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A codimension-two Hopf bifurcation and the coexistence of multiple attractors of a two-photon laser

with an injected signal are investigated. The quasiperiodic motion with two incommensurate frequencies

(2-torus) may arise directly from a stationary solution through the type-III codimension-two bifurcation

mechanism. We analyze conditions and identify the quasiperiodic motion in terms of time-dependent

solutions and Poincare maps. Moreover, the coexistence of multiple attractors in the vicinity of the

type-III bifurcation point and the symmetry-breaking bifurcation can be observed as well.

PACS number(s): 42.65.—k, 05.45.+b

I. INTRODUCTION

A large number of publications have focused on the
study of instabilities, self-pulsations, coexistence of at-
tractors, as well as chaotic motions of lasers and optical
bistable (OB) systems with an injected signal (LIS) in the
past several decades [1—11]. Recently, a systematic
study in multicodimension bifurcation in OB has been
also reported [12—14]. These systems are used as a good
example to show the rich characteristic behaviors of non-
linear dynamic systems.

When the linear part of the vector field undergoes dou-

bly degenerate bifurcation, there are three basic cases,
and the corresponding standard linear matrices of the
order-parameter equations read [15]

furcation of type III can be observed. Nevertheless, a
systematic study in multicodimension bifurcation and dy-

namic behaviors is still lacking in 2LIS.
The aim of the present paper is to investigate the insta-

bility boundary conditions for type-III bifurcation and
the coexistence of multiple attractors of 2LIS. In Sec. II,
our model and its stationary solution will be present. In
Sec. III, distribution of the instability boundary and
codimension-two bifurcation of type III on the boundary
will be clearly shown. In Sec. IV we reveal the coex-
istence of the stable stationary solution and a time-

dependent solution, and the coexistence of two or more
attractors. Section V will give some brief discussion.

II.THE MODEL AND ITS STATIONARY SOLUTION

0 1

type I;

co 0 0, type II;
0 0 0

(1.2)

Our model is an optical undirectional ring cavity filled

with an active medium, consisting of homogeneously
broadened two-level atoms. The laser system is driven by
an external coherent field. We take the plane-wave ap-
proximation and the mean-field limit, and consider only

the single-mode case. We reduce the Maxwell-Bloch
equations to [17]

0

0 0 —co2, type III . (1.3)

Type-I and type-II bifurcation have been discussed in
LIS and OB [14], but type-III bifurcation has not been
analytically revealed in LIS and OB. However, in the
case of the two-photon laser and bistable systems with an
injected signal (2LIS and 2OB), the codimension-two bi-

x = —tt[( 1+i 0)x —Y +2Cvx ' ],
v= —(I+id, )v+x m,

m = —y [ [v(x ') +v*x ]/2+ m +1],

(2.1)

where a11 the variables and the parameters are dimension-

less. x and U, being proportional to the output field and
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the atomic polarization, and are complex numbers, while
the normalized atomic population m is real. Then the
equations are essentially five dimensional. The system
parameters, C, K, and y designate the small-signal gain,
the cavity linewidth, and the atomic population decay
rate, respectively. Both K and y are scaled to the homo-
geneous linewidth y. Given the frequencies of the exter-
nal field, the atoms, and the cavity as coo, co„and co„re-
spectively, we scale the atomic detuning and the cavity
mistuning as h=(co, —2cov)/y and 8=(co, —coo)/(Ky).
The normalized amplitude of the external field Y is as-
sumed to be real and positive.

The stationary solution of (2.1) can be worked out ex-
plicitly. It reads

Y=X[1—2CX (I+6 +X )]

+[8+2C~ (I+6, +X )] j'

v, = —(1 ib—, )x, /(1+5 +X ),
m, = —(I+6 )/(1+6 +X ),

(2.2)

where X= ~x, ~. The standard way to study the bifurca-
tion set of (2.1} is to linearize (2.1} about the stationary
solution x„v„and m„and then to investigate the
changes in the sign of the real part of the eigenvalues of
the linearized equations. The equations of the lineariza-
tions of Eqs. (2.1) about the steady state (2.2) turn out to
be

d5x Idt
d 5x '/dt
d5v Idt
d5v'Idt
d5m Idt

—2CKx,*—K(1+i8) —2CKv,

—2CKv,* —K( 1 i 8)— 2CKXg 5x'
0 x,' 5v

5v'

—(1+id, )2m x

yv x

2m x 0 —(1 i 6) —(x,')
—yv, (x,') —y, (x,') /2 —yx,'/2 —y

(2.3}

where

5x =x —x, , 5v=v —v, , 5m=m —m, .

