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Photon-number correlations near the threshold of microcavity lasers
in the weak-coupling regime
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The quantum-noise properties near the threshold of microcavity lasers are studied theoretically and
experimentally in the weak-coupling regime. Computations based on two-level quantum theory show
that the microlasers exhibit a high degree of second-order coherence compared with conventional lasers
as a result of the suppression of spontaneous emission into nonlasing modes, and that there always exists
a finite threshold for these lasers defined by the peak of the photon-number correlation function corre-
sponding to the spontaneous-to-stimulated transition.

PACS number(s): 42.50.—p, 42.55.—f

The study of radiative properties of atoms in tailored
electromagnetic environments, cavity quantum electro-
dynamics (QED), is a topic of considerable interest [1].
Most such studies originated in the microwave regime,
where it is relatively easy to build closed, single-mode
resonators and to completely turn off spontaneous emis-
sion. In contrast, optical experiments invariably involve
open resonators, and spontaneous emission into free
space always contributes to mask true cavity QED
effects.

Generically, it is possible to classify cavity QED exper-
iments with the help of three rates, which are traditional-
ly called y', ~, and g in the quantum optics literature: y'
gives the spontaneous emission rate into free-space modes
in the presence of a cavity, and is related to the cavityless
free-space spontaneous emission rate y by a geometrical
factor which depends on the solid angle sustained by the
resonator; ~ measures the resonator losses; and g is a
measure of the (dipole) coupling between the atoms and
the cavity mode. Two main regimes of cavity QED can
then be identified: in the weak-coupling regime, g is
smaller than one of the decay rates a and y', where y'
can be significantly different from y; and in the strong-
coupling regime, g is the dominant rate. (In contrast,
conventional quantum optics and laser physics are
characterized by the inequality g (y', tc.) The strong-
coupling regime has been the subject of considerable
studies in the microwave regime, and in particular, the
micromaser [2] operates in the regime g ))tc,y'=0. Re-
cently, it has also become possible to reach the strong-
coupling regime at optical frequencies [3,4], and evidence
of the strong atom-field coupling, e.g., in the form of "re-
versible" spontaneous emission and of a significant vacu-
um Rabi splitting has been found experimentally.

The weak-coupling regime, which is still characterized
by irreversible spontaneous emission, but possibly
enhanced [5] or inhibited [6], is also of considerable in-
terest. For instance, it has been suggested that a laser
operating in this regime would become "thresholdless" in
the limit when y'~0 [7]. This has led to considerable ac-
tivities toward developing appropriate cavities in the op-
tical frequency region, through the use of multilayer

structures [8], high quality modes and mirrors [9], or
"photonic bandgap" structures [10].

In this paper, we outline the theory of a laser operating
in the weak-coupling cavity QED regime and compare it
with experiments. Of particular interest here is a discus-
sion of the "threshold" of such a laser. Historically, the
laser threshold has been theoretically described in terms
of an analogy between the laser and a nonequilibrium
phase transition [11]. In the thermodynamic limit, it is
characterized as a second-order-likt; phase transition, the
derivative of the output intensity as a function of the
pump parameter exhibiting a discontinuity at threshold.
This transition is accompanied by large intensity Auctua-
tions that can be obsexved in the second-order intensity
correlations function [12]. As y' decreases and a larger
fraction of photons emits into the lasing mode, one
reaches the cavity QED regime of microcavity lasers,
where the concept of a phase transition, strictly speaking,
loses its meaning and, hence, what is meant by a thresh-
old becomes somewhat unclear. In particular, the deriva-
tive of the intensity ceases to be discontinuous and to be a
useful way to describe the threshold because as y'~0 all
emission (whether spontaneous or stimulated) must go
into the lasing mode. On the other hand, we show that
the intensity fluctuations of the field still exhibit a max-
imum because of the transition from spontaneous to
stimulated emission. This leads us to propose that the
point at which this maximum is reached should be used
as the definition of the threshold for microcavity lasers.

