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Rabi resonance in frequency conversion by four-wave mixing in lasers
and its connection with the multimode laser instability
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We analyze the behavior of a laser upon injection of a weak-field resonant with a cavity mode adjacent
to the lasing mode; the four-wave-mixing coupling generates also a field with the frequency of the
symmetrical adjacent mode. Using the Maxwell-Bloch equations, we show that under appropriate con-
ditions there is a spectacular amount of frequency conversion, with a peak when the free spectral range
is equal to the Rabi frequency of the laser field multiplied by v 2. The origin of this effect is identified
with the help of the linear stability analysis of the free-running laser, which shows also the deep connec-
tions with the classical laser instability, predicted by Risken and Nummedal [J. Appl. Phys. 39, 4662
(1968)] and Graham and Haken [Z. Phys. 213, 420 (1968)]. The Rabi peak is a precursor of the mul-
timode laser instability, but it arises for smaller values of the pump parameter and is only weakly sensi-
tive to the transverse shape of the laser beam.

PACS number(s): 42.65.Hw, 42.65.Ky

I. INTRODUimrON

Some recent papers [1] analyze the possibility of ob-
taining frequency conversion in diode lasers by injecting
into the laser cavity a coherent field of frequency co, de-
tuned from the laser frequency coo. The injected beam is
weak enough in order to avoid injection locking, and the
mechanism of four-wave mixing generates another field
of frequency co

&
=2ND N& symmetrically located with

respect to the laser frequency. By following this pro-
cedure one can obtain a frequency conversion
~cubi

—co i~/2m on the order of 100 GHz, for example,
which is interesting for practical applications.

Loudon and collaborators [2] studied this mechanism
both theoretically and experimentally, considering the
case of a single-mode laser and of an injected signal with
a frequency offset co, Np on the order of the cavity
linewidth k. In the theoretical investigations that we
present here, we consider instead a multimode regime, in
which ~o and co& correspond to two different frequencies
of the laser cavity; this configuration allows for a larger
frequency conversion, because the frequency offset
co&

—
coo is now equal to the free spectral range of the cavi-

ty. In our analysis, we use the classic Maxwell-Bloch
equations for the laser field interacting with a homogene-
ously broadened set of two-level atoms [3—6]; this model
allows for studying also the possible effects which arise
from atomic coherence, which is not the case for the rate
equations which are standardly used for the description
of diode or semiconductor lasers.

The main results of our analysis emerge in the case in
which the relaxation rate yj of the atomic polarization
(or atomic linewidth) is much larger than the damping
rate

y~~
of the population inversion; this situation is com-

mon in a large class of lasers which includes semiconduc-
tor lasers. Precisely, we find that there is a spectacular
amount of frequency conversion, in the sense that the ra-
tio of the intensity of the converted field (with frequency

co, ) and that of the injected signal can be much larger
than unity; the output intensities of both fields with fre-
quencies toi and co, display a peak when the frequency
offset co, —too is equal to the Rabi frequency of the laser
field (multiplied by ~2).

At first sight, the existence of a Rabi resonance in the
signal field may appear not surprising, because it is well
known that a weak probe beam which interacts with a
two-level medium saturated by a detuned strong beam
can experience gain [7], and this gain is maximum when
the frequency offset between the two beams is equal to
the Rabi frequency of the strong field [7-9]. The four-
wave-mixing enhancement of the gain is also well known
[9]. In our case, however, there is a basic element which
is absent in Refs. [7—9] and affects dramatically the
behavior of the system; namely, the optical cavity. As a
consequence, the gain we calculate is not that of a probe
beam, but is defined as the ratio of the output intensity
(for each of the two fields with frequency co, and ro, ) to
the input intensity in the stationary state of the system.
The element which best emphasizes the difFerence be-
tween our results and the previous investigations is the
surprising feature that our results emerge just in the limit
of yl/yi«1, in which the four-wave-mixing coupling
between the two side modes becomes small too. As a
matter of fact, the mechanisms which originate our
effects will be elucidated with the help of the linear stabil-
ity analysis of the stationary solution of the free-running
laser. This analysis was performed 25 years ago by Risk-
en and Nummedal [3] and Graham and Haken [10] and
led to the prediction of the multimode instability of the
laser [3,10]. Even if this instability has not yet been ob-
served experimentally to our knowledge, it remains a
classic result in the Seld of laser dynamics, and it is in our
opinion very interesting that the Rabi resonance predict-
ed in this paper appears intimately related with this insta-
bility.

