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The temporal dynamics of an erbium-doped fiber laser shows various interesting modes of behavior.
In the stationary regime, a behavior going from a cw working mode to deterministic chaos through
different self-pulsed working modes has been observed. In the transient regime, effects such as antiphase

phenomena, between two orthogonal states of polarization, can be observed. To describe the dynamics

of the fiber laser we have studied a theoretical model based on two coupled lasers coherently pumped. A
linear stability analysis is given which demonstrates the existence of a Hopf bifurcation for low values of
the pump parameter. Numerical calculation results allow a good description of the experimental results.

The value of the newly introduced coherence lifetime parameter is discussed.

PACS number(s): 42.60.Mi, 42.55.Wd

I. INTRODUCTION

Although people have always tried to build continuous
lasers as stable as possible since their discovery, for the
last few years it has appeared that under some conditions
continuous lasers, even when running monomode, could
deliver an intensity that varies erratically with time. This
behavior, which appeared to be paradoxical in quantum
optics, was in fact well known in other fields such as hy-
drodynamics (Rayleigh-Benard instability) or chemical
kinetics (Belousov-Zhabotinsky reaction). In 1975 Haken
[1] showed the similarity between the equations of a
monomode laser and those of the Lorenz system of at-
mospheric turbulence. This observation shows that
chaotic behavior is possible in lasers. This initiated much
theoretical and experimental work to characterize laser
instabilities [2—9].

The interest in studying such effects in lasers and more
particularly in fiber lasers is due to the fact that they can
be described by a limited number of degrees of freedom
and have short characteristic times in the microsecond to
millisecond range, permitting an easy way of studying
temporal dynamics [10,11].

In addition to their interest in telecommunications,
fiber lasers are also interesting systems for nonlinear dy-
namic studies. Indeed the high power densities present in
the core of the fiber permit the observation of different
dynamic behavior going from a continuous working
mode to deterministic chaos via a self-pulsed working
mode, beating and antiphase phenomena [12]. The pres-
ence of instabilities and of self-pulsed working mode in
solid-state lasers has been observed as early as the first ex-
periment on the ruby laser in 1960 [13]. The physical ori-
gin of these pulses continues however to be the subject of
ongoing research [14—20].

The dynamics of an Er + doped fiber laser has been an-
alyzed under continuous and modulated pumping. Un-
der continuous pumping, by increasing the pump power,
the erbium-doped fiber laser reaches a Hopf bifurcation
leading the laser from a cw mode to a self-pulsed mode
operation. %e have also observed that, both in the con-

tinuous and in the pulsed working mode, the transient
behavior of the total intensity of the fiber laser is in fact
the sum of the transient behavior of two orthogonal
states of polarization which present beating and anti-
phase phenomena. In response to a stepped pumping, the
fiber laser exhibits relaxation oscillations. Using a
sinusoidal modulation of the pump power near the relax-
ation frequency we have observed in the dynamic
behavior of the laser a period-doubling cascade leading to
chaos. To describe the dynamics of the fiber laser, we
have developed a semiclassical model based on two cou-
pled lasers coherently pumped.

This paper is organized as follows. In Sec. II, we will
describe the experiment and briefly report the various ob-
served types of dynamic behavior published elsewhere
[10]. We will also give the physical parameter that can
be determined from these observations. In Sec. III, we
propose a model that describes the transition between the
cw and the self-pulsed mode for a weak value of the
pump parameter (of the order of 1.5 to 2) and the anti-
phase phenomena between the two orthogonal states of
polarization. In Sec. IV, we will discuss the steady-state
solutions, make a linear stability analysis, and give the
conditions required for a Hopf bifurcation. In Sec. U, we
will perform a numerical calculation of the equations for
the transient and the stationary states. These numerical
results are compared with the experiments, and the value
of the newly introduced coherence lifetime parameter is
discussed.

II. EXPERIMENTAL RESULTS

The experimental setup is shown schematically in Fig.
1. The active medium is an erbium-doped fiber with a
length between 1 and 10 m, doped with 40 to 2000 ppm
of Er +. The core diameter is 6.4 pm and the fiber is sin-
gle mode at the laser operating wavelength (1.538 pm).
The pump laser is a krypton ion laser, and the beam
passes through an acousto-optic modulator (AOM) con-
trolled by a function generator. The AOM is mainly used
to study the transient behavior (stepped pumping mode).
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FIG. 1. Experimental setup of an erbium-doped fiber laser.
AOM: acousto-optic modulator; RM: reflecting mirror; MO:
microscope objective; ICM: input coupling mirror (R& &99%
at 1.538 pm); EDF: erbium-doped fiber; OCM: output coupling
mirror (R2 =40-90% at 1.538 pm); F: high-pass filter (A, & 850
nm); BS: beam splitter; P: polarizer; L: lens; GD: germanium
detector.