Equation (2.3) gives rise to the characteristic equation

A, =a, A, +a&A, +a3A, +a4A, +a~=0

with

(2.4)

a
&
=2K+2+y,

az K (1+8 )+2K(y+2)+(2y+1+b +yX )+8CKm, X +4C K m, X (1+6 +X ),
a, =K (1+8 )(y+2)+y(1+6 +X )+2K(2y+I+5 +yX )+8CKm, X (1+y+K)

+[4CKyX +4C K (y+2)X m, ]/(1+6 +X ),
a4=2Ky(1+6, +X )+K (1+8 )(2y+1+5 +yX )+8CKym, X +8CK (1 86+y—)m, X

+16C K m, X —[8C K ym, X 4C K (2—y+1+5 +yX )m, X —4CK y(1+86 )X ]/(1+5 +X ),
a5=K y[(1+8 )(1+6 +X )+8Cm, (1—8b, )X +4C m, X +16C m, X ] .

(2.5)

All the coefficients in (2.5) are expressed in terms of the
external control parameters C, y, K, 6, 0, and X.

It is, obviously, impossible to solve Eq. (2.4) analytical-
ly and to obtain explicit solutions of the eigenvalues.
However, a general discussion about the instability of the
steady solution (2.2) is possible without seeking a precise
solution of A, . We define

D„D,,D,D4, D, &0 . (2.7)

The steady state may lose its stability via a certain kind
of codimension bifurcations.

According to the Routh-Hurwits criterion, the necessary
and sufficient conditions for (2.2) to be stable are

D)=a),
Dq =a]a2 a3

D3 =Dza3 —(a, a4 —a5 }a, ,

D4 =Dz(a3a4 a&a~ )
—(a, a4 —a~ )—

D5 =a5D4 .

(2.6)

III. TYPE-III CODIMENSION-TWO BIFURCATION

There are two kinds of codimension-one bifurcation.
First, class A, a real eigenvalue of (2.4), which is the larg-
est compared with the real part of all the other eigenval-
ues, changes its sign from negative to positive. The criti-
cal condition for the bifurcation of class A (i.e., saddle-
mode bifurcation in our case} is
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a5=0 . (3.1)

D4=0 . (3.2)

It is obvious that neither (3.1) nor (3.2) is the sufficient
condition for the corresponding bifurcations. However,
if we start from a stable region, the necessary and
suicient condition for the bifurcation of class 3 is the
first transversal crossing of the hypersurface (3.1), while
for class 8, the hypersurface (3.2). By the first crossing
we mean that no other surface, (3.1) or (3.2), has been
crossed before the given surface is crossed. Transversal
crossing of surface A or B becomes the necessary and
sufficient condition for the instability of the stationary
state. This fact has been discussed in great detail in Refs.
[10], [14],and [16].

The codimension-two bifurcations of Eqs. (1.1}, (1.2),
and (1.3) in our case correspond to the following condi-
tions, respectively:

Type I:
a&=a4=0 . (3.3)

Two distinctive class-A sheets intersect each other and
the eigenvalue equation (2.4} has the double-zero eigen-
value degeneracy

A, )=A,q=O .

Type II:
a5=0, D4=0, agWO.

(3.4)

(3.5)

One class-A sheet and one class-8 sheet intersect each
other and at the bifurcation point we have simultaneously

A, ( 2=+leo, A3=0

with

(3.6)

co =a&a4/D2%0 .

Type III:

D4=D2=0 .

