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Two-photon emission spectrum of a two-level atom in an ideal cavity
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The time-dependent two-photon emission spectra of a two-level atom interacting with a single-mode
radiation field in an ideal cavity have been studied. The expressions of the system operators as a func-
tion of time have been derived based on the two-photon Jaynes-Cummings model and Heisenberg equa-
tion. As a result, the theoretical curves of the time-dependent two-photon emission spectra have been
given. The features of two-photon emission spectra depend not only on the photon statistical distribu-
tion of the initial field, such as the thermal field, the squeezed vacuum field, and the coherent field, but
also on the passband width of the filter detector I . The two-photon emission spectra exhibit multi-

peaked structures when I & A. (two-photon coupling constant).

PACS number(s): 42.50.—p, 32.90.+a, 32.50.+d

I. INTRODUCTION

Generally, the Jaynes-Cummings model (JCM) [1] can
be used to describe the interaction between a quantized
single mode of the radiation field in a cavity and a two-
level atom. Some investigators have applied the model to
reveal and explain many pure quantum-mechanical phe-
nomena, such as atomic Rabi oscillations [2], collapses
and revivals of atomic inversion [3—5], sub-Poissonian
photon statistics [6], and squeezing of the cavity field

[7,8]. The two-photon Jaynes-Cummings model
(TPJCM) is a generalized form of the JCM and has been
used to investigate strong squeezing of the field in a cavi-
ty [9] and to discuss the collapses and revivals in the Rabi
oscillations of the atomic inversion and of the photon
statistics of the field [10].

Recently, advances in experimental technology in the
optical cavity, in which only one atom is contained, have
opened an avenue where it is possible to study the in-
teraction of the atom with the single mode of the radia-
tion field in the cavity. In particular, the cavity-induced
enhancement of the decay rate of an excited atomic state
[11],and the one- and two-photon Rabi oscillations [12]
as well as the collapse and revival of Rabi oscillations of
the Rydberg atom [13] have been observed. It has been
demonstrated that the JCM and its various forms can be
better used to deal with the interaction between the atom
and the single mode of the radiation field in the cavity.

The investigations of atomic emission spectra have
been published in many papers [14—17]. However, in
most of the early papers, only the emission spectra of the
atom in a steady state have been discussed. Since Eberly
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and Wodkiewicz suggested the counting-rate definition of
spectrum [18], many authors have studied the atomic
non-steady-state emission spectrum [15,16]. Sanchez-
Mdragon, Narozhny, and Eberly showed that the spon-
taneous emission spectrum of the atom in a cavity is
different from the prediction of "every day" @ED [16].
Gea-Banacloche, Schlicher, and Zubairy discussed the
one-photon emission spectrum of the two-level atom in
the single mode of a squeezed-state field. It is found that
the one-photon emission spectrum is rather similar to one
of the atoms in a thermal field [17]. However, the investi-
gation of the two-photon emission spectrum for the two-
level atom in the single mode of a squeezed vacuum field,
to the best of our knowledge, has not been found up to
now.

As a consequence, in this paper we have investigated
the two-photon emission spectra of a two-level atom in an
ideal cavity and the efFects of the statistical properties in
various fields on the two-photon emission spectra. The
results show that when the two-photon coupling constant
A, is less than the passband width of filter detector I', the
emission spectra exhibit a single peak or three peaks, de-
pending on the statistics of the initial field, and that when
A, is larger than I', the emission spectra appears as many-
peaked structures. This is a reflection of the atomic mul-
tiple quantum Rabi oscillations in emission spectra.
Some of the features in the emission spectra might show
up in microcavity experiments in the future.

The paper is organized as follows: In Sec. II we shall
describe the two-photon interaction of a two-level atom
with a single-mode quantized field using a two-photon
Jaynes-Cummings model and derive the Heisenberg equa-
tions of the system operators. In order to solve the
Heisenberg equations and obtain the exact expressions of
the system operators as a function of time, a special tech-
nique has been developed, in Sec. III we reform properly
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Ebery-Wodkiewicz's formula of the time-dependent phys-
ical spectrum [18] for correctly expressing the two-
photon emission spectrum. The calculated results and
the discussion on the two-photon emission spectra are
given in Sec. IV. Finally we summarize the principal re-
sults in this paper.

