times t ) to [14].

dt
Xc=i (co, —coo

—gx)a — a +Qy, a;„(t), (12) IV. THE STEADY STATE

dx
dt m

dP 2 t 'Vm
m—ra x+Ag a a — p Q—y e;„(t),

These equations are obtained in the Markovian approxi-
mation [14], and have to be considered as coupled sto-
chastic differential equations in the Stratonovich sense,
and are valid in the low damping regime where

y /rn «co . The constants y, =2m's (t0) and

y /m =ma (0)/m, respectively, represent the cavity
linewidth and the damping constant of the mechanical
oscillator due to the interaction with the external baths.
They are constant in the so-called first Markovian limit
[14]. Of course, y, accounts for the loss of photons in
the cavity mode due to the interaction with the radiation
field, i.e., y, =cT„/2L, and a;„(t)a (t) is the flux of pho-
tons hitting the first cavity mirror in one second. In the
rotating frame for an impinging monochromatic coherent
field, we have

Xc
i(to, —~,—gx, )a, + a, — y, a,„=O,

r
i (to, —coo—gx, )a,' — a,'+ y, a „=0,

p, =O,

mN x, —Aga,'a, =0,

(17)

where the subscript s is the steady-state value, i.e.,
(a, =&a)„a,=&a )„x,=&x)„p,=&p), ). The
steady-state solutions are

We are actually interested in the steady-state regime
and in small fluctuations with respect to the steady state.
Then, as is usual in the semiclassical approximation [18],
we take the expectation with respect to the steady state of
Eq. (12}. Neglecting all the fluctuations, we set

d&a), d&at), d&x), d&p),
dt dt dt dt

=0 . (16)

Thus we obtain

a;„(t)= I dco e '"'b(co)
2m'

=a;„+5a;„(t), (13)
p, =o, x, = g, la, l', a, =

mNm r +i (co, —F00
—gx, )

where 5a;„(t) represents the quantum fluctuation with
respect the mean amplitude &a;„)=a;„of the impinging
mode. 5a;„(t) can be considered "white quantum noise"
[14],at least in a narrow bandwidth at coo larger than y„
with expectations

(18)

Let us introduce the dimensionless quantity y =x, /L.
Thus, combining Eqs. (18), we obtain the equation of
state

&5a;„(t))=0, &5at„(t)5a,„(t'))=n5(t t'), —

&5a,„(t)5a,„(t')) =(1+n )5(t t'), — (14) F(y)=E,
with

(19)

where n represents the number of photons at the frequen-
cy of the impinging field, which is negligibly small at op-
tical or infrared frequencies. The entire contribution of
the thermal bath variables is included in Qy e;„(t),
which can be considered a stochastic noise force depend-
ing only on the state of the thermal bath at time to, where
to is the initial time of the interaction. It can be shown
[14] that this noise term at high temperature behaves as a
classical noise, and has the following expectation values
with respect to the equilibrium distribution of the
thermal bath at time to;

and

VC inP

mto, to t00L

N No
F(v}=v —2

c
'2

N No + Yc

Nc 2N

2

where we introduced the power of the input field:

(20)

(21)

&e,„(t))=o,
&e;„(t)e, (t') ) =K&T5(t t') . —(15)

The high-temperature condition in the present case reads
%co &&Ez T, where Kz is Boltzmann's constant, which is
always satisfied in the microwave regime and for a tem-
perature that is not extremely low. It means that we can
disregard the quantum nature of the mirror's motion, and
we can consider it a classical oscillator. Equations (12}

P,„=duo, la;, l' . (22)