(3.7)

(3.8)

Two distinctive class-8 sheets intersect each other and, at
the bifurcation set, the eigenvalue equation (2.4) has the
solution

with

+l co] Ar3 4 +l c02 A, 5
= —a

&

co, =[a2 —(az —4a4)'~ ]/2,
co2= [a2+(a& —4a4)'~ ]/2 .

(3.10)

Since surface B is defined by the first crossing of the
boundary (3.2} from a stable region, the hypersurface
defined by Eqs. (3.8} serves as the necessary and sufficient
condition for bifurcation of type III. The standard linear

Second, class B, a pair of complex conjugate eigenvalues,
which have the largest real part, cross the imaginary axis,
and their real part becomes positive. Accordingly, the
critical condition for the bifurcation of class B, i.e., Hopf
bifurcation, reads

matrix of the order-parameter equation takes the form
(1.3).

In the one-photon OB system [14], we always have

D2 &0 and no codimension-two bifurcation of type III
can be found, while type-I and type-II bifurcations can be
observed very easily. Numerically, it is very difficult to
find quasiperiodic motion and the route from quasi-
periodicity to chaos in OB. Though D2=0 can be
crossed in the case of one-photon LIS, the negative D2 al-

ways appears in the unstable region. Then, the quasi-
periodicity can never be predicted in one-photon LIS
directly through the instability of the stationary state,
though it exists after instability of certain periodic orbits.
In our case of 2LIS, the codimension-two bifurcation of
type III can be observed. Since quasiperiodic motion and
the route from quasiperiodicity to chaos are very interest-
ing for the applications of optical devices and for the
theoretical study of nonlinear dynamics, it is of impor-
tance to analytically predict the condition for quasi-
periodicity. We are very glad to find that in 2LIS sys-

tems, quasiperiodicity can be successfully predicted
through the type-III instability of the stationary solution.

In Fig. 1 we plot two bifurcation figures of 2LIS in the
b, -X plane by fixing C, z, y, and 8. The dash-dotted and
dotted lines correspond to Eq. (3.1) (curve A). The
dashed and solid curves correspond to Eqs. (3.2) (curve
8) but only dash-dotted and solid curves are the instabili-

ty boundary. All the S regions are stable. The N region
surrounded by the dash-dotted and dotted lines is the
negative-slope region in which the stationary solution is
always unstable. S represents the steady state and N
represents the negative-slope region of the state equation
X =X( Y).

Some of the interesting features of the bifurcation
figure which are very useful for analyzing the global
structure of the instability and codimension-two bifurca-
tions in the parameter space are listed below.

(1) The stationary solution may be single valued, triple
valued, or five valued for certain combinations of param-
eters. If Hb, & 0, no S-shaped solution exists, i.e., the state
equation X =X( Y) is always single valued. If Hb, & 0, the
stationary solution may be triple valued for some com-
bination of parameters C, ~, and y, or five valued for cer-
tain other combinations of parameters.

(2) When the S-shaped solution exists, almost the en-
tire lower branch is stable from 7 =0 to the lower turn-
ing point.

(3) Surface 8 may contain various sheets. Different
sheets might intersect each other. In Fig. 1(a), there are
two Hopf instability regions which are completely isolat-
ed from each other. It is worth noting that a stable island
may appear in the instability region surrounded by outer
solid curves [see Fig. 1(b)].

(4) We have found codimension-two bifurcations of
type II denoted by II and type III denoted by III. We
have varied C, ~, y, and 0 in a wide region, and no bifur-
cation of type I has been found.

As a matter of fact, we have observed the bifurcation
of type III in Fig. 1(a) simply by searching the interec-
tion of distinctive 8 sheets given by Eq. (3.2), which
occurs in the upper branch of the 8-shaped solution at
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5=19.53, X =5.02, ( Y=29.61). In the close vicinity of
bifurcation point, the system finally approaches a stable
torus (2Q), i.e., a quasiperiodic motion. The phase por-
traits in the plane of Re(x) —Im(x) and the Poincare sur-
face of section displaying an enlarged view of the 2Q
torus for X =5.012 ( Y=29.52), Im(x)=4. 8 are shown in
Fig. 2, where the initial state is taken near the steady
state. Actually, type-III codimension-two bifurcations
can be found for other parameters, for instance, in Fig.
1(b).