A. Fiber laser, cw pumped

While in the cw pumping mode, the AOM is used as a
variable attenuator. For this latter case the intensity of
the first-order beam can then be changed without any an-
gular deviation that would occur if the krypton laser
power was monitored electrically. Such a procedure
avoids, for example, false hysteresis in the characteristic
curve of the fiber laser power arising from small angular
deviation combined with thermal effects. The pump
wavelength is fixed at 647 nm, and the erbium-doped fiber
is pumped longitudinally through a X 10 microscope ob-
jective with a numerical aperture of 0.2 and through the
input dichroic mirror which is transparent at the pump
wavelength but has a refiection coefficient R, &99% at
the laser operating wavelength. The output mirror is also
butt-coupled to the fiber and has a reflection coefficient
R2 between 0.4 and 0.9. After a high-pass filter blocking
the residual krypton pump beam, a beam splitter is used
to record the laser intensity either directly for the total
intensity or through a polarizer adjustable in rotation for
the detection of one of the two orthogonal directions of
the polarization. In all cases, the laser intensities are
recorded by germanium detectors.

In typical operating conditions, the threshold pump
power is of the order of 100 mW at the fiber input, and
the maximum pump power available is about 500 mW.
The near infrared (1.538 ILIm) output power obtained at
the fiber output is of the order of a few mW.

P = 310m%

a) P &P&P

P =230m%

~am iwsLa ~M .~~Ls.~.
I I ~ \

I
~ ~ ~ I ~ ~ ~ I I I I ~ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ ~ ~ ~ ~ i ~ I ~

2500 3000 3500 4000 4500

Time (p.s)

laser emission on the two wavelengths corresponding to
the first and the second peak of the gain curve [10]. In
this latter case, the laser emission presents a more com-
plex dynamic behavior which is not the subject of this
study.

For a pump power lower than the threshold pump
power, P (P,h, the infrared intensity detected corre-
sponding to the spontaneous emission is small and can be
neglected (I=0). When P =P,h the laser reaches a sta-
bility exchange bifurcation, the solution I =0 becomes
unstable and the laser reaches a continuous working
mode. For a pump power between P,h and a given pump
power PH (P,h &P &PH ), this solution is stable, and the
laser intensity increases linearly with the pump power.
When P =PH the laser reaches a Hopf bifurcation, the
cw steady state becomes unstable and the total intensity
of the fiber laser exhibits a self-pulsed working mode.
Under our conditions, for P )P& this last solution always
remains stable and the shape of the pulses changes from a
near sinusoidal function to a narrower and deeper func-
tion when the pump increases. For much higher pump
power, not experimentally reached here, it is possible that
the laser could exhibit more complex pulsed behavior
showing for example a period-doubling phenomenon.
Figure 2 shows the response of the fiber laser in response
to stepped pumping for two different pumping condi-
tions. In the first case P,h & P & PH [Fig. 2(a)], after tran-
sient relaxation oscillations the fiber laser reaches in the
stationary state a continuous working mode. In the
second case P & PH [Fig. 2(b)], after transient relaxation
oscillations the fiber laser reaches in the stationary state a
self-pulsed working mode. Under our typical operating

We have investigated the dynamic behavior of the fiber
laser in the case where the spectrum is centered around
1.538 pm. By using the low-finesse Fabry-Perot effect re-
sulting from the small distance between the fiber and the
output mirror, it is possible to obtain simultaneously the

FIG. 2. Experimental transient behavior of the fiber laser in

response to a stepped pumping (t =0) for two values of the

pump power: (a) P,h & P & PH, the steady state is a conti~uous
working mode; (b) P & PH, the steady state is a self-pulsed work-

ing mode.
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conditions, the frequency of the pulses is an increasing
function of the pump power and varies between about 10
and 50 kHz when the pump power at the fiber input
changes from 100 to 500 mW.

From these experimental results, the measurement of
the buildup time and of the frequencies of the relaxation
oscillations of the fiber laser versus the pump power al-
lows us to determine the laser parameters [10): the life-
time T of the photon in the cavity (T=10 ns), the life-
time T& of the population inversion (T& =100 ps), and
the variation range of the pump parameter a (1 &a(3).
The pump parameter is defined as the ratio of the inver-
sion population produced by the pump power used to the
threshold inversion population. Under our typical
operating conditions, the transition between the cw work-
ing mode and the self-pulsed working mode occurs for a
value of the pump parameter of the order of 1.5.

As for the Nd + doped fiber laser [12], the response of
the total intensity I„,of the Er + doped fiber laser to a
stepped pumping is the sum of the responses of the inten-
sities I& and I2 of two orthogonal states of polarization.
For the pumping condition P,h & P & PH, the results ob-
tained experimentally are represented in Fig. 3, where the
response of the intensity of the first (I, ) and of the
second (Iz) states of polarization are given on the upper
and the middle traces [Figs. 3(a) and 3(b)], while the time
variation of the total intensity I„,=I, +I2 is given in the
lower trace [Fig. 3(c)].