Equation (19} has three real solutions as long as
F'(y)=dF/dy=0 is satisfied by two real values of y.
This is possible for

l~, —~01)
2 r, , (23)

which represents the bistability condition. The steady-
state values (18) are then consistent with the semiclassical
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approximation for values ofy far from the turning points.
In the vicinity of such points, one can no longer neglect
fluctuations. Indeed, these might be large with respect to
the steady-state solutions. In the following we wi11 intro-
duce a Ginzburg criterion [19] in order to be sure that
fluctuations are negligibly small near the steady-state
values chosen. Thus, away from the "critical points" the
stable steady-state solutions are characterized by
F'(y ) & 0, while F'(y ) & 0 gives the unstable solutions.
However, one has to be careful in choosing the stable
solutions even for F (y}& 0. This is not a sufficient condi-
tion because with higher input power Pin the solution
may become unstable even for F'(y) &0. This is due to
the fact that at input power higher than a threshold value
P in

' the mirror's response becomes anomalous, and a sta-
bilization of the mirror occurs [7] as a consequence of the
radiation pressure force. This can be discussed quantita-
tively by means of the local Liapunov criterion [20]. In
order to obtain equations that are not extremely cumber-
some, and to simplify the presentation, in the following
we will numerically study the stability of the steady-state
solutions for a given set of parameters, and we wi11 give
the threshold power for the chosen set of parameters.

Then, in the frequency domain, Eqs. (25) become

+i (co, —coo —co) —i ~a, ~
5a i—ga, 5x

m Q)m

=Qy, 5u,„,
(27)

a, 5ae — a, 5a + (co —co ) i—
m '

m 2m

Vm
in ~

with 5a (co)= [5iI( —co)]+. We introduce the dimension-
less dynamical response factor of the mirror:

2
~m

Xl()+iX2(~) i

. ~m~
(CO~ Cd ) t

2m

(28)

2
' +i (y co y(a))l&—

l
)5t—t iy(to—)K5a

with g'(co) =y( —to). Eliminating 5X in Eq. (27), we can
write

a =a, +5a, x =x, +5x, (24)

V. DYNAMICS OF SMALL FLUCTUATIONS

With the above in mind, we study the dynamics of
small fluctuations near a stable steady state, and by writ-

ing 2
K= a, , p=iga, ,

m corn

(30a)

=Qy, 5tI;„—py(co) Z;„(29)
mm

and its Hermitian conjugate, where

we are able to write the evolution equations for the fluc-
tuations up to first order:

2

/=co, —coo
— ~a, ~

=co,(1—y) —a)0,
mm

(30b)

—5a= —t to, —
coo—,la, l

5az

ma)

YC

2
5a +iga,5x +Qy, 5a;„, (25a}

where we used Eqs. (18) and (14) together with the
definition of y =x, lL. We see that, besides an additional
frequency-independent detuning, the interaction with the
moving mirror introduces a frequency-dependent dissipa-
tive term in Eq. (29):

5x= —to 5x+ a,'5a+ a, 5af y, (to) =y2(co)iKi, (31)

Vm d—5x-
2m dt

(25b)

f (t)= —J e' 'f(co)de . (26)

and, obviously, the Hermitian conjugate of Eq. (25a).
From Eqs. (25) we see the effect of the coupling be-

tween the cavity mode and oscillating mirror. As the in-

tracavity intensity field is
~ a, ~, there will be an

intensity-dependent phase shift. It is obvious that 5x de-

pends linearly on 5at, thus introducing a coupling be-
tween the fluctuation 5a and its conjugate 5a~. Thus, as
a consequence of the dependence of 5a on 5x, the Quctua-
tions of the internal field could be squeezed. However, 5x
depends on 5a as well, so a further dynamical phase shift
and damping is introduced by the coupling of the cavity
mode to that mirror. Let us introduce the Fourier trans-
form

which is maximum at co=co, while the frequency-
dependent phase shift y, (to)~E~ is zero at the same fre-

quency. We want to avoid such additional dissipation,
which might destroy the squeezing at any frequency, and
in what follows we will require

VC
y, (co) «

2
(32)

Furthermore, we see from Eq. (29) that a thermal noise
contribution is added to the usual radiation noise of the
input field.