The quantum theory of a microlaser operating in the
weak-coupling cavity QED regime is straightforward in
principle. The active medium is coupled to two baths,
one which describes spontaneous emission into the free-
space modes and gives rise to the decay rate y', and the
other which describes the damping of the cavity mode at
rate K [13]. In addition, the active medium is coupled to
the field mode with the coupling constant g. Since we are
in the weak-coupling regime, all standard approximations
of laser theory can still be carried through, and the only
effective changes are in the various decay rates entering
the equations. The photon statistics are derived via a
quantum theory based on the density-matrix equations of
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motion [14—17]. Two remarks need to be made at this
point. First, the transverse relaxation rate I/T2 of the
atomic transition depends in general both on elastic col-
lisions and on spontaneous emission, and hence is
changed from its free-space value in cavity QED situa-
tions. However, if the laser medium is collision dominat-
ed, such as in semiconductor lasers, we can neglect the
effects of spontaneous emission and use the free-space
value of this rate. Second, the rate y' is quite complicat-
ed to compute from first principles for a given cavity
geometry, and is treated here as a phenomenological fac-
tor [18].

In this paper, we consider specifically the case of a
two-level laser with upper-level to ground-level-lower-
level decay [17]. This configuration describes the three-
level pumping scheme appropriate for the ruby laser as
well as some aspects of the semiconductor laser, for
which the pump occurs directly from the valence band to
the conduction band. We assume that the upper laser
transition is pumped at rate A from the lower state (e.g. ,
through a fast decaying third level) and that both thermal
baths are at zero temperature, an excellent approxima-
tion in the optical regime. The photon-number probabili-
ty p„is then readily found to be

+nA„p„&—nB„p„,
where n is the photon number and
A„=N,R/2TI(1+nR), B„=N&R/2TI(1+nR)
N, =N'AT„and Nb =N'y'T& are the normalized zero-
field populations of the upper and lower laser levels, with
Ti=(A+@') ', R =4g TiT2 (g =m p~@„/2h, where
p, 8„,and h are the dipole matrix element, the electric
field per photon, and the Planck's constant, respectively),
and N' being the total number of atoms contributing to
lasing. The microlasers are usually characterized in
terms of a phenomenological "spontaneous emission fac-
tor" P [18],which is defined as the ratio of emission into
the laser mode to the total emission, and is related to pa-
rameters in our theory by P=(1+y'/2g T2) '. In our
model, the effect of suppressed spontaneous emission in
microlasers is a reduction of the "pumping" N'y' of the
lower-state population, which, in turn, reduces the ab-
sorption term B„.Hence the emission term A„does not
have to compensate for as much absorption as in the case
of conventional lasers, thus resulting in a reduction of the
laser threshold. In steady state, the master equation (1)
yields the photon statistics
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cavity laser operating in a range where our simple two-
level laser theory can give reasonable results. Note that
although semiconductor lasers cannot in general be de-
scribed by this simple theory, we expect it to describe the
tuning-independent features of bulk semiconductor lasers
corresponding to those given by the widely used linear
density gain model [20], as long as appropriate effective
medium parameters are used. We shall see that, indeed,
our theory does yield reasonable qualitative agreement
with the experiment.

The experimental setup (see Fig. 1) is a standard
Hanbury-Brown —Twiss [21] arrangement previously used
by Armstrong and Smith [12] to measure photon bunch-
ing near the threshold of a conventional GaAs laser. The
top and bottom mirrors of the microcavity laser studied
in our experiment consist of 22 and 27.5 periods of 62.5-
nm A1GaAs (Al concentration = 0.143)/73.3-nm A1As
quarter-wave stacks with designed reflectivities exceeding
0.999 near the lasing wavelength (the actual refiectivities
are around 0.998 [22]}. The active region has 0.7357 IMm