In Sec. II we review the Maxwell-Bloch equations and
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their formulation in terms of modal amplitudes for the
field and atomic variables. Section III discusses the
response of the system upon injection of the external sig-
nal, both analytically and with the help of numerical
simulations. In Sec. IV we illustrate the connections with
the multimode laser instability. A11 the results shown in
Secs. II—IV are obtained in the framework of a plane-
wave theory. In Sec. V we consider, instead, the case of
an electric field with a Gaussian radial profile, and com-
pare the results with those of the plane-wave theory. The
final Sec. VI summarizes and comments upon the main
results of the paper.

II. MODEL

f„=—k (f„—2CP„), (4a)

p. =xi g f.d.
rl

(4b)

n Y( 2 g (f n'Pn ——n +f'n'Pn' n}—
n'

exp(inaz/c) satisfies condition (2). By substituting the
modal decomposition (3) into Eqs. (1), one obtains an
infinite set of coupled ordinary difFerential equations for
the mode amplitudes f„,f„*,p„,p„',d„. Their explicit
form is given by [4,5]

We consider the Maxwell-Bloch equations for a ring
cavity laser filled by a two-level medium in the plane-
wave and paraxial approximation [3—6],

+d„1—i
~II

(4c)

aF aF+c = —k (F 2CP),—
at az

P =y i(FD P), —

(la}

(1b)

= —
y [—'(F'P +FP ' )+D —1], (lc)

where the normalized variables F (z, t), P(z, t), and D (z, t)
denote the slowly varying envelope of the electric field,
the atomic polarization, and the population inversion, re-
spectively. 2C is the pump parameter (the laser threshold
is 2C =1), k is the cavity damping constant, or cavity
linewidth, which corresponds to one-half the mean life-
time of photons in the cavity; y~ is the atomic linewidth
or transverse relaxation rate, while

y~~
is the longitudinal

relaxation rate. The last two parameters arise from spon-
taneous emission and from other mechanisms of homo-
geneous broadening.

Equation (la) must be accompanied by the ring cavity
periodic boundary condition [3—5]

F(L, t) =F(O, t), (2)

+ 00

F(z t)= g exp —ina t —— f (t),
C

pf = oo

+ oo

P(z t)= g exp ina t ——— p (t},
C

n = —cc

+ oo

D (z, t) = g exp ina t ——— d„(t),
c

n = —oo

where a is the free spectral range

27TC

I.

(3a)

(3b)

(3c)

The choice of the orthonormal basis functions

where L is the cavity length. In writing Eqs. (1) we as-
sumed that the atomic line is exactly resonant with one of
the longitudinal modes of the cavity, whose frequency is
taken as the reference frequency of the electric field.

We can expand the variables F,P, D on the basis of the
longitudinal modes of the cavity [4,5]:

The equations for f„" and p„' are the complex conjugate
of Eqs. (4a) and (4b), respectively, while d„' =d

The set of Eqs. (4) admits an infinite number of exact
single-mode stationary intensity solutions [4]. The one in
which only the mode n =0, exactly resonant with the
atomic line, is excited has the lowest threshold. It can be
calculated by putting f„=f„'=P„=P„'=d„=Owith the
result

~ f„~=(2C —1)' 5„

s
1+ /f

d„'= 1 6„o,I+(fs)2 'o

(5)

where the superscript S indicates the stationary values.
The phase on f„ is completely arbitrary.

III. ANALYTICAL AND NUMERICAL RESULTS
(PLANE-WAVE THEORY)

Next, we inject into the laser a signal c. whose frequen-
cy is equal to that of the sidemode n =1, so that Eq. (4a)
becomes

f„=—k [f„—e5„,—2CP„] . (4a')

When the signal intensity c. is large enough the laser
locks to the signal frequency and the system approaches a
new stationary intensity solution in which only the mode
n =1 is excited. In this paper, however, we focus on the
case of a weak signal intensity c which cannot produce
injection locking.