VI. THE OUTPUT QUADRATURE NOISE SPECTRUM

The input-output theory [21] gives the following rela-
tion among the incoming field, internal field, and output
field as a consequence of boundary conditions at the fixed
mirror surface. %@thin the assumption for the validity of
such theory, we obtain
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5u.„,+5m,„=&y,5n, (33) 5cI,„,(co)=g(co)52(;„(co)+rl(co)5a;„(co)+g(co }Z;„(co} (34)

And, finally, by using Eq. (29) and its conjugate, we can
write and 5iI,„,(co }= [5B',„,( —co ) ]+, where

co + lP
2

' —2X2(~) IKI+~ (2X)(~)IKI —y)

b, (co)
(35)

i y,X(co}K
g(co) = = —g*( —co),

h(co)
(36)

and

—pX(co)+y, y ~ (p +'co)

g(co) =
mco b, (co)

2

b(co)= +p co 2—$X)(—co)~K~ —i(y, co+2$Xq(co)~K~),

(37)

(38)

with 6( —co) =b, '(co). The Fourier transform of the output quadrature is

Xe"'(co)=—,'[e ' a,„,( co) +e' at„,(co)], (39)

where 8 is controlled by the experimenter in a homodyne detection scheme [22]. Then the spectral function of the out-
put quadrature fluctuations is

(5Xe"'(co)5Xoe"'(co') ) = ,'[e —' ( 5a,„,( co) 5a„,( co))+( 5a,„,( co) 5at„,(co'))+(5at„,(co)5a,„,(co') )

+e ' (5a,„,(co)5at„,(co'))] . (40)

By using Eqs. (33)—(38) together with 5cI (co) =[5iF(—co)]+, [50 ( —co)]+=55(co), Z;„(co)=Z„(—co), and the Fourier
transforms of Eqs. (14) and (15), we obtain

(5Xe"'(co)5Xe"'(co') ) = —,'(e 2' [g(co)g( co)+n [/—(co)+g( co)g(co)]—+g(co)g( —co)K~T']+(I +n )[ig(co)i + ig( —co)i ]

+n [IP —~)I'+ lg(~) I']+Kg T[lg~}l'+ lg —~) I']

+e ' Ig'( )gco'( co)+n[g'(co)—rl'( co)+g'( —co)rl'(—co)]+/'(co)g'( co)K~ T] )—5(co+co') .

(41)

The quadrature noise spectrum normalized to the input shot noise [23] is then

( 5X'"'( co) X5'"'( co))
Se(co)= f dco'

—,'(1+2n )

((1+n)lg(~}l'+nlrb

—~}l'+(1+2n }lq(~}l'1

1+2n

+2 cos(28) [(1+n )[g,(co)g, ( co) $2(co)—re( —co) ]+n [g—, ( co)g, (co—) $2(
—co)—rlz(co) ] j

+sin(28) I ( 1+n )[g,(co)g2( —co) +$2(co )rl, ( —co)]+n [g,(
—co)rlz(co ) +gz( co)rl, (co) ]—]

+K~ T[2cos(28) [g,(co)g, ( —co) —gz(co)gz( —co) ]

+2 sin(28)[g'~(co)g'q( —co)+g'&( —co)gz(co)]+ (g(co) ~
+ ~g(

—co)
~ ] ), (42)

where the subscripts 1 and 2 represent the real and imaginary parts of the function, respectively. With some easy alge-
bra, by using Eqs. (35}—(38},Eq. (42}can be written as
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Ss(co)=1+ (1+2n )[y,KIX(co)l —2coPX2(co)] X—2(co)(y, /4+co +P )(1+2n ) I A(co) I'

+cos(28)[y, (1+2n )[PX,(co) —KIX(co)l )+X&(co)(y, /4+co —P )]

+sin(28) [(1+2n )[X,(co)(y,'/4+ co' —p') +2yKIX(co) I'] —y, AX&(co) ]