During the transient regime, each state of polarization
is a superposition of two damped oscillations with two
different oscillation frequencies (beating). The fast one
cuit corresponds to the relaxation oscillation frequency
previously used to determine the laser parameters while

the lower frequency coL is associated with a new relaxa-
tion mode that appears in the fiber due to a cross-
saturation coupling between two modes representing the
two orthogonal states of polarization [21—24]. The com-
parison of the results of Figs. 3(a) and 3(b) shows that the
high-frequency oscillations (relaxation frequency) are in
phase while the low-frequency oscillations are in opposite
phase (antiphase phenomena [12)). As these latter oscil-
lations have almost the same amplitude, they destructive-
ly interfere, and as a result the total intensity exhibits
damped oscillations with only the high oscillation fre-
quency [Fig. 3(c)]. This result indicates that the total in-
tensity I&+I2 is an eigenstate of the fiber system. The
second eigenstate with the slow relaxation oscillations
corresponds to the difFerence I& —I2. It cannot be ob-
served directly in this experiment, but the time variation
of the two orthogonal states of polarization, which
present beating and antiphase phenomena, is a proof of
its existence. The results experimentally obtained for the
pumping condition P & PH are represented in Fig. 4. As
previously, the transient behavior of the total intensity of
the fiber laser is also the sum of the transient behavior of
two orthogonal polarized intensities, which present beat-
ings and antiphase phenomena. In this case, however,
only the slowest frequency is damped. This is why the to-
tal intensity exhibits, both in the transient and in the
asymptotic regime, oscillations with only the high oscilla-
tion frequency.

B. Fiber laser with a periodic yumy modulation —chaos

The experimental identification of deterministic chaos
can be achieved by studying the way that the solutions
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FIG. 3. Experimental transient behaviors of the intensities I&

and I2 of the two orthogonal states of polarization and of the
total intensity I„, in response to a stepped pumping (t =0)
when P,h &P &P~.
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FIG. 4. Experimental transient behaviors of the intensities I&

and I2 of the two orthogonal states of polarization and of the
total intensity I„, in response to a stepped pumping (t =0)
when P &PH.
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FIG. 5. Experimental time evolution of the total intensity of
the fiber laser in response to a sinusoidal modulation of the
pump power (upper trace) for different values of the modulation
frequency (a) f =22 kHz, T-periodic response; (b) f=40 kHz,
2T-periodic response; (c) f =47 kHz, 4T-periodic response; (d)

f =60 kHz, chaotic response. The time scale is different from
one plot to another.

take when they evolve from a stable solution to a chaotic
state. Surprisingly it appears that for a system character-
ized by one control parameter, only a limited number of
ways leading to chaos exists: the first one is the period-
doubling cascade, the second is the intermittence, while
the third is the appearance of incommensurable frequen-
cies [25]. For more complex systems characterized by
more than one control parameter, the chaos is ap-
proached by a combination of these three basic ways.

In lasers, chaos can appear either spontaneously, or
when one control parameter is modulated, or when they
are submitted to an injected signal [2]. It is by applying a
sinusoidal modulation of the pump power near the relax-
ation frequencies (co)t and coL ) that we have been able to
observe, in the dynamic response of the erbium-doped
fiber, nonlinear phenomena and therefore more complex
dynamic behavior. Figure 5 illustrates the evolution of
such a nonlinear dynamic behavior for different values of
the modulation frequency in the neighborhood of the
highest relaxation frequency (to)t) [10]. In our typical
modulating conditions, the maximum pump power at the
input of the fiber is 450 mW and the resonance frequency
(co„)of the fiber laser is of the order of 45 kHz. Far from
resonance [Fig. 5(a)] the laser response is linear, and a
sinusoidal modulation of the pump power generates a
laser intensity response at the same frequency. On the
other hand, as soon as we approach the resonance fre-
quency [Figs. 5(b) and 5(c)] the laser response becomes
nonlinear, and the laser intensity is modulated with a
double period (2T) and afterwards with a quadruple
period (4T) of that of the pump power before losing all
regularity and varying erratically with time [Fig. 5(d)].

As mentioned above, the occurrence of an erratic regime
after a succession of such period doubling is a proof that
the fiber laser exhibits deterministic chaos.

III. MODELING OF THE FIBER LASER

In order to have a realistic model of the dynamics of
the fiber laser the model must take into account the fol-
lowing points.

(i) The existence of a transition (Hopf bifurcation) be-
tween the cw and the self-pulsed working mode for a
weak value of the pump parameter (of the order of 1.5 to
2).

(ii) The existence of beating and antiphase phenomena
between two orthogonal polarization states of the emitted
laser light.

(iii) The appearance of a period-doubling cascade lead-
ing to chaos in response to an external modulation of the
pump power.

(iv) The experimentally determined laser parameters.