of bulk GaAs. The entire laser structure is grown on a
semi-insulating GaAs substrate by molecular beam epi-
taxy. Unlike conventional lasers with many closely
spaced cavity modes inside the gain bandwidth [12,23],
the short cavity length of the microcavity laser ensures
that there is only one longitudinal cavity mode in the en-
tire gain and high-reflectivity frequency band. The pump
source is a SDL diode laser with stabilized current (110
mA) and temperature (14.9'C} control. The 830-nm
pump beam is focused to a spot with a 5-JMm effective di-
ameter on the microcavity laser (which is kept at room
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where po is the probability of no photon, and acts as a
normalization constant. We concentrate here on the
second moment of the photon statistics, and specifically
compute the Fano-Mandel parameter [1,19]
E =[(n ) —(n ) —(n ) ]/(n ) =(n ) [g' '(0) —1] for
various values of P and a.. These results are then com-
pared with measurements carried out with a GaAs micro-

FIG. 1. Experimental setup for measurement of photon corre-
lations. The symbols used in the figure are AOM —acousto-
optic modulator, IF—interference filter, BS—beam splitter,
L—lens, TE cooler —thermoelectric cooler, M—mirror,
ND —neutral density filter, R6850—edge filter that transmits
wavelengths longer than 850 nm, PMT —photomultiplier tubes,
Amp —amplifiers, and Disc—discriminators.
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temperature) by an antireflection coated diode laser lens
after passing through an acousto-optic modulator and a
Faraday isolator. The acousto-optic modulator is used to
adjust the pump level, and the Faraday isolator prevents
any feedback into the pump laser. The resulting pump
power fluctuations are measured by a precision digital
power meter to be less than 10 . A dichroic beam
splitter sends the output of the microcavity laser to a
50%-50% beam splitter, which divides the beam into two
beams of equal intensity before sending them to two pho-
tomultiplier tubes (the bias voltage is adjusted to achieve
an optimum signal-to-noise ratio). The photogenerated
electric pulses from each channel pass through two stages
of amplification before they are directed to an EGG Or-
tec Model 583 differential discriminator. Each discrimi-
nator has two output channels. The first output channels
are connected using 50-0 impedence BNC cables to one
coincidence counter. The second output channels, with a
long () 150 ns) delay between them, are connected to a
second coincidence counter to measure random coin-
cidences. The output of each coincidence circuit is sent
to the input of a SRS Model SR400 counter unit. The
single-channel count rate is kept at 10 counts/s via a
variable neutral density filter, and the time resolution of
the entire coincidence circuitry is about 3.5 ns. Data are
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FIG. 2. The measured output power (triangles) and photon-
number fluctuations (circles) of a GaAs microcavity laser. The
pump power is normalized such that A=1 corresponds to the
peak in the K curve, which is used to define A,h (A,& in the ex-
perimental curve is about 6.8 mW). The solid lines are theoreti-
cal plots. The parameters used in the computation are Q =2000
and y'=0. 8 GHz, which correspond to the experimental condi-
tions.
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FIG. 3. The theoretical average photon
number (solid lines) and the correlation func-
tion E (dotted lines) for various P and Q.
Difkrent horizontal and vertical scales are
used for clarity. (a) and (d) correspond to the
case of a conventional laser with small P, while

others describe microlasers with larger P.
(a)—(c) are for Q =200, and (d) —(f) are for

Q =2000.
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FIG. 4. The second-order coherence function g' '(0) as a
function of pump for various P.

taken for 5 min at each pump level, where both the ran-
dom and the correlated coincidence counts are recorded.
The measured photon-number correlations as a function
of the pump power are shown in Fig. 2. The derivative-
of-intensity threshold and the peak-of-K threshold agree
very well for the microcavity used in the experiment with
P=6.5X10 (y'=0. 8 GHz). This value is more than
an order of magnitude larger than those of typical con-
ventional lasers [12,23], but still not large enough to illus-
trate the derivative-of-intensity thresholdlessness.