Ix(co)l KsT+ [y, /4+co +P —(y, /4+co —P ) cos(28)+y, /sin(28)]
Q fuo

(43)

where we introduced the mechanical quality factor Q =mco /y, and chose the arbitrary phase of the impinging
field such that a, is real (this accounts for considering IKI =K). We have to choose the various values of the external
parameters in order to satisfy the quadrature squeezing condition. However, it is better to define the optimum quadra-
ture squeezing S, , (co) by choosing 8(co) in such a way that dSo(co)/d 8=0, which gives

Bi(co )
8(co) = —,

' tan
8i co

with

(44)

8, (co) =
2 y, (1+2n )(/Xi(co) —KIX(co)l )+(y, /4+co —P ) X2(co)—

h(co) m m

(45a)

2y, & lx(co)l KsT
B2(co)= 2

(1+2n )[X,(co)(y,'/4+co' tI}') +—2$ Kl X( co)
I ] y, P

—X2(co)—
h(co ) m m

Then, substituting back into Eq. (43), we obtain

(45b)

S, ,(co)=1+ 2y, K Ix(co)l Ks T
(1+2n )[y,KIX(~)I' —2coA'&(co)]+(y2/4+co'+P')

(1+2n )I 5(co)l l1l IB

—x2(~)

lx(co)l KsT
(1+2n )y, [KIX(co)l PX—,(co)]+(y, /4+co P—)

Q iiico

—X2(co)

2

+ (1+2n )[2$KIX(co)l +Xi(co)(y, /4+co —P )]

Ix(~) I'Ks T
+y, 4 —X&(co)

2 '1/2

(46)

In order to obtain squeezing, the second term in the right-hand side must be negative and greater or equal to —1.

VII. INTENSITY SQUEEZING SPECTRUM

It is worthwhile also to consider the output intensity spectrum SI(co) [5], which is defined by

SI(co)= fdco'(5I, „,(co)5I,„,(co') ),1

&out

where

5I,„,(co)=a,*„,5a,„,(co)+a,„,5a,„,(co)

and

a.„,=Qy, a, —a,„

(47)

(48)

(49)

as a consequence of boundary conditions at the fixed mirror surface. By using Eqs. (33)—(38) and the Fourier transforms
of Eqs. (14) and (15), as above, we obtain
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&1(~)=(1+n )IP~) I'+n IP —~)I'+(1+2n ) lg(~) I'

y2 /4 f2
+2 {(I+n )[g,(a))ri, (

—c0) —(2(co)g2( —co)]+n [g,(
—co)g, (co) —

g2(
—co)g2(co)]]

rc
2r, k

t (1+n )[g,(co)2)2( —co) + (2(a) )q, ( —co)]+n [g, ( —co)g2(co )+g2(
—co)g, (co) ] ]

C

SC~ T
+

y, /4+y 2
[kl(~)+ kl( —co) ]—0[(2(co)+k2(

—c0) l

+ PMi( ) —k|( — )]+
2

[4( )
—4(—

2

2'

(50)

and finally we have

Sl(co)=1— 4coKPy,
[ X2(co)[( I+2n )(y, /4+/ ) +cop] +( I/2 +n )coy, X&(co) J(1+2n )(y, /4+/ ) 5(c0)

4Ky2~2y, IX(c0)I'Ks T

(I+2n)(y2/4+y2)l~(~)I' Q.~. (51)

We see that the thermal contribution might destroy the
squeezing, and thus we have to be careful in choosing the
range of frequency and the values of the external parame-
ters. As will become clear in Sec. VIII, the squeezing is
less sensitive to the thermal noise for co «co . Thus, for
low co, and setting n =0 for simplicity, we obtain

4K Py, aP Pn, h

(y,'/4+/') IZ(N) I' ' y, Q
(52}

where n,„=KsT/fuu represents the number of thermal
excitations due to the interaction with the thermal bath,
and b, (co} is the value of Eq. (38), where we considered
X2(co«co )=0 and X,(co«co )=1. This function has a
minimum at

co= 6(—'+qr —2qrK )' (53)

where all the frequencies are in units of y, (i.e., y=P/y„
A = A /y, ). The minimum of Eq. (52) is then

"th
Si(co)=1 2Kcp( ,'+qP) '—1 —2p-

m

We see that, for

(54)

(55}

the intensity squeezing becomes independent of the
thermal noise.