So far, we have shown a codimension-two bifurcation
from the stationary solution to a stable torus through
both the theoretical analysis and computer simulation of
the system. This can be the most important difference be-
tween the one-photon processes and two-photon ones.

IV. THE COEXISTENCE OF MULTIPLE ATTRACTORS

In Sec. III, we have revealed that a stable torus (2Q)
can arise from a stationary solution through the
codimension-two bifurcation mechanism. A dynamical

30

23

system, however, can have more than one attractor for
the same combination of parameters and these attractors
can be modified by adjusting the control parameters.
Since 2LIS is much more complicated than one-photon
LIS and OB systems as we will see later, the distribution
of the various attractors and the complicated dynamical
behavior around these attractors must be of interest. We
will present some results based on the understanding of
the type-III bifurcation.

In Fig. 3(a) we present various attractors for C =20,
8= —15, 5=18.5, y=a=2. To draw the curves in this
figure, we numerically solve Eqs. (2.1) for a given control
parameter Y and a set of the initial variables x;, v;, and

m, for a time long enough to ensure that the evolution is
well after the transient process, and then plot the max-
imum values of X in a final time interval as a function of
Y. The stationary solution is five valued for certain
values of Y. The letters L, R„R2M, , and N represent
various turning points. The two bistability loops are ap-
parent. Between YM and YL there is a coexistence of a
stable stationary solution and an oscillation. Increasing
Y from below, the stationary solution loses its stability,
after Y exceeds YL. Between Y~ and Yz, there is other

1

coexistence of a stable stationary solution with an oscilla-
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FIG. 1. The dash-dotted and dotted curves are defined by
Eqs. (3.1). The dashed and solid curves correspond to Eqs. (3.2).
However, only the dashed-dotted and solid curves separating
the stable region from the unstable region serve as the instabili-

ty boundaries of classes A and 8. At points II and III,
codimension-two bifurcation of types II and III take place, re-
spectively. (a) C =10, x=y=2, 8= —15.55. There are two in-
stability regions completely isolated. (b) The same as in (a) with
C =12, 8= —13. A stable island appears in the instability re-
gion surrounded by the outer solid curve.
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FIG. 2. (a) A two-dimensional phase portrait of 2Q in the
Re(x)-Im(x) plane. The parameters chosen are the same as in
Fig. 1(a) with 5=19.53, Y=29.52 (X=5.012). (b) Poincare
surface of section displaying an enlarged view of the 2Q torus
for Im(x) =4.8 in 2(a). This initial state is near the steady state.
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tion. Yz is the upper boundary of the unstable region.
1

Decreasing Y from Y& Yz, to Y& Yz, the stationary
1 1

solution is replaced by a small-amplitude periodic oscilla-
tion when the upper branch is destablized by supercriti-
cal Hopf bifurcation. Hence, a coexistence of two attrac-
tors of time-dependent motions is identified between Y„

1

and Yg .
2

In Fig. 3(b), we take 5=0.5. All other parameters are
given in Fig. 1(b). In this case, the stationary solution is
single valued. A subcritical bifurcation arises at YI . Be-
tween Y~ and YI there is a bistability loop which is the
coexistence of a stable stationary solution and a time-
dependent solution. This is similar to the OB system (see
Ref. [14]),but Hopf bifurcation of the upper branch is su-
percritical at Yz. The route to chaos via period-doubling
bifurcation can be observed by continuously decreasing
the control parameter Y. Between Yz and Yz we find a

1 2

stable island of the steady state, where a coexistence of
the stable stationary solution and a time-dependent solu-
tion exists. Hopf bifurcation on the lower branch is sub-

critical. The system jumps directly to the upper attractor
at Y&, while it jumps to another attractor, which is2'

chaotic, at Yz . Decreasing Y from the attractor, the sys-
1

tern can also jurnp to the upper attractor at Yc. Thus,
there is a coexistence of two attractors of time-dependent
motion between Yc and Yz .

