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To examine prospects for gain in a Lyman-a recombination laser driven by a high-intensity, short-

pulse laser, we calculate the residual energy in both hydrogen and helium during recombination after the
ionizing pulse. The expected gain as a function of residual energy and density is then separately evalu-

ated. The residual energy calculation includes above-threshold ionization (ATI) in the presence of a
background plasma, as well as inverse-bremsstrahlung heating. At electron densities over 10"cm ' but

below critical density, the plasma reduces the ATI energy by approximately a factor of 2, but without a

previously reported dependence on the pulse width. Inverse-bremsstrahlung heating can be significant,
but is not dominant for the parameters considered. Detailed recombination-laser gain calculations were

performed for the Ly-a transitions of both H and He, using Stark profiles to represent the laser line cross
section. To obtain gain of near 2 cm lasting at least a few ps, the H plasma temperature must be less

than 3.5 eV and electron density between 4X 10" and 4X10"cm; for He, the temperature must be
less than 15 eV and the electron density between 2X 10'8 and 2X10' cm '. Our calculations indicate
that these conditions can be satisfied for H, if the driving laser intensity is above 4X 10' Wcm, and

for He, if the laser intensity is above 1.7 X 10' W cm and the wavelength is below 0.6 pm.

PACS number(s): 42.55.Vc, 32.80.Rm, 52.40.Nk, 52.50.Jm

I. INTRODUCTION

The possibility of developing a recombination x-ray
laser that is driven by the new short-pulse, high-intensity
table-top lasers has recently been considered [1—5]. With
sufBciently high intensity, a population inversion can be
obtained with large transition energies (such as those in-
volving the ground state}, which can generate significant
gain at UV or soft x-ray wavelengths. These schemes re-
quire both that the atoms initially be ionized above the
lasing stage and that the residual energy of the electrons
be low to facilitate recombination and suppress collision-
a1 excitation.

In this paper, we analyze the conditions required for
gain on the Lyman-a transitions of both hydrogen (1216
A) and helium (304 A). Such lasers were initially pro-
posed some years ago [6]. Our gain calculations are
based on fully self-consistent Stark profiles for the com-
pletely stripped background gas. The residual energy is
calculated including the electron above-threshold-
ionization (ATI) energy, a simple model of plasma effects,
and inverse-bremsstrahlung, or collisional, heating.

To obtain the ATI energy, we follow a well-established
procedure [1,7] and solve for the classical (nonrelativistic,
nonquanturn} electron motion; the ATI energy is just the
electron's energy long after the pulse has passed (after
several ps, when recombination is occurring).

Particle-in-cell (PIC) simulations [8] have indicated
that space charge, or plasma effects, might in some way
significantly enhance or diminish the energy absorption
of the target medium. For short pulse lengths, compara-
ble to the inverse plasma frequency, space-charge heating
apparently stems from the nonadiabatic ponderomotive
expulsion of electrons (electron cavitation), which in-

duces plasma oscillations. An early study [8] sought to
model plasma effects on ATI energy by including the
plasma frequency in the single-electron equation of
motion; it found that the plasma-modified ATI energy
was fairly large, but oscillated by several orders of magni-
tude as a function of electron density and pulse period.
Here, we use the same model, but our findings disagree
with those results: the ATI energy is much lower, and
there are no oscillations with electron density. For this
simple model, the principal effect of a background plasma
is to substantially increase the residual energy near the
critical surface. These results are more in accord with
those of other recent theoretical and experimental papers
[9,10], are not inconsistent with the PIC simulations in
Ref. [8], and are in fact more favorable to the success of a
Ly-a laser.

One potentially important factor that has not been
widely considered is inverse-bremsstrahlung heating [9].
Simple scaling arguments indicate that this could be a
much larger source of energy to the plasma than the ATI
mechanism. In fact, for the parameters we consider, in-

verse bremsstrahlung does not turn out to be the most
important source of heating, largely because the high
quiver energy of the electrons in the field makes the
electron-ion collisional cross section small during the
bulk of the heating.