A. Modeling of the polarization efFect

Despite the strongly multimode nature of the fiber
laser due to a broad gain profile and the long cavity
length, the experimentally observed behavior suggests
that to a first approximation the fiber laser can be de-
scribed as a two-mode laser in which each mode is associ-
ated with one of the orthogonal polarization eigenstates.
Therefore, as in the Nd + doped fiber laser, we will not
consider for the case of the Er + fiber laser the many lon-
gitudinal modes, but rather consider the laser as made of
two subsets corresponding to two clusters of longitudinal
modes, one in each state of polarization. Such a laser can
be described by a phenomenological model of two class-B
lasers coupled by their intensities and population inver-
sions with the following set of equations [12]:

I( =2k[I, (D(+pD2) —I) ],
I2 =2k [I (D2zp+D() —I2],
D, =yl[a& D, —D, (I, +p—I2)],
D2=7II[ ~

—D2 —D2(I2+pI, )],
where I&, D&, I2, and D2 are, respectively, the reduced
intensity and population inversion of the laser subsystems
1 and 2 associated with each state of polarization, and
where 1/k, I/yl, and a are, respectively, the photon life-

time, the population inversion lifetime, and the pump pa-
rameter. The coupling parameter p ( 1 permits the
description of the cross-saturation phenomena taking
place inside the fiber and the interaction of each laser in-

tensity with the population inversion of the other laser
subsystem.

In our experimental setup the principal losses are due
to the coupling between the fiber and the cavity mirrors.
These losses are also isotropic, and in consequence the
parameter k is the same for the intensities of the two cou-
pled lasers. In the same manner, the value of the parame-
ter y~~, which is a characteristic of the optical fiber, is iso-

tropic and therefore is the same for the two orthogonal
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(1+P)
2 (1 p)2

(2)

From the experimental results of Fig. 6, which show
the evolution of ~z and coL versus the pump power, we
determine an experimental value of p=0. 5. This value
indicates that in the fiber core a strong interaction takes
place between the two orthogonal states of polarization.

We must also note that the beating and antiphase phe-
nomena experimentally observed can also be interpreted
in the frame of a multimode laser theory including spatial
hole burning [21—24,27,28]. But in order to reduce the
number of variables and adjustable parameters we prefer
the use of the above-described phenomenological model
of two class-B coupled lasers.

Although this model of two coupled class-B laser al-
lows a good description of the experimentally observed
transient behavior shown in Fig. 3, it is insufficient to de-
scribe all the fiber dynamics. Indeed the linear stability
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FIG. 6. Evolution of the squares of the highest and of the
lowest frequencies of the relaxation oscillation co& and co&

versus the pump power.

states of polarization. On the other hand, the pumping
parameters a& and a2 of each population inversion are
chosen to be difFerent because the pump polarization
changes the pump power distribution between the two or-
thogonal polarization eigenstates of the fiber.

This simple model allows a very good description of
the experimentally observed transient behavior in Fig. 3
[10,26] and allows us to determine the strength of the
coupling between the two orthogonal states of polariza-
tion. Indeed, a linear stability analysis of this simple
model of two coupled class-B lasers shows that the square
of the highest and the square of the lowest relaxation fre-
quencies co+ and coL vary linearly with the pump power
and that their ratio depends only on the coupling param-
eter p and is given by

analysis shows that in this model any Hopf bifurcation
occurs and therefore any self-pulsed working mode
occurs. Nevertheless this model of two coupled lasers is
a good base to start a fiber laser model.

B. Modeling of the self-pulsed working mode

The appearance of spontaneous pulsation in the form
of an undamped train of pulses in solid-state lasers was
observed as early as 1960 during the first experiment on
the ruby laser [1]. The physical origin of instabilities in
such lasers continues, however, to be the subject of ongo-
ing research [3].

The earliest stability analysis of the full set of semiclas-
sical equations is due to Haken [29,30] and Risken [31]
who showed that in the Maxwell-Bloch equation describ-
ing a homogeneously broadened single mode laser, there
is a second threshold value above which no stable station-
ary solution exists. But this theory does permit the
description of the cw mode as well as the self-pulsing one
but is not sufficient to describe the dynamic behavior of
the fiber laser. Indeed, a linear stability analysis shows in

this case that the necessary conditions for the existence of
a Hopf bifurcation are that the pumping level must be at
least nine times above the threshold [in contradiction
with above point (i)] and that the field decay rate exceeds
the sum of the inversion, and the matter polarization de-

cay rate k & yi+yi. This latter condition, usually called
the "bad cavity condition, " is in contradiction with above
point (iv} because for the fiber laser yi»k & y~~. Recent-

ly, an advance was made by Casperson [32], who showed
that instabilities of the steady-state solution of the single-
mode laser equations are much easier to realize in the
case of inhomogeneous broadening. The Casperson insta-
bility requires a bad cavity condition but not the high

pumping level needed for single-mode instability in the
homogeneous case. In a further step Puccionni et al. [18]
showed that the instability threshold for a laser operating
in both states of polarization can be inuch lower than the
Haken second threshold and does not require the bad
cavity condition. Unfortunately, above the Hopf thresh-
old this model does not describe well the experimental re-
sults [point (ii)] [26]. In 1987, Ryan and I.awandy [19]
showed an instability threshold for an excitation 1.6
times above the first threshold in a three-level coherently
pumped laser.