To compute the photon statistics, we use the effective
experimental values appropriate for the GaAs microcavi-
ty laser used in our experiment: they are N'=2. 5 X10,
T2=10 ' s, and g =3.7X10 s '(p=4. 8X10 mC,
V =25 pm ). Furthermore, we express the cavity damp-
ing rate a in terms of its quality factor Q via K=ct7/Q,
where co is the angular frequency of the laser transition.
From the measured Fabry-Perot etalon full width at half
maximum (FWHM) of 1.7 A, we deduce an efFective mir-
ror reflectivity of R,&=0.993. Since the optical field ex-
tends mell into the Bragg reflectors, the effective cavity
length is estimated from multilayer calculations of our
microlaser structure to be about 2.2 pm. Thus we obtain
Q =2000 for the lasing mode given by Q =col. /
cin(1/R, s) [16]. Figure 2 shows good agreement be-
tween our experimental results and the steady-state re-
sults of Eq. (2).

Whereas we have not yet fabricated a microcavity with
a large P, our model, which is certainly valid for any
value of P, enables us to reach important conclusions on
the statistical properties of so-called thresholdless lasers.
The theoretical curves of Fig. 3 allow us to compare the
derivative-of-intensity threshold with the peak-of-K
threshold for very large P. The main result is that the
former disappears whereas the Fano-Mandel parameter
still clearly exhibits a peak indicative of enhanced intensi-
ty fluctuations near threshold. For instance, while the
growth in intensity as a function of the pump parameter

almost follows a straight line in Figs. 3(c) and 3(f), E(A)
still exhibits a well-defined peak. We argue that this peak
should be used as a proper definition of the threshold of a
weak-coupling microlaser. Based on this definition, the
microlaser never becomes strictly thresholdless; the quali-
ty of the emitted light below the peak-E threshold does
not possess the degree of coherence usually associated
with laser emission even though the derivative of intensi-
ty would make it appear thresholdless.

Another interesting outcome of our study is summa-
rized in Fig. 4, which shows the normalized second-order
correlation function g' '(0) = (I (0) ) /( I(0) ) of the mi-
crolaser as a function of the P factor. These results show
that as P is increased, g' '(0) at very low pumping is al-
ready less than the thermal source value of 2 and closer
to 1, characteristic of Poissonian photon statistics of a
coherent state [24]. This is mainly due to the cutback of
the number of nonlasing modes which are largely respon-
sible for the intensity noise. Hence, microlasers operat-
ing in the weak-coupling regime have reduced (although
still classical) intensity fluctuations compared to a stan-
dard laser operating at the same pump power. On the
other hand, it has recently been shown that they also ex-
hibit a larger linewidth [25]. We are, then, led to the con-
clusion that although microlasers are diEcult to distin-
guish from light-emitting diodes (LED s) from their
spectral characteristics, their higher-order correlation
functions, which demonstrate a high degree of second-
order coherence, are fundamentally different. It should
be noted that the reduced value of g' '(0) below thresh-
old, however, is still much larger than that of a highly
coherent light source, such as in the case of a convention-
al laser above threshold. Thus the determination of the
threshold of microcavity lasers by the peak of the Fano-
Mandel parameter is of great importance in practical sit-
uations that require a high degree of second-order coher-
ence.

In summary, we have outlined the quantum theory of a
weak-coupling microlaser and compared it with experi-
ments. We found good agreement between the predicted
and measured values of the second-order correlation of
the field for low P. The theoretical results for high P
values stress the importance of using the peak in the
Fano-Mandel parameter of the field as a definition of the
microlaser threshold. There is no thresholdless laser if
second-order coherence (laser intensity noise) is the cri-
terion. We have also shown that while the spectral prop-
erties of these lasers, which resemble those of LED's,
make them of questionable use in interferometric-type
applications, they exhibit a strong degree of second-order
coherence as a function of the pump rate, and might be of
considerable interest in amplitude-modulation-type appli-
cations.
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