The organization of this paper is as follows. In Sec. II,
we consider ionization and electron heating by the laser
pulse, and show how to obtain the residua1 energy during
recombination. In Sec. III, we consider the recombina-
tion process, and show what conditions must be satisfied

by the plasma to obtain significant gain. These results
will show the optimal pump laser parameters for driving
the recombination laser. Possible experimental parame-
ters are discussed in the final section.
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II. CALCULATION OF ELECTRON
RESIDUAL ENERGY

and the peak electric field Ep=(240rtI)'~ (in V/cm}.
For the calculations presented here, we consider a pulse
width ~p

= 100 fs and time of maximum intensityt,„=200fs. The intense laser field multiply ionizes the
gas, and the ion densities n; (in cm } for charge state

Z; =i evolve according to the coupled system of equa-
tions

n;

t
= 8';n;

&

—8';+)n;, (2)

where W,. is the rate of ionization from charge state Z;
to Z;, and n

&

= 8'z+, ——0. The evolving electron densi-

ty is n, =g;Z;n; We . assume that the laser pulse dura-

tion is much shorter than the recombination time, so that
during the pulse recombination can be neglected.

There are various theories of ionization in the strong-
field regime [7]. For ATI conditions, considered here,
the photon energy (fitp=1. 24/l, eV) is less than the ion-
ization energy U„which in turn is less than or equal to
the electron quiver energy (defined below). Here, tunnel-

ing ionization might be expected to dominate, and the
ionization rate can be obtained from either Keldysh [11]
or Ammosov, Delone, and KraInov [12]. For the calcula-
tions presented here, we use the Ammosov formula [12],
which has some experimental support [13], and is also
considerably simpler to evaluate. The Ammosov rate is

2n. —1.5
lZ3 E

10.87
n.*4 E

l

Z
W;(E)=1.61',

„

We consider a laser pulse of wavelength A, (in pm) and
peak intensity I (in Wcm ), incident onto an initially
neutral gas, which has atomic charge Ze. (An electron
has charge —e and mass rn. } The laser pulse profile is as-

sumed to be such that the electric field is given by
E (t)= E,„„(t)sincot, with the pulse envelope given by

2(t —t,„)
E,„„(t)=Epsech

z
n,.

~ =
QU;/13. 6 eV

(4)

and E,„=5.1421X10 V/cm is the electric field at a
ground-state hydrogen electron.

At the time of ionization, we assume that electrons
have zero energy [1];thereafter, they are (classically) ac-
celerated by fields from the laser and from the surround-
ing plasma [8]. Most of the electron energy during the
laser pulse comes from the oscillatory quiver motion in
the laser field, and is returned to the field when the pulse
passes. The relatively small residual energy after the
pulse leaves is the ATI energy. When the efFect of the
plasma is ignored, the ATI energy is the time-
independent part of the energy, which is determined by
the wave phase at ionization. With a plasma oscillation
present, there is no time-independent part of the energy,
so the ATI energy must be an average energy. To find it,
we follow the classical trajectory x (t) of an electron, with
the efFect of the charge cloud of the surrounding plasma
being treated solely as a springlike restraining force [8]
parametrized by the plasma frequency tp =(4irn, e /

)i/2

x+tp x= ——E(t) .
m

(5)

The required boundary condition on Eq. (5) is that
x =0 at the ionization time t=tp With th.e additional

imposed condition that x(tp) =0, the general solution to
Eq. (5}can be expressed as

x(t)=
coscop t

sinco~t dt
CO ~0 m

slncPpt t eE(t)+ costp&t dt
co fo m

(6)

where the atomic unit of frequency pi, „=4.1340X10'
sec, n; is the efFective principal quantum number for a
hydrogenic atom:

2Z; E,
„

Xexp
3n,." E (3)