II. TWO-PHOTON JAYNES-CUMMINGS MODEL
AND THE EXPRESSIONS OF SYSTEM OPERATORS

where 0 is the atomic natural transition frequency Np

the frequency of the cavity mode, o (cr ) and cr, are the
atomic Pauli operators, a (at) the photon annihilation
(creation) operator, and A, the two-photon coupling con-
stant. This model is called the TPJCM [9,10]. If we were
to derive directly the motion equations of the operators 0.

(o ) and a (a ), the corresponding equations would be
very complex entangled equations, so that we would not
be able to obtain the exact solutions. Here, generalizing
the method in [5] and [19]used to solve the expression of
system operators in the single-photon Jaynes-Cummings
model, we obtain the exact solutions of the various opera-
tors appearing in Eq. (1}with time evolving. To this end,
we change Eq. (1) to

H=cooN+C, (2)

Na a+o„C=A(a o+cr a ) bo, , h=coo ———f2 1 2

(3)

We consider the two-photon interaction of a two-level
atom with a single mode of the radiation field in an ideal
optical microcavity without loss. The cavity subtends a
large solid angle at the atom and its wall is short. Fur-
ther, the two-photon emission is weak. So both the reser-
voir of the cavity mode and the reservoir of the atom are
not considered. Having the same parity, the two levels of
the atom are assumed to be nondegenerate. Hence the
two-photon transition is allowed and the single-photon
transition is inhibited between the two levels. In this
case, under the rotating-wave approximation, the
e6'ective Hamiltonian of the total system, which consists
of the atom and the cavity field, is

H= ,'Ocr, +coo—(a a+ —,')+A(a o+ota ), (1)

~ di——2coo a (t)=2k(2N+3)cT(t) . (5)

Owing to the two motion constants N and C, Eqs. (4)
and (5) can be treated as differential equations with con-
stant coefficients. Hence Eqs. (4) and (5) can be reduced
to

o(t)
&
——2cop+ 2C i——2a)p
dt dt a'(t)

o(t}
=2k, (2N+3)

a (t)
(6)

With the help of the initial condition we get exact and
concise expressions for o (t) and a (t).

o (t}=exp( —2icoot)exp(iCt)

X c o8st+i C o(0) iX — a (0), (7)
. sin8t sin8

8 8

a (t)=exp( 2i coot—)exp(iCt)

X cos8t i —C a~(0). sin8t

2i A—(2,N+3)cr(0) ' .
8

(8)

III. EXPRESSION OF TWO-PHOTON
EMISSION SPECTRUM

Here

e=[A, (N +5N+6)+b ]'

where 8 can be called the operator corresponding to the
quantum Rabi frequency of the total system. This
method, to the best of our knowledge, has not been previ-
ously published. And the form of operator solution is not
only elegant, but also specially suitable to calculate the
two-time correlation function (o (t)o (t') ), etc.

5 is the detuning between the atomic and the cavity field.
It can be immediately proved that there are the following
commutation relations between above operators:

[H,N]=0, [H, C]=0, [C,N]=0 .

i —2coo+—2C o(t)=Ra (t), (4)

So the operators X and C are constants of the motion. If
we look upon whole a (a ) as a special operator, the
equations of operators cr and a can be easily obtained.