As a consequence of the four-wave-mixing (4WM) pro-
cess involving the three modes n =0, n = 1, and n = —1,
the system will build up also the symmetrical side mode
n = —1. The problem is to find the steady-state ampli-
tude of the mode n = —1, and to compare it with the am-
plitude of the input field, in order to assess how much fre-
quency conversion from mode n = 1 to mode n = —1 is
obtained. The calculation can be performed analytically
in the limit of the weak signal by setting
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s+ sf('I+o (s ),I)

= s+e „"'+o(s'),Pn =Pn+&Pn

s+sd'"+o(s ),n nn

(6)

(7a}

(7b)

with

C,a, p ) =25+y 2 fp
—a —'

(8a)

s. 4a'), (4b), and (4c),serting s. (6) into Eqs. 4a',
x o
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FIG. 3. The numerical steady-state values of Gp Gl and

G, are shown as a function of a, for y, =10' rad/s, y~~=10
rad/s, k =3 X 10' rad/s, and C =2.
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of the ratio 6, /6, on y is illustrated in Fig. 2; it turns
out to be nearly constant for a wide range of values of y.

We can see from Figs. 1(a) and 1(b) that the peak tends
to vanish when y becomes of order of unity; on the other
hand, as y decreases, the amplitudes ~f, ~

and lf ~I «r
every value of a become larger and larger and the peak is
narrower and narrower. As a matter of fact, one can ver-
ify from Eqs. (7) and (8) that the fields f, and f, scale
as 1/'~/ y when y is small.

A very important point is that the previous results are
completely independent of the cavity damping constant
k. On the other hand, the condition y «1 is met quite
often in lasers; for example, in class-8 lasers
(y~&&k &&yl). If we consider, for instance, the values

y~ = 10' rad/s and
y~~

= 10 rad/s, which are compatible
with the case of semiconductor lasers, the value a=3
considered above at point 1 corresponds to a frequency
conversion (from mode 1 to mode —1) of —100 GHz.

The results of the previous perturbative analysis have
been compared with those obtained by numerical integra-
tion of Eqs. (4a'), (4b), and (4c). For definiteness, we as-
sumed that y j » k, y ~~,

a condition which allows us to
eliminate adiabatically the polarization variables by set-
ting p„=0 in Eq. (4b). In our numerical calculations we
considered only the five modes n =0,+1,+2, and used
the values ye=10' rad/s, ye~=10 rad/s, k =3X10'
rad/s (again, compatible with semiconductor lasers) and
selected the pump parameter value C =2. After a tran-
sient, the system reaches a stationary state [11]with three
excited modes fo, f„and f „while the amplitudes for
the modes n =+2 turn out to be negligible. The station-
ary values for the amplitudes fo, f, , and f, basically
coincide with those calculated with the perturbative
analysis, except in a region of width -50 GHz around
the point a=v'2Qz, where the linearization introduced
by Eqs. (6}fails. Figure 3 shows the steady-state values of
6, (i =0,+1) (where Go is defined as ~fo~ /e ) as a func-
tion of a. As one can see, the numerical integration
confirms the existence of a peak (much reduced in com-
parison with the prediction of the linearized analysis} for
the amplitudes f &

and f &
when a =~2Qx', in

correspondence of this peak the amplitude f0 shows a

dip, whereas in the linearized analysis fo remains unper-
turbed. Also, the existence of a dip for G, at a =QR is
confirmed by the numerical simulation.

IV. CONNECTION
WITH THE MULTIMODK LASER INSTABILITY

The characteristic properties 1 and 2 described in the
previous section can be understood by considering that
the small signal problem amounts to the set of modal
equations linearized around the single-mode stationary
state of the laser, with the input signal playing the role of
an inhomogeneous term in the otherwise homogeneous
set of equations. Therefore, the dynamics is governed by
the eigenvalues of the homogeneous linearized problem;
there are three eigenvalues related to the amplitude fluc-
tuations and two eigenvalues related to phase ft.uctuations
[4].

It turns out that the denominator of Eqs. (7a) and (7b)
can be written as [4,12]

X=2 ~fP +(1 ia—'t/y) 1 i—

where

X [i+any],

(1—
~fo~ ) ial+y-

A~= —k 1—
(1—ia)(1 ia/+—y )+ If0 I

(12a)

i+n&y
(12b)

(a) A,~ is the phase eigenvalue which is relevant for the
long-time evolution in the limit k «y~, y~~. Evidently,
when y becomes small A, ~ is small too, i.e., the phase of
the modes 1, —1 evolves very slowly. As usual, in the
presence of a slowing down, the system becomes very sen-
sitive to external perturbations. This feature explains the
large values of the gains 6) and 6, for y « 1.