This last model, which gives a low threshold and exhib-
its a period-doubling sequence and chaos in agreement
with point (i) and (iii}, must be a good base to start the
description of the fiber laser dynamics. In order to take
into account points (ii) and (iv), we have coupled two
such coherently pumped lasers in the same manner as in
Sec. III A.

Before coupling the two lasers, let us consider only lev-
els (1), (2), and (3) of our atomic system represented in
Fig. 7. Such a three-level quantum system, where the
transition 1 —+3 is resonantly optically pumped by an
electromagnetic field of magnitude E~ and where lasing
of strength E& occurs from transition 2—+1, can be de-
scribed by the following equations of the familiar density
matrix elements p [29]:
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FIG. 7. Energy level diagram and fields in our model of two
coupled lasers coherently pumped.

tively, the population inversion and the spontaneous tran-
sition probability between the levels (1) and (2). The sub-
script p indicates the pump transition between the levels
(1) and (3), while the subscript 1 is for the laser transition
between the levels (2) and (1), y, is the relaxation con-
stant relative to the newly introduced coherence term
C32 g is a coupling constant and N„, is the total popula-
tion of our atomic system. For the sake of simplicity, the
coupling constant g and the matter polarization relaxa-
tion constant yj are considered to be the same for the
pump transition and the signal.

The system can be further simplified by supposing that
the fields are initially in quadrature with their respective
polarizations and by introducing the following normal-
ized values [6]:

P2, ——
ylp2,

—
1 &21P21+LV21(P22 P 1 1 )+1V31P32

P31 YJP31 ~31P31+ V31 (P33 P 1 1 ) + V21P32

P32 Y P32 32P32+ ( V21P31 V31P21)

P'33 =1 (V31P'31 —V31P31)—A 32p33, (3)

Ep=

Pp=

v'~, r,

1k+Prl ~

+~prl. g
2g

lk +cop y 1P1= Pi
2lgl'

ky~ ky~ kyl

I 3)Ep I 2)E1

2h
' ' 2h

(4)

The coherence term p32 between the upper two levels (3)
and (2) is induced by the mutual dipole interaction that
these two levels have with the ground-state level (1), [19].

By defining the polarization of the medium and the
population inversion densities in the usual manner, by us-

ing the rotating wave approximation, by neglecting the
level-3 population with regard to the other levels's popu-
lations [25], and by using the Maxwell equations for the
fields, a five-equation system can be obtained for the slow-

ly varying amplitudes,

E, = —kE, —ig'P, ,

P )
= —y'~P1+igD1E1+igEp C32,

D 1
= —A 21(D 1 +N„, )

+i [(2g'E;P, gEPPP') c c ]—, —. .

(D, —N„, )
Pp = yyPp +ig Ep +igE, C322

C32 y C32+1(g E1PP gEP~1

in which E,P represent, respectively, the electrical field,
the polarization of the medium and k, y~ their respective
relaxation constants, while D and A2& represent, respec-

P22 1( V21P21 V21P21)+ 32P33 21P22 &

pl 1 1 ( V3lp31+ V21P21 V31P31 21P21) 21P22 '

P11+P22+P33

where A; is the spontaneous transition probability be-
tween the levels i and j, and where V3& and V2& could be
expressed as a function of the complex electrical fields E
and the dipole momentum p;,

Dl = —A21(D1+N„, ) coP(P1E,—+PP ),
I'P = yl [I'P —(D—, —N„, ) —E,C32],

COp

C32 y C32 (2Pl +ElPP )

(7)

To investigate principally the effect of the two-photon
coherence, which manifests itself through the last equa-
tion of the system (7), we have to simplify the above set of
equations by adiabatically eliminating the polarization of
the media. In such a case we obtain the following three-
equation system [26], where we have supposed that
I
E1 I

((
I EP I, and where we have neglected the pump

transition inversion population with regard to the laser
transition inversion population:

E, = —k (E, D,E, —o C), —

D, = —
y (D1,E, +2o E,C +D, —a ),

C= yc(C +E1D1 )

where a is the usual pump parameter, C is a new variable
defined by C32 =o C, and where yll and cr are new param-
eters defined by

yll
=~ + A2&, o.= with yc =y, +p . p

yc
(9)

Note that a comparison of the numerical results obtained
with two numerical simulations using, respectively, the
set of equations (7) in which y, =yl and the set of equa-

where ~ is the absorption probability of a pump photon.
Dropping the sign, we obtain the following set of

real equations for the slowly varying amplitude:

El = —k (E, Pl ), —

pl = —r i(~1 —D 1E1—C32»
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tions (8) shows that the different dynamic behavior in
each case is not really different. This is why in the fol-
lowing part of this paper we only study the equation sys-
tem (8) for which the linear stability analysis is much
easier. The equation system (8} describes a laser
coherently pumped.