VIII. SQUEEZING CONDITIONS

We need some criteria for choosing the values of the
various external parameters. In Eq. (32) we already met
one condition that must be satisfied to be sure that the
frequency-dependent dissipation does not spoil the
squeezing. We also must ensure that the thermal noise
contribution has no great influence in the squeezing spec-

trum. From Eq. (29}we can extract the "strength" of the
added thermal noise, which can be written as

r,h= I pl'Ix(~}l'
m'co4

n,„lKI
Ix(~)l', (56)

where we used Eqs. (28} and (30}. We will then require
that the strength of the thermal noise is small with
respect to the damping constant of the internal mode, i.e.,

'Yt &(X. (57)

m
(58)

This condition means that the additional loss of photons
due to the thermal dissipation is negligible.

Since the number n,h of thermal excitations at frequen-
cy co could be large at room temperature in the MHz
range, we have to choose a high mechanical quality fac-
tor Q . We also see that the thermal fluctuations be-
come important for co =co, while they are less important
for low co. Thus the squeezing, if there is any, will be
strongly dependent on the thermal noise for co=co . Fi-
nally, we have to choose the various external parameters
in order to have a value of IKI, which represents the
frequency-independent phase shift due to the radiation
pressure, such that Eq. (32) holds. By the way, for high
Q and low co Eq. (32) can easily be satisfied. Further-
more, from Eq. (54) we know that for P«y, Q /n, h the
thermal contribution does not have any influence on the
minimum value of the output intensity squeezing at low
frequency. From Eqs. (30a) and (30b), we have /=$0 —K
with go=co, —coo.

In the following, we shall consider the case of high
mechanical quality factor
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and we further require that the mechanical angular fre-
quency be larger than the cavity linewidth. This is be-
cause, otherwise, the cavity photon does not "see" any
coherently variable path but only Quctuations in the path
length. We will then require

C

2
Lg CXq

Yc
+i/ —iga,'

(64)
y, «m (59)

Sl(co) =1 8K'=—1 8p(y—o p), — (60)

thus the maximum squeezing will easily be realized for
o&&q at

In order to obtain a relatively small y„ the transmissivity
of the fixed mirror has to be very small. Rempe et al. [24]
have shown that it is possible to obtain values as small as
T„=10 . We will then choose a mechanical frequency
in the MHz range with a good quality factor which can
be obtained easily with a quartz resonator.

If we go back to Eq. (54), with the above-specified
choices for the various external parameters, and set the
value T=300 K for the external temperature, which
gives n,z—- 10, with Q =10, Eq. (55} gives y«0. 1.
Then Eq. (54) can be further approximated, giving

Rga,* Aga, ~m2

27tl

Thus, Eq. (12) can be linearized with respect to the steady
state by writing

8v = Av+w .
dt

(65)

In order to solve Eq. (65}, we introduce the unitary ma-
trix U such that UU '=1. The diagonal matrix is then

a=U-'AU, (66)

and the eigenvectors of the matrix A form the columns of
the unitary matrix. For the stability condition the real
part of all the eigenvalues of the matrix A have to be neg-
ative [21]. Finally,

1

8vo
(61) v(t) = Ue 'U '—v(0)+ f Ue "' 'U '—w(t')dt' .

0

Thus, once go=(co, —coo)/y, has been fixed, the value of
y, which depends on the input power through Eqs. (30b)
and (19},has to satisfy Eq. (55) and the stability condi-
tion.