Generally, Eberly-Wodkiewicz's formula of time-
dependent physical spectrum, in which the two-time
correlation function of the field is simply substituted by
the two-time correlation function of the atom, is only
suitable to the single-photon emission spectrum. If we
use it directly, in this way, to the two-photon emission,
then the resulting spectrum is the incorrect single-photon
spectrum, which is, in fact, the second harmonic of the
light frequency of the radiation field. Because in this case
the centra1 frequency of the spectrum co equals the
atomic-level interval Q. However, the central frequency
of the two-photon emission spectrum should be equal to
0/2. Therefore the formula must be corrected appropri-
ately as
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T T
S(co)=2I f dt f dt'exp[ —(I' —t 2'co)(T —t)

0 0
—(I +i2pi)(T —t')]

x &g, yI~'(t)~(t')Ig, y&, (9)

B(p„,v„,t) = & gin &[f(p„,v„,t)+( —p„,v„,t)],
f(p„,v„,t) =f2(p„,v„,t) =exp[i (2cop+ p„—v„)t], (16)

p„=v„~2=A [(n + 1)(n +2)]'/

where lg& represents the atomic state, I+ & the atomic
upper state, I

—
& the atomic lower state, a and P are the

probability amplitudes of atom in the lower state and in
the upper state, respectively, and lg& represents the field
state. In & is the Fock state. Using some techniques, we
obtain the two-time correlation function
& g, gI ~'(t)~(t')

I g, p&

& g, &I~'(t)~(t')I g, y&

,'g[B—(p„,v„,t)B'(p„,v„,t')

+B(p„, v„,t)B*(—p„—v„,t')],

where

B(p,„,v„,t)=a'&/In+2&[f, (p„,v„,t}+f, ( p„,v„,t—}]

+P'& gln &[f2(p„,v„,t)+f2( —p,„,v„,t)],
(12}

and

[(n +1, )(n +2)]'/
1 pn~ n~

Vn Pn

X exp[i(2rop+p v )t],
' 1/2

f2(p„,v„,t)= 1+
Vn

(13)

Xexp[i (2rop+ p„—v„)t],
p„=[A, (n+1}(n+2)+b ]'/

v„=[A, n(n —1)+b, ]'/, p„=v„+2 .

(14)

(15)

When the atom is initially in the upper state
I+ &(a=O,P=1}and the detuning b, is zero, the func-
tions in Eq. (11)will be reduced as

where T is the measured time and I is the passband
width of the Slter detector. Assume that the initial state
of the system is the general state, which can be represent-
ed to

lg, g& = lg& lg& =&& nip'&(trln, —&+Pin, + &), (10)

From Eqs. (9) and (11) we get the expression of two-
photon emission spectrum

S(c0}=g P„S„(pi), (17}
n=0

here P„ is the photon-number distribution of initial fields

and S„ is the atomic two-photon emission spectrum when

the initial field is in the number state
I
n &.

S„(pi) = [ IP(p—„,v„)+P(—p„,v„)I'
4

+ IP(p„, v„)+—F( p„, —v„) I
]—, (18)

where

exp[i(0 2ro—+p„—v„)T]—exp( —I T}
E(p,„,v„)= I +i (0 2ro+—p„—v„)

(19)
Equation (17) shows that the atomic two-photon emission
spectrum is due to addition of the atomic two-photon
emission spectra in the photon-number state field with
the weight P„Henc.e emission spectra in fields with
difFerent statistical properties may have characteristics
distinct from those in the number state field.

IV. RESULTS AND DISCUSSION

In order to understand profoundly details of time-
dependent two-photon emission spectrum, we discuss
first the atomic two-photon emission spectrum in the case
of the number state field. It is known from Eq. (19) that
the linewidths of all $„(ro) are the same, I', the passband
width of the filter detector, and the shape of peak is ap-
proximately Lorentzian, which is only slightly corrected
by the two exponential terms in Eq. (19). If I is very
small, i.e., I' «A, , then the peak of the spectrum may be
very narrow. It is to be emphasized what we consider to
be the atomic two-photon emission spectrum in an ideal
cavity. The width of the emission spectrum itself y can
tend to zero, as the width of the one-photon emission
spectrum shown in [18]. But in a cavity with loss, y%0,
the emission spectrum would be affected. (The effect will
be discussed in another paper. ) The information in the
structures and the height and position of the peaks for
the emission spectra S„(pi) are given in Table I.