To describe the existence in the Sber of two orthogonal
polarization states of the emitted light and to describe
their coupling, we must now take into account level (4)
and the coupling parameter P of our atomic system (see
Fig. 7). Thus as in Sec. IIIA we have coupled by the
electric field and by the population inversion two
coherently pumped lasers. A six-equation system is then
obtained,

Ei = —k [Ei —Ei(Di+pD2) —irCi],
D, = y—

,
[D,(E, +PE )+2 E,C, +D, —],

C, =—yc(C, +E,D, ),
E = —k (E E—(D +13D, ) cr—C ],
D2 Yi[D2(E2+f El )+2~E2C2 D2 l

C2= —yc(C2+E2D2) .

(10)

The equation system (10) describes a system of two cou-
pled lasers coherently pumped where subscripts 1 and 2
indicate the two orthogonal polarization states of the
emitted laser light.

IV. LINEAR STABILITY ANALYSIS OF THE STEADY-STATE SOLUTION

A. Steady-state solution

The linear stability analysis of Eq. (10) can be simplified by introducing the new variable

A+=A, +A&, A =A, —Az with A =[E,C, D] .

A new six-equation system is then obtained

(E+D+ +E D )
E = —k E+ +

(E+D+ —E D ) —oC+

E = —k E
(E D+ +E+D ) (E D+ E+D )——oC

(E~D++E D )C+= —Xc C++
2

(E D+ +E+D )
C = —yc C +

(E++E }
D+ = —

yl D+(1+P) +2D (1 13)E+E +—o(E+,C++E C )+D+ —2a

(E++E )
yll D (1+p) +2Di(1 p)E+ E +o(—E C++E+C )+D

with three sets of steady-state solutions: the first is the trivial zero-field solution (E„=O,E2, =0};the second is the
monomode solution in which one of the two coupled lasers is above its threshold (E„AO,Ez, =0 or E„=O,Ez,+0);
the third is the bimode solution in which the two coupled lasers are above their threshold (E„AO,E2,40). In our
study we are only interested in this latter solution which can be expressed after calculation as follows:

Ds =0, Cs =0, Es =0

2
Ds =

+ 1+13 cr—
Cs =—

+ 1+P—o

(12)

where the equality Es =0 is due to the fact that the two

laser subsystems have the same pumping parameter a
and therefore have above threshold the same intensity.
The last term of Eq. (12) shows the linear dependence of
the total intensity (Es ) of the laser versus the pump

power parameter (a) and allows us to determine the
threshold pump power parameter defined by Es =0,

4[a(1 P+cr ) 1]——
Es+& 1+P—2o

1
~t =

1+P —o
(13}
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At this point we notice that in our two coupled laser model a is the pumping term of each laser subsystem and is not
defined as being the pump parameter of the total laser intensity. This is why for certain sets of parameter conditions,
ath can be lower than 1.

B. Instability of the steady-state solution

The linear stability analysis of the system (11) near the steady-state solution (12) leads to a search for the eigenvalue
of a 6 X 6 matrix which reduces to two 3 X 3 matrices giving the following characteristic polynomials:

2

y r ()Es,
+ ~ll+

Vc 2 4
A, + k (1+P—2o )Es

+ + (1—2cr )Es — + Es A, =O,y([yc y((yc y((kg y)(k [2(1+P) —g (3+2P)]
4 + 2(1+ —o 4 1+ cr- +

(14)

E2
'Y() ~~~ ~++ PC+ +
2

kg 2 ylyc
k

(1—p —2o )(1—p —o ) E2
I+P —a 2 (1+P —o) +

y ka y k[2(1—P) —o'(3 —2 )]
(1 2 )Ez E A, =O (15)

2 4 + 2(1+P cr )— 4(1+P—a } +

Equation (14) is given by the 3 X 3 matrix involving the variables E+,D+, C+ while Eq. (15) is given by the 3 X 3 matrix
which involves the variables E,D, C

From the characteristic polynomial (14), by using the Routh-Hurwitz criteria [26], it is possible to obtain analytically,
for the equations involving E+,D+, C+, the Hopf instability conditions and the value of a second threshold a+ above
which no stable stationary solution exists,

ath +a+

with

( I+P—2a )

( I+P—o )

2

12yc "(1 )

k cr[2(1+P} —cr(3+2lr3)] (1+2P cr)—
(I+P—a)' (I+0—o }

1

(1+P—2cr )

(16}

where we have neglected the decay rate of the population inversion
y~~

with regard to the other decay rate of our fiber
laser.

When the condition a) u+, is realized, the cw steady-state solution (Es ) becomes unstable and the total laser inten-

sity (E+ ) exhibits a self-pulsed working mode in which the intensities of the two laser subsystems (E
&

and E2 ) oscillate
in phase at a high frequency which near the Hopf bifurcation is given by

2 =
COg

Es, ylyck(1+13 2a)—
ko.