( v(t)v(t) ) = UI U

with

(68)

Denoting the transpose matrix with B, for the steady
state ( t ~ ~ ) we obtain

IX. THE GINZBURG CRITERION

Once the range of frequencies and the quality factor of
the mechanical oscillator and, consequently, the cavity
linewidth have been chosen, one has to satisfy the stabili-
ty condition. To this end, as we mentioned above, it is
worthwhile to introduce a Ginzburg criterion [19]. The
steady-state values in Eqs. (18) have to be far from the
"critical points. " This can be quantitatively assessed by
considering the ratios

and

I = lim f dt'e 'Ge-
t —moo Q

G=U 'M(U ')

The noise correlation matrix M is given by

M=(w(t)w(t) )

(69)

(70)

(62)

0 (1+n)y, 0 0

0 0 0

0 0

Oyr, T

(71)

where the equal-time expectations are considered with
respect to the steady state and the distributions of the
noises.

Let us now introduce the column vectors

obtained by using Eqs. (14) and (15).Then the elements of
the I matrix are easily obtained as

5a

6a
7 W

Qy, sa,„
~y, fia,'„

(63}

r =—
Ij

I J
(72)

with A, representing the eigenvalues of A. The secular
equation for the matrix A is the fourth-order equation

and the matrix

v'y ~;. —
X +a3A, +a2A, +a&X+ap=0

with

(73)
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2

+ V ++
2 9 +'Ycm ~

2

+/+ + = +2 4 2m 2'

(74}

100

60

20

30 40

Even though the roots could be obtained analytically
[25], the expressions are so involved that one can hardly
extract useful information. On the other hand, the
choice of various external parameters has to be made in
such a way that the Ginzburg criterion in Eq. (62) is
satisfied. This can be achieved easily with computer aid,
by imposing that the set of external parameters we
choose satisfies not only the criteria in Eqs. (32), (57), and
(59), but also the Ginzburg criterion given in Eq. (62).
The relevant expectation values in Eq. (62) are obtained
easily by using Eqs. (68) and (72), with A, , obtained by
solving the eigenvalues equation (73) for matrix A.

X. RESULTS

Once we have chosen the frequency of the impinging
mode on the first mirror, of course we must choose co, by
fixing the cavity length L. The only relevant external pa-
rameter which remains to be fixed is the input power P;„
defined in Eq. (22). Indeed, all the steady-state values are
implicitly dependent on P;„ through Eqs. (18) and (30).
For the stability condition, as we mentioned above, the
real part of all the eigenvalues A, ; must be negative, and
the steady-state value have to be consistent with Eq. (55).

We finally fix the various external parameters as

(P,.„-5.9958X10 ) (10 9W)

—Re(&„)x10
10.

30 40 50

(P.,„-5.9958x10 ') (10 W)

100

60
C4

20

FIG. l. (a) and (b) The real part of the eigenvalues of the
matrix A is plotted vs the input power P;„.

co~=10 s ', m=10 kg, Q =106,

T, =1.6X10, T, =10 s
(75)

-9.5

~os M(y)

IWJ I

I I

-8.5

Of course this choice is arbitrary, because other choices
satisfying the above-mentioned criteria can be made giv-
ing the same qualitative results. In Fig. 1(a} and 1(b) we
plot the real part of the eigenvalues when we choose
iL0=0.6328X10 6 m (co0=2mc/A0) for a He-Ne input
laser, and consequently A,,=0.632799X10 m. We see
that a threshold value exists for P;„below which all the
eigenvalues have negative real parts and the solutions are
stable. There is also a lower limit in the range of the pos-
sible input power, and this is connected with the already
discussed Ginzburg criterion. For lower input power,
indeed, the steady-state solutions are too near to the turn-
ing points, and the linearization procedure fails. Howev-
er, this value is practically indistinguishable from the
value below which Eq. (19) has only one real solution,
and no bistability occurs. In Fig. 2(a) we show the equa-
tion of state (19) as a function of P;„,with the other exter-
nal parameters given in Eq. (75). The stabilization
phenomenon of the oscillating mirror [7] appears clearly
in the figure. In order to have a further, almost
insignificant, enhancement of the mirror s oscillation am-
plitude, a very high input power is needed. In Fig. 2(b)
we show the magnification of the local minimum of Eq.