If the electric-field envelope were constant, as it roughly
is near the peak of the pulse, the solution would be simi-
lar to that obtained elsewhere [8],

eEenvx(t)= [
—sincot+[picoscotpcospi t +pro&si cnot spi nt~pt ]psi cno~t

m(co co& )

+ [ cl) coscpf psincp t p +co sincptpcoscp& t p ]coscp (7)

eEo
x(tp, t)= [A sinco t+B costa t]

m p p (8)

This describes the complicated electron motion during
the pulse, but is not really useful for finding the ATI en-
ergy, which is determined much later. The electron
motion at those late times, obtained from the t~ ao limit
of Eq. (6), is just simple oscillation at the plasma frequen-
cy,

with

A(tp)= I sech
10

2(t —t,„)
sincot sincopt dt,

7p

2(t —t )
B(tp)= f sech sincotcoscp~tdt .

7 p

(10)
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The time dependence of the factors A and B can be ig-
nored because the laser pulse {sech) vanishes for late time;
they depend only on the time t0 when the electrons are
ionized. If the plasma period is smaller than the times of
interest (the ns recombination time), the single-electron
ATI energy is the electron energy averaged over the
plasma-frequency motion,

e(to)= 2m (x ) —Gqcd (A +B ),
where

e2E2
0

4m co2

is the quiver, or ponderomotive, energy.
The average electron residual energy (e) after the pas-

sage of the pulse is given by the sum of the number of
electrons generated at each t0 times the residual energy of
these electrons,

max 2t

g f n, (t, )W, {E(t,))e(t, )dt,

max 2g

g f n, (t, )W, {E(t,}}dt,
0

(13)

The upper limit of integration is chosen as 2t,„here
simply for convenience, to make the integration domain
symmetrical over the pulse; the results should not be sen-

sitive to the value chosen for this limit, as long as the
pulse amplitude is small there. For simplicity, the
infiuence of the space-charge field on the ionization rate
W(E) has been neglected, although PIC simulations [8]
have indicated that electron cavitation, when significant,
can produce a space-charge electric field comparable to
the laser field E (t). The simple model used here could be
extended in that case by deducing the space-charge field

at the points of interest (subject to details of pulse profile
and ionization dynamics) and then using the total field in

Eq. (13). We define the residual electron temperature to
be proportional to the average energy,

near resonance and the residual energy becomes very
large.

When the density is zero (no plasma) the single-particle
ATI energy from Eq. (15) is

e(to ) e&cos cot o (16)

~ 4m.
tB

= eqvei vthfo(0)~'(vo/"th ) ~q ei t (17)

where fo(v) is the isotropic part of the electron distribu-
tion function, v,h=(2kT/m)' is the thermal velocity
(with kT the electron temperature in energy units),

Zn
v =386X10 '

3/21nA (18)

100-

which is half the standard zero-density result [1]. The
factor-of-2 difference is due to the averaging over a plas-
ma period performed in Eq. (15); this averaging makes
sense only when the plasma frequency is large, while for
low densities the peak value of the electron energy should
be used. The density effect on residual energy depends on
the ratio tv& /rv =n, /n „;„wheren «,, = 1.12 X 10 '/A, is

the critical density, where the plasma becomes opaque to
the laser radiation. The single-particle ATI energy from
Eq. (15) is shown in Fig. 1, where separate curves are
drawn for different ionization phases cot0. As the density
approaches n„;„the ATI energy sharply increases, and

becomes less dependent on the time of ionization t0.
Evidently, plasma does not significantly increase the

ATI energy at much less than 0. 1n„;,. For 1.06-JMm

Nd:glass laser light, the n,„., =10 ' cm, while for a
248-nm KrF laser n„;,=2X10 cm; thus, according
to our simple model, plasma modification of the ATI en-

ergy is not a significant factor below densities of 10
cm

Collisional heating from inverse bremsstrahlung is po-
tentially important, possibly dominant, in dense laser-
heated plasmas [9]. The inverse-bremsstrahlung heating
rate is given by