7c I+@—o

In the same manner, from Eq. (15) it is possible to obtain analytically for the equations involving E,D,C, the Hopf
instability condition and the value of a second threshold a above which no stable stationary solution exists,

a,h (a
with

(19)

(1+P—2o )

(1+@—o )

2

c k
1 o.

2 (1—cr)
. + 1

(1+@—2o )k2o [2(1—P)2 —cr(3 —2P)] (1—2P cr)—
kyc yc(1 —2o )(1+P—a )' (1+ cr)— (20)
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where we have neglected the decay rate of the population
inversion

y~~
with regard to the other decay rate of our

fiber laser.
In this case when the condition a)a, is realized, the

cw steady-state solution of our two coupled lasers be-
comes unstable and the intensities of the two laser system
(Ei and Ez) produce an opposite phase (antiphase) self-

pulsed working mode with a low frequency which near
the Hopf bifurcation is given by

E y y k(1 P—2—tr}(1—P—o }2=
Q)L = (21)

'Vc 1+P—o
(1+P—cr )

The expressions for the fast frequency (co+ ) and for the
low frequency (niL } given, respectively, by (18) and (21)
are in agreement with the experimental results of Fig. 6.
Indeed, as we can observe experimentally coa and coL de-

pend on (Es ) and therefore increase linearly with the

pump power and cancel together for the same value of
the pump parameter which is the threshold pump power.

The expressions of the instability thresholds given, re-

spectively, by (17) and (20) are rather complicated and
their values depend strongly on the relative values of the
relaxation constants. Figure 8 shows the a+ and a cal-
culated values versus the ratio k/yc for different values

of o =co /2yc with p=0. 5. This figure allows us to sug-
p C

gest that it is possible to obtain in this model threshold
instability for a low value of the pump parameter, and
that the instability threshold for the fast oscillation mode

(a+) is lower than the instability threshold for the slow

one (a ). Therefore, in our laser, it is possible to obtain

pump parameter conditions for the stationary state where

only the high-frequency relaxation is undamped and sub-
sists (a & a+ ) while the lower frequency is damped and
disappears (a & a ).

V. NUMERICAL SIMULATION

Using a Runge-Kutta method with a variable integra-
tion step, we have numerically solved the six coupled
differential equations (10}both in the transient and in the
stationary regime for the following parameter values:

k/ye=5, cr=0.05, P=0.5 . (22)

a=09

With this particular set of parameters, the instability
threshold a is infinite (see Fig. 8) and we determined
that the pump parameter laser threshold is given by
a,h=0. 69 and that the Hopf instability pump parameter
for the high frequency is given by a+ =0.96.

For the pumping condition a,h & a & a+ &a, the tran-
sient dynamics numerically obtained are represented in
Fig. 9, where the responses of the intensities of the two
coupled lasers are given, respectively, by the upper and
the middle traces [Figs. 9(a) and 9(b)] while the time vari-
ation of the total intensity is given on the lower trace.
These figures are qualitatively in good agreement with
those of Fig. 3 describing the observed dynamics of the
two orthogonal states of the fiber laser. Indeed, the two
coupled lasers show transient behavior that is a superpo-
sition of two damped oscillation modes which present
beating, and due to the antiphase phenomena, the total
intensity shows only the high-frequency damped oscilla-
tions [Fig. 9(c)].

a)

2 .
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1

1
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~ ~ ~ I ~ ~ ~ ~ I i

5 10 15 20

l~ UU
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FIG. 8. Instability thresholds a+ and a and pump thresh-
old a,h versus k/y& for different values of o =co~ /2yc and with
P=0.5. The dashed lines correspond to o =0.05 and the solid
ones correspond to cr =0.2.

FIG. 9. Numerical simulation of the transient behaviors of
the intensities II and I2 and of the total intensity I„,of the two
coupled lasers coherently pumped when a,h &a & a+ &a, and
with the following parameters: a =0.9, y

~~

/k =3.10
k /y, =5, o =0.05, P=0.5.
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By increasing the pump parameter to a value of
a =1.22, leading to a+ & a &a, the laser delivers in the
stationary state, for the total intensity, an infinite train of
pulses [Fig. 10(c)]. As previously, in the transient
behavior, the two orthogonal polarization states present
beating and antiphase phenomena. In this case, however,
only the lower frequency is damped while the higher one
subsists in the steady state [Figs. 10(a} and 10(b}]. These
numerical results are qualitatively in good agreement
with the experimental results of Fig. 4.

In contrast with the experiment, nothing limits numer-
ically the value of the pump parameter. Figures 11—13
show interesting new types of dynamic behavior for
higher values of the pump parameter. For example, for
a = 1.35, the system shows a 2T periodic phenomena for
the two polarization states [Figs. 11(a) and 11(b}],while
for the total intensity, due to the antiphase phenomena,
the system shows only a single T periodic oscillation. By
increasing the pump parameter to a higher value
(a=1.47), the system presents more complex dynamics.
A 4T periodic oscillation appears for the two polarization
states [Figs. 12(a) and (b)], and a 2T for the total intensity
[Fig. 12(c)]. For higher values of the pump parameter,
the oscillations of the two polarizations lose all regularity
and show chaotic behavior [Figs. 13(a) and 13(b)]. Due
to the antiphase phenomena, the amplitude variation of
each pulse is less important for the total intensity than
for those of the two states of polarization [Fig. 13(c)].