1

The coexistence of multiple attractors is a typical
feature around the type-III codimension-two bifurcation
points. In Fig. 4, the parameters are taken in the vicinity
of the type-III bifurcation point at Y=120.25. In Fig.
4(a) the initial state is located in the vicinity of the sta-
tionary solution. The system finally approaches a stable
period motion. In Fig. 4(b), the initial state is located in
the vicinity of the stationary solution, however, the

asymptotic state the system eventually approaches is a 2-
torus. By decreasing Yslightly from Fig. 4 to Y =119.57
we observe four coexisting attractors shown in Fig. 5.
The initial states are chosen in the vicinity of the station-
ary solution in Figs. 5(a)—5(c). In Fig. 5(d), the initial
state is far from the stationary solution. The attractor in
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FIG. 3. (a) C =20, ~=y =2, 5= 18.5, and 0= —15. The sta-
tionary solution is five valued. After the transient process of
Eqs. (2.1), the maximum X in the trajectory is plotted against 1'.

Two bistability 1oops are apparent. (b) The parameters are
given in Fig. 1(b) with 6=0.5. The meanings of the curves are
the same as in 3(a). The stationary solution is single valued. Bi-
stability can be found in regions Y~ YL, Y& Yz and Yz Y& .

1 1 '2

FIG. 4. C =30, 5=26.5, 8= —50, ~=1, y =2, and
Y=120.25. The parameters are taken in close vicinity of a
type-III codimension-two bifurcation point. (a) The initial state
is located in the vicinity of the stationary solution. The system
finally approaches a stable period motion. (b) The initial condi-
tion is changed from those of 4(a) while still in the vicinity of
the stationary solution. The system fina11y reaches a stable
torus.
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FIG. 5. Four coexisting attractors. The parameters are the same as in Fig. 4 with Y = 119.57. For (a), (b), and (c) the initial values

are taken as diferent values in the vicinity of the steady solution. For (d) the initial state is far from the stationary solution.

Fig. 5(a) is similar to that in Fig. 4(a). It is obvious that
the latter attractor can be reached by adjusting Y con-
tinuously from the former attractor. They belong to the
same basin. In Figs. 5(b) —5(d), the three attractors coex-
ist. Two of them [5(b) and 5(c)] are bifurcated from the
quasiperiodic motion of Fig. 4(b) through frequency lock-
An interesting point is that the symmetry-breaking bifur-
cation (the original basin of attractor splits into two
domains of attractor) may exist between Y=119.57 and
120.25. This type of bifurcation has not yet been found
for one-photon LIS [4]. The basin structures of the two
attractors are rather complicated. It is worthwhile inves-
tigating the structure and dynamics in these basins in
more detail. However, we do not intend to go further
here.

V. DISCUSSION

Let us end our presentation by offering the following
remarks.

(i) We have detailed the distribution of the instability
boundary of the two-photon LIS system and the
codimension-two bifurcations modeled by Eqs. (2.1).
The type-III codimension-two bifurcation is the most im-

portant finding which has never been predicted in one-
photon LIS and OB systems. The bifurcation from a sta-
tionary solution to a stable torus is analytically predicted
and numerically observed. It is well known that the
type-III codimension-two bifurcation is associated with

many interesting dynamic behaviors such as the route
from quasiperiodicity to chaos, coexistence of multiple
attractors, symmetry-breaking bifurcations, a 3-torus
with two hard modes and one soft (low-frequency) mode
and so on [15]. Our prediction can be extended to all
these significant features, which is much more complicat-
ed than that around type-I and type-II bifurcations.

(ii) We have numerically verified the coexistence of at-
tractors. The multistability structure of 2LIS is much
richer than LIS. The coexistence of four attractors of
time-dependent orbits has been observed in the parameter
region close to the type-III bifurcation point. It is also
remarkable that the symmetry-breaking bifurcation may
exist in our system. The parameter values used in this
presentation are entirely in the experimentally realizable
regime [17,18]. The value y=2 reaches its upper limit.
However, the essential features are not changed by reduc-

ing y.
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