T= (E) . — (14)

e(to)=
e E(to) to&sin toto+to cos toto

4m (ro —rv )Jt

When the laser pulse width is very broad compared to
the oscillator frequency and plasma frequency (i.e.,
corz » 1 and cozen » 1), then the integrals of A and B can
be approximately evaluated, and

Q)

CX

Ql

C

10—

This expression shows that, long after the pulse, plasma
effects do not decrease the residual energy. There is no
periodic dependence on the plasma frequency in the re-
sidual energy, as was asserted elsewhere [8]. That period-
ic variation was based on an ATI energy calculated from
some average of Eq. (7), and so incorrectly included elec-
tron motion during the pulse in the ATI energy calcula-
tion. In fact, plasma effects can increase the residual en-
ergy, but the effect is not important except near the criti-
cal surface, where the plasma and wave frequencies are

1

1O
" ~ ~ ~ I . I

10
—3 10

—2 10
—1

(Density)/(Critical density)
1O'

FIG. 1. Effect of the plasma oscillation on the single-particle
ATI energy. The ATI energy, in units of the quiver energy eq,
is shown as a function of density, in units of the critical density

n„;„for different times of ionization within the pulse ceto. The
solid Hne is for ~to=0, when the zero-density ATI energy is
maximum; the dashed line is for cato=+/4; and the dotted line
is for coto =m. /2, when the zero-density ATI energy is zero.
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is the electron-ion collision frequency, with Coulomb log-
arithm given by

1017

lnA =22.4+in[(kT) /n '~ ], (19)

and F is a correction factor to the cross section due to the
quiver motion of the electrons [14], which may be ap-
proximated

F(x)= 1

1+2x /3
(20)

The rate E&z depends on the electron distribution only
through the overall normalization, and is not sensitive to
the details of its shape. Therefore, although the laser-
produced electrons equilibrate on the ps to tens of ps time
scale (much longer than the pulse width), it is not too
inaccurate to approximate the distribution function to be
a Maxwellian, so that

' 3/2
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FIG. 3. Contours of residual temperature in eV of H, as de-
scribed in Fig. 2. For inverse-bremsstrahlung heating calcula-
tions, an initial atomic density of 2 X 10"cm ' is assumed.

fo(0)=n, (21)

T)~ = E(~ (22)

The actual residual temperature is given by the sum of
contributions from ATI [Eq. (14)] and IB heating [Eq.
(22)]. Results of residual energy calculations are shown
in Figs. 2—5. The contours in Fig. 2 depict the average
degree of ionization after the laser pulse of an initially
neutral H gas, as a function of laser intensity and wave-

length; any laser power above the Z=1 contour leaves

To estimate the magnitude of inverse-bremsstrahlung
heating, we determine the total energy input by time-
integrating the heating rate, Eq. (17). The heating rate
depends on the time-varying electron density, obtained by
solving the rate equations, Eq. (2). The temperature at
each time is given by the average energy per particle, as
accumulated from ATI (a small term), prior inverse-
bremsstrahlung heating, and the quiver motion (a large
term). The inverse-bremsstrahlung contribution to the
final temperature is just the total average energy input
per particle,
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FIG. 4. Residual ionization contours for initially neutral He.
Contours represent average ionization level Z=n, /nH, , for
laser intensity above the Z=2 contour, the gas is left fully
stripped.

Q
1 5 1017

. 1.00 1.00

M
CI
C

0.60

0.80

0.40
— 0.60 =-0.40

V)
CI
C

1016

.0.20 0.20 ==
1014 I

200
I . ~ I

400 600
Wavelength (nm)

I

800 1000
10 I

200
I . , I

400 600
Wavelength (nm)

800 1000

FIG. 2. Residual ionization contours for initially neutral H.
Contours represent average ionization level Z =n, /n H, for laser

intensity above the Z = 1 contour, the gas is left fully stripped.