A more detailed study of Eqs. (16) and (17) indicates
that the instability threshold a+ involving the variables

E+,D+, C+ exists only if the condition a,h & a+ is

verified, i.e., only if laser parameters satisfying the follow-

a = 1.22

u = 1.35

b)

lJML1 MmmmLIL, mk. MM.m

0 1000 2000 3000 4000 5000 6000

Reduced time (units of kt)

FIG. 11. Same as Fig. 10, but with a pump parameter
a=1.35.

ing inequalities:

cr & —,', [[3(1—o}&2cr—2o(2 —o )]] (23)
k (1 2cr )(3——2o )

where we have fixed P=0.5; note that cr =co /2yc with

yc the loss rate of the two-photon coherence and co~ the
absorption probability of a pump photon. A more de-

a = 1.47

b)

~.~. LhJ d.u U.LJu. . .U. . . ULJ.~.z. .L. .Ll .a .

b)

c)
L~JJJJJJJJIIJJJJ.JaJJJJ JJJJJJJIJIJJLJIJJJJLJIIJIJJJJi

f (

~ LI .IJ,Liight uL.LLlJ JL~JJ.JiJJJ.~.aLuIJaIJii~aLiJ
c)

0 2500 5000 7500 10000 12500 15000

Reduced time (units of kt)

FIG. 10. Numerical simulation of the transient behaviors of
the intensities I& and I2 and of the total intensity I„,of the two
coupled lasers coherently pumped when a+ & a (a, and with
the following parameters: a=1.22, p~~/k =3.10, kgb, =5,
o =O.OS, P=O. S.

, I, i, l, l, l, I I I, l, l I I I, I i, l, l I I, I, I. I l, l, lil I.lii, l I, I, I,

0 1000 2000 3000 4000 5000 6000
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FIG. 12. Same as Fig. 10, but with a pump parameter
a = 1.47.
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u = 1.49

a)
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b)
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FIG. 13. Same as Fig. 10, but with a pump parameter
a=1.49.

tailed study of the instability conditions (19) and (20) in-
volving the variables E,D, C gives approximately
the same inequalities.

In a solid-state laser and in particular in the fiber laser,
the first part of the inequality [Eq. (23)] is always valid.
Conversely, the second one, which requires that y, must
be lower or of the same order of magnitude as the laser-
field loss-rate parameter (k), seems to be more difficult to
realize due to the fact that in a fiber laser the value of the
parameter y, is generally between 3 and 5 orders of mag-
nitude higher than the value of k.

At this point, in order to allow this mathematical mod-
el, which allows a very good description of all the results
obtained experimentally, to be applied to the case of the
doped fiber laser, we assume another possible physical in-
terpretation of the variable C.

The hypothesis is that the second part of the inequality
in Eq. (23) can be verified in a doped fiber laser if we un-

derstand now the variable C as a loss term rather than a
coherence term. Indeed, a more detailed study of the
equation system (8), and more particularly of its third
equation, shows that the variable C varies like the oppo-
site of the stimulated emission gain. By inserting
C = E,—D, in the first equation of the system (8) we ob-
tain a term —ko.E,D& describing a new "absorption"
loss term taking place inside the doped fiber. The physi-
cal origin of this loss can be explained by the fact that
doped fibers are a long inhomogeneous amplifying medi-
um pumped longitudinally, and therefore, some part of
the active medium can be amplifying while another one is
absorbing. In our equation system [Eq. (8)] the additional
loss term ktr—E,D, does not act instantaneously in the
equation describing the time evolution of the electric field

[i.e., the first equation of Eq. (8)] but rather acts with a
time delay (i.e., a dephasing) depending on the relative
value of the relaxation constant yc and k. In our hy-
pothesis of losses due to the inhomogeneity of gain along
the active medium this time delay is linked to a propaga-
tion time inside the doped fiber. Under this condition the
relaxation parameter (yc) can be of the same order of
magnitude as the laser-field loss-rate parameter (k), and
therefore, the two inequalities of Eq. (23) can now be
verified for a doped fiber laser.

In conclusion, in order to describe the dynamics of the
fiber laser, we have studied a semiclassical model of two
coupled lasers coherently pumped. This model exhibits
various interesting modes of behavior and allows a good
description of the different types of dynamic behavior ex-
perimentally observed, but for the mathematical model to
be applied to the case of a fiber laser we must interpret
the newly introduced variable of our laser model as
describing losses permitting one to take into account the
z dependence of the gain inside the fiber. This discussion
suggests that for further investigations of fiber lasers we
must take into account dynamics of the propagation phe-
nomena and therefore use partial differential equations.
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