CI

X

00

C&

I

5;
4
3
2

1

'~

~ ~ ~ ~

-18 -14

106(logqoy +8.3799)

-10

6.1
6.0
5.9
5.8

C4

10.50 -10.44
»810(y)

-10.38

FIG. 2. (a) The semilog plot of the equation of state is shown.
(b) The magnification of the local minimum. For both figures
the temperature is T=300 K. (c) The magnification of the local
minimum for T=4 K. In all the figures the dashed line
represents the unstable solutions.
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FIG. 5. (a) The intensity squeezing is shown for the particu-
lar value of co=co vs the detuning go =co, —coo.

0.2

0 2 4 6 8 10
03/P,

FIG. 3. (a) The two spectra Sl(co) (full line) and S,„,(co)

(dashed) vs co/y, for T=4 K is shown. (b) The same as (a) for
T =300 K.

(19}. The dashed lines represent the unstable solutions.
All the above curves are obtained with the thermal bath
in equilibrium at T =300 K. We see that the range of
possible input powers, when all the above conditions are
satisfied, is very narrow, and one must use an input laser
that is well stabilized in power. At lower temperature, as
shown in Fig. 2(c} for T =4 K, that range is wider, and
the power stabilization is less important. The subsequent
figures are devoted to the squeezing spectra. At low tem-

perature T =4 K, as shown in Fig. 3(a), the spectrum of
the intensity squeezing in Eq. (51) has two minima at
co=re and for low co. As the temperature rises, the
higher frequency minimum disappears. This is shown in
Fig. 3(b), which is obtained for T =300 K. On the other
hand, the low-frequency minimum is almost insensitive to
the temperature. In both the above figures, the dashed
line shows the optimum quadrature squeezing given in

Eq. (46), while the full line represents the intensity
squeezing in Eq. (51). We have also considered only the
higher value of the steady-state bistable solutions which
satisfies Eq. (55). In Fig. 4 we show the approximation
for the intensity squeezing as given by Eq. (52} (the
dashed line) for the case T =300 K. We obtain an almost
perfect agreement within the range of validity of the ap-
proximation. Figure 5 is devoted to the spectrum of in-

S, (m)

1.0

0.6

tensity squeezing, at the particular frequency B at which
we obtain the maximum reduction of the intensity fiuc-
tuations, vs Po, to show that the squeezing is obtainable
only when the bistability condition in Eq. (23) is satisfied;
however, because we choose T =300 K, the squeezing is
spoiled well before we reach the value of Po given in Eq.
(23}, since the maximum squeezing is realized only when
Eq. (61) holds.

XI. CONCLUDING REMARKS

With the chosen value of the input power
P;„=5.995 825X10 3 W the value of the phase shift is
/=100 s ' (i.e., p=10 }, and we have shown that the
output light presents an almost perfect intensity and
quadrature squeezing at a frequency very close to the in-

put one. The effect of the thermal noise can be made
completely negligible; however, the drawback is that one
has to have a perfect control of the input power. We are
led to the conclusion that with such a device quantum
noise reduction can be realized.

After this work was completed, we became aware that
Fabre and co-workers [26], by using the same model as in
Ref. [5], revised their previously pessimistic conclusion,
observing that with a high quality mechanical resonator
the squeezing can be obtained at low frequency, which is
in agreement with our result. In our analysis, however,
we give a full description of the model, and show the
relevant parameters to be controlled in order to obtain
relevant output squeezing even at room temperature.

The practical realization of such a device should be an
interesting challenge for an experimenter. Of course, in
real experiments additional losses could be introduced by
an imperfect longitudinal oscillation of the coated quartz
surface, and additional heating due to an imperfectly
re6ecting oscillating mirror; however, we think that the
up-to-date technology is mature enough to obtain an op-
tomechanical control of the quantum fluctuations.

0.2

0 2 4 6 8 10

FIG. 4. A comparison between the approximate value
(dashed line) and the complete behavior of S&(co) is shown.
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