(b) A, „ is the amplitude eigenvalue which, for
k «y~, y~~, determines the well known multimode laser
instability predicted by Risken and Nummedal [3], and
Graham and Haken [10]. When y~ is also much larger
than y

~~

and C && 1, this instability appears when

Qz &a& v 2Qx, for a=Qa and a=v'2Q+, one has it
that Re(A, „)=0.

It is clear that the peak in Figs. 1(a) and 1(b) arises when

the modulus of the denominator 2) becomes very small;
as one can verify, for y «1 this condition is reached in
correspondence to the upper boundary of the multimode
laser instability domain. On the other hand, at the lower
boundary a =Qz, ~2)~ is not small and therefore there is

no peak; however, curiously enough, this is just the value
of a in correspondence to which the gain 6

&
displays a

dip [Fig. 1(a)].
These considerations illustrate the relations which link

our Rabi resonance with the multimode laser instability

[3,10]. However, we must note also the following two im-

portant difFerences:
(i) The Rabi resonance phenomenon is independent of

the value of k but, on the other hand, requires that y is
small, a condition which is not necessary for the mul-
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timode laser instability, and
(ii) The multimode laser instability requires that the

laser is several times above threshold (for p « 1 one must
have 2C ~9), whereas the Rabi resonance is sizable also
for substantially smaller values of C.

In conclusion, one can say that the Rabi resonance is
basically a precursor of the multimode laser instability,
and can be experimentally observed with less stringent
conditions on the pump parameters C.
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=yl g (f„d„„)e pn
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(13b)

,
" = —
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with

—fi„o+d„ 1 i-
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J

1/2
1 F,
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(13c)

It is known that the multimode laser instability disap-
pears when one considers a laser beam with a Gaussian
radial profile [13,14]. For this reason we studied the
frequency-conversion phenomenon, also assuming that
the field, instead of the plane-wave configuration con-
sidered before, has the Gaussian shape

exp( r l—w o ),
where r is the radial variable and wo is the beam waist.
The modal equations (4a')-(4c) of the plane-wave model
are modified in the following way [14]:

f„=—k f„—'Efi„ i
—2CI dF 4Fe r p„, {13a)

FIG. 4. Case of a Gaussian beam profile. The values of
(j;(/s {i=+1}are graphed as a function of tt for C =2 and for

10

1 — ln(1+ lf l2) =0,2C

l ol'

pS
S —y

2

oe

1+ I
fsl2e —2r

(14)

ds 1

1+ l
f'l'e-"'

f'l" = 1 Ci—5
lfsl21(c,n, p)

1 i5—
—2C 1 i —J{c,a, g) [P(c,d, p)]

instead of the single-mode plane-wave solution given by
Eq. (5).

When the injected signal X is different from zero, one
obtains, as a consequence of the four-wave mixing pro-
cess, a stationary regime with the three modes n =0,+1
excited. Performing the linearization with respect to the
unperturbed stationary solution for '5=0, as in the plane-
wave case [see Eqs. (6}l, one arrives at the following ex-
pressions for f',"and f"'l at steady state:

WO

The quantities p„and d„depend now not only on t™
but also on the radial variable F. By setting

f„=f „' =dp„ /Bt =Bp„'/Bt =Bd„/Bt =0 in Eqs. (13) with
'E=O, one obtains the single-mode stationary solution
governed by the equations [13,14]

(15a}

with

(15b)

f"', = —c +'
lf,'l'I'(c, a, p) [o'(c,n, y)]-',

1+ia

9(c,a, y)= I+2clfo l I(C,a, y) —2C 1 i J(c,a,y)—

and

X 1 —2C
1 —lfol I(c,a, g) —2C 1 i J(C—,a, p)

1 ia y- y.
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I(C,a, y}=I
—4P'dr4r e

[1+Ifo I
e ] (1 —ia')/y) 1 i— +IfoI e

y.