You can see from Table I that the intervals between

TABLE I. The structure and position of peaks in the case of the number state field (I & A, ).

Spectrum

So(a))

Position of peaks (co—Q/2)

+A,r2'"

kA, /(3/2)'

+A.[[(n +1)(n +2)]'~ —[n (n —1)]'~ ]/2 (inner)

RA[[(n+1)(n+2)]'~ +[n(n —I)]'~ ]/2 (side)

Height

1
(1 e IT)2

2I
1

(1 e 1T)2
2I

1 —e
—rT~2

4r

Spectrum structure

two-peak structure

two-peak structure

four-peak structure
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FIG. 1. Two-photon emission spectrum for the number state,
S„(co) vs co. I /A, =0.1, A, T=10.0. Solid line: n =0; dashed
line: n =1.

FIG. 3. Two-photon emission spectrum for the number state,
S„(co)vs co. n =2; I"/A, =0.1; A, T=10.0.

peaks are proportional to the two-photon coupling con-
stant A, , both So(co) and S, (co) have two peaks, respec-
tively, and S„(co) (n & 2}has four peaks. The peak height
of S„(co) (n &2) is half of the peak heights of So(co) or
S&(co), shown in Figs. 1, 3 and 4. For S„(co) (n & 2}, the
positions of the two inner peaks change very little with
increasing n. As n~ao the interval between two inner
peaks tends to a certain value, 2A, , but the two side peaks
depart far away from the center. These peaks are due to
the Rabi split. The split of So(co} is also called the vacu-
um Rabi split. The split of S, (co) is a special
phenomenon in a two-photon process. The inner peaks
of S„(co) (n & 2) result from the difference frequencies be-

tween the quantum Rabi oscillations. The side peaks
originate from the sum frequencies between the quantum
Rabi oscillations. Here the sign (6) represent Rabi
splits. If I is larger than the interval between peaks,
those peaks wi11 be overlapped together and then it can
change the structure of the emission spectrum. In this
case, obviously, the width of each peak will be larger than
I.

It is well known from Figs. 2, 5, and 6 that S„(co}be-

comes a single peak when n =0 or n =1, and S„(co)
(n & 2) is the single peak as well for the case of smaller n,
but S„(co) becomes a three-peak structure for the case of
larger n. The fiuctuations in both sides of each peak are
caused by the modulation of the first exponential term in
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FIG. 4. Two-photon emission spectrum for the number state,
S„(co)vs co. n =20, I /A, =0.1; A, T=10.0.
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FIG. 2. Two-photon emission spectrum for the number state,
S„(co)vs m. I /A, =2.0, A, T=0.5. Solid line: n =0; dashed line:
n =1.

FIG. 5. Two-photon emission spectrum for the number state,
S„(co)vs co. n =2; I /A, =2.0; A, T=0.5.
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FIG. 8. Two-photon emission spectrum for the thermal field,
S(~) vs m. I /X=1.0; A, T=1.0. Solid line: n=5; dashed line:
n =20.

FIG. 6. Two-photon emission spectrum for the number state,
S„(~)vs~. n =20; I yX, =2.0; A, T=O. S.

Eq. (19) with the variation of frequency co.

Second we investigate the influence of the statistical
properties of the field on the emission spectrum. For
comparison, we consider three kinds of fields: the thermal
field and the squeezed vacuum as well as the coherent
field.

(a) The photon distribution of the thermal field (THF)

0.10-
3

0.05-

I

-20
I

-10 10 20 30

1s

1 n

n+1 n+1

n

(20}

FIG. 9. Two-photon emission spectrum for the coherent
field, S(co) co. I /A, =1.0; AT=10.0. Solid line: n=5; dashed
line: n =20.

(b) The photon distribution of the squeezed vacuum
field (SVF) is

'n
psv 1 (2n )! n

(n+1) 2 &(nr) n+1 + (21} 1.00-

(c) The photon distribution of the coherent field
(COHF) is

0.75-

0.50-
~2

P„"=exp( n)—
n! (22) 0.25-

The numerical results calculated from Eqs. (17)—(22)
are shown in Figs. 7-12. From Figs. 7 and 8 you can see
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FIG. 7. Two-photon emission spectrum for the squeezed vac-
uum state, S(co) vs co. I /k=1. 0; A, T=1.0. Solid line: n=5;
dashed line: n =20.

FIG. 10. Two-photon emission spectrum for the coherent
field, S(co) vs co. I /A, =0.1; A.T= 10.0. (a) n =5; (b) n =20.
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FIG. 11. Two-photon emission spectrum for the thermal

field, S(co) vs m. I /A. =0.1; A, T=10.0. (a) n =5; (b) n =20.
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that in the case of I /A, =1.0 the emission spectrum of
the atom in SVF is similar to that in THF. There is only
a strong peak at the center. As n increases the height of
the peak decreases and the width of peak becomes nar-
rower, but the two fringes are raised and extended away.
For the same n, the peak height is higher in the case of
SVF than in THF and the peak width is wider in the case
of THF than in SVF. Nevertheless, the peak widths in
the two cases tend toward equal when n is larger. The
emission spectrum exhibits a three-peak structure for the
COHF. When the average number of photons increases,
the central peak is raised and narrowed and the two side
peaks are shifted, respectively, far away; the peaks are re-
duced and widened also (Fig. 9}. It is shown from Figs.
10-12 that when I «A, , the two-photon emission spec-
trum exhibits the multipeak structure and the central
peak is split into two peaks, which are very high because
of the overlapping of many small inner peaks in all cases.
The height is approximately (1+Po+P&)(1—e ) I
(41'), here Po and P, are the statistical distribution of
photons in the initial field. Many small peaks generate in
two sides of the center. The reason is that all contribu-
tions, which, respectively, correspond to a distinct num-
ber state, do not overlap each other. From comparison of
Figs. 9 and 10 it is seen that their envelopes are similar to
the spectrum shape as I )A, . For the thermal field and
the squeezed vacuum, the emission spectra resemble each
other as well: the phases of their envelopes are analogous,
and as n becomes greater, the position of every small
peak does not change and only the number of small peaks
extending far away increases. Their envelopes are deter-
mined by the photon statistics distribution of the initial
field.

Based on the above discussion, we can conclude that as
I &&A., for the initial coherent field the three-peaked
structure is generated by the Poissonian photon distribu-
tion of the coherent field, in which P„ is maximum at the

FIG. 12. Two-photon emission spectrum for the squeezed

vacuum, S(co) vs co. I /A, =0.1, A, T= 10.0. (a) n =5; (b) n =20.

average number of the photons. The three peaks of the
spectrum for the coherent field are different from those
for the photon-number state field. The width of side
peaks for the former, which is enhanced with increasing
of n, depends not only on the passband width of the filter
detector, I, but also on the width of the statistical distri-

bution in the coherent state P„. The width of side peaks
for the latter, which does not change with the changing
of the photon number n, depends only on I. The
difFerence between the cases of both THF and SVF is no-
ticed so that for the SVF the small peaks exhibit only in
the places where the positions of peaks are "even" num-
bers. In other words, the small peaks in the case of SVF,
relative to THF, appear intermittently. Because

P2„+,=0 for the SVF.
In summary, using TPJCM we have studied two-

photon emission spectrum (TPES} and found that the
structures of spectrum depend on the passband width of
filter detector I, the two-photon coupling constant A, ,
and the photon statistics distribution of the initial field

P„. We analyzed, in detail, the similarities and
differences in two-photon emission spectra as well as the
causes generating this difference between the cases of
various initial fields. Especially, when I «A. , TPES ex-
hibits the multipeaked structure. This has enriched the
contents of the aspects of quantum character for the in-
teraction of the atom with the field. Hence by the TPES
of an atom in microcavity, one can investigate unusual
quantum features for the interaction of the field with the
atom. The method used in this paper can be generalized
to research on m-photon emission spectrum in the arbi-
trary m-photon Jaynes-Cummings model.
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