(1 i a—'I/y ) 1 i- a
V'y

Ifsl4

X (1 ia—"& y) 1 i — ln
a

V'y

(1 ia—')/y) 1 i— +
I f0 I

V'y

(1 i I2—"v' y) 1 i-a
V'y

(17a)

—2FdF4r eJ(C, Iz, y)= f
[1+If 'e "] (1 ia'—)/ ) 1—

y .
v'- fsI2e —2I'

(1 i a"I/y—) 1 i— 1

f'I'—1 (1 i a "I/'—
y } 1 i — +

Ifo I'0

(17b)

As in the plane-wave case, fo =0. In Fig. 4 one can see(j.)

the ratios
I f, I /E (i = 1, —1) as a function of a for C =2

and y =10, calculated using Eqs. (15)—(17). Compar-
ing Fig. 4 with the analogous Fig. 5, in which are shown
the values of I f, I/s (i =+1) calculated by Eqs. (7) and
(8) of the plane-wave theory, one can observe an identical
qualitative behavior; the height of the peak in Fig. 4 is re-
duced by a factor 1.7 with respect to the plane-wave re-
sult. Figure 6 shows the quantities G, =

I f,
(i =0,+1), calculated by numerical integration of Eqs.
(13) for n =0, +1,—1 (with the adiabatic elimination of
the polarization variables valid for y~ &&k, y~~) as a func-
tion of a and for the same values of y~, y II, k, and C con-
sidered in the plane-wave case. There is good agreement
between numerical and analytical results, except in the

region around the point a =V 2Qa .
The results show that the Rabi resonance analyzed in

this paper persists in the case of a Gaussian-shaped beam.
There are some quantitative di6'erences with respect to
the plane-wave case, but the qualitative picture remains
unchanged.

VI. CONCLUSIONS

The previous analysis has clarified that the spectacular
frequency conversion, obtained in the limit of
y =

y ~~/y j && 1, is not so much the result of the four-wave
mixing coupling, which becomes less eicient in this lim-
it. Rather, it arises (Sec. IV) from the sluggish evolution
of the phases of the two side mode fields, which becomes
very slow in the limit y~0; it is well known that a slow-

3000.
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I I I
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Q. P L I I I I

FIG. 5. Case of a plane-wave beam profile. Same as in Fig. 4,
but for the plane-wave theory.

FIG. 6. Case of a Gaussian beam profile. The numerical
steady-state values of Go, G „and G, as a function of a, for

y, =10"rad/s, yII=10 rad/s, k =3X10' rad/s, and C=2.
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ing down produces an enhancement of the susceptibility
of the system to external perturbation such as, for exam-

ple, the injection of the weak signal.
A nice feature of the Rabi resonance in frequency con-

version that we illustrate in this paper is that it is com-
pletely independent of the value of the cavity damping
constant k. It represents a coherent phenomenon, com-

pletely unrelated from incoherent mechanisms such as,
for example, the relaxation oscillations which are com-
monplace in class-B lasers and can be described by stan-

dard rate equations.
A very relevant aspect of our analysis is that it indi-

cates the possibility of obtaining frequency conversion on
the order of 100 6Hz even when the relaxation rate of
the population inversion (carrier density in serniconduc-
tors) is smaller than 1 GHz. As a matter of fact, since
the four-wave-mixing process is mediated by the popula-
tion components d, and d „one would be tempted to
conclude that the time scale which governs the frequency
conversion is

y~~
. But from our analysis it turns out that

such a time scale is neither y
~~

' nor that of the relaxation
oscillations in class-8 lasers which, when C is of order
unity, scales as (kyl) '~ . We showed that the optimum

for frequency conversion is when the free spectral range
a is on the order of the Rabi frequency Qz so that, using

Eq. (10b), the frequency conversion 2a scales as (ytyl)'~
when 2C (and hence ~f/) has order unity. For the
values of the parameters considered before as typical for
semiconductor lasers ( y 1

= 10 s ', y t = 10'3 s

k =3&&10' s ') one has it that the time scale (ytyl)
is one order of magnitude smaller than (kyl) '~2, which
in turn is one order of magnitude smaller than

y~~
'.

Thus, our results suggest that in order to obtain frequen-
cy conversion on the order of 100 GHz it may not be
necessary to exploit nonlinearities for which the response
time of the carrier density is much shorter than a
nanosecond, as it is done in [1].

The analysis of Sec. IV has also elucidated the deep
connections which link the Rabi resonance with the mul-
timode laser instability [3,10]. In a sense, the Rabi reso-
nance can be considered as a precursor of the multimode
laser instability, but it can be observed experimentally for
values of the pump parameter substantially smaller than
those required to realize the multimode laser instability.
In addition, the Rabi resonance is much more robust be-
cause it persists when the laser beam has a Gaussian in-
stead of a plane-wave con6guration, whereas the mul-
timode laser instability vanishes [13].
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