FIG. 5. Contours of residual temperature in eV of He, as de-
scribed in Fig. 4. For inverse-bremsstrahlung heating calcula-
tions, an initial atomic density of 4X 10' cm is assumed.
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the gas fully stripped. The contours in Fig. 3 show the
residual temperature in eV of the ionized H plasma. The
inverse-bremsstrahlung heating rate is proportional to n, ;
here, an atomic density of 2X 10' cm was used, where
there is relatively high gain. Similarly, Fig. 4 depicts the
average degree of ionization after the laser pulse of an ini-

tially neutral He gas, and Fig. 5 shows the residual tem-
perature in eV as a function of laser wavelength and in-

tensity. For He, the inverse-bremsstrahlung heating rate
was computed using an atomic density of 4X 10' cm

III. CONDITIONS REQUIRED FOR GAIN
ON Ly-a FOR HYDROGEN AND HELIUM

It is reasonable to assume that gain on Ly-a via tran-
sient recombination [6] would be easiest to achieve in the
lowest atomic number elements. Therefore, we examine
H and He closely using time-dependent multilevel gain
calculations to establish the electron temperature (i.e., re-
sidual energies) and densities at which reasonable
amplification would occur. These can be related to the
short-pulse laser parameters which are predicted to pro-
vide such conditions according to the calculations of Sec.
II. In this way, we specify what would constitute a
promising demonstration experiment.

The first and well known condition for transient gain
to the ground state is that the plasma be initially fully

stripped [6]. Therefore, laser irradiances must be used
that are at or above those in the contour plots (Figs. 2 —5)
corresponding to Z = 1 for H and Z =2 for He. In all the
calculations discussed below, the plasma is assumed ini-

tially fully stripped. The atomic-level populations are
calculated as a function of time for a fixed assumed densi-

ty and electron temperature. The ions are assumed to
remain cold, since their equilibration time (a few hundred

ps) at the densities of interest far exceeds the time scales
within which gain is expected. The algorithm of Ref. [15]
is employed to integrate the set of rate equations, viz. ,

dlV; = QXRJ; N; QRJ, —
JA/ JXl

(23)

where N; is the population density of the state i and R;
are the rates connecting all states; these atomic-level rates
and densities are not to be confused with the ionization-
state rates and densities of Eq. (2).

In Eq. (23), the rates connecting the various levels of
the H and He states include collisional excitation and
deexcitation, radiative, three-body, and dielectronic
recombination, collisional ionization, and radiative de-

cay. Most of the atomic data for these simple and well-

studied species are readily available from numerous
sources in the literature. Other rates were calculated us-

ing standard techniques (e.g., the semiclassical approxi-
mation for collisional rates corresponding to radiatively
allowed collisions). The levels of the one-electron species
are distinguished only by principal quantum number n,
although fine structure effects on Ly-a are included in the
overall Stark profile used in calculating gain.

The highest principal quantum number included in the
atomic model is n =5 for both H and He. This is approx-
imately in accord with the Inglis-Teller criterion as up-

dated by Griem (Ref. [16],p. 125). At an electron density
of 10' cm, Ref. [16] predicts that the series limit
occurs at n =4—5 for H, and n =6—7 for He. While we

do not include a self-consistent treatment of continuum
lowering, it is clearly preferable to truncate the levels at
n =5 rather than at some arbitrary higher number (10 or
20, for instance), far above the last discrete level at densi-
ties of interest.

The gain g in cm on the n =2 to 1 transition of a hy-
drogenic species is given by

g =N202, —N&0. ,2, (24)

H =6.1X10
18 0.89

TO. 25

ne
(25a)

whereas, for He,

0. '=2.5X10
0.93 ' 0.25

10' T
n, 5

(25b)

For T ~ Z, the He cross section exceeds that of H by a
factor of 4 at n, =10' cm . Partly offsetting this, how-

ever, is the fact that there are twice as many H ions per
electron as He ions. Therefore, we expect gains of com-
parable magnitude. Also, note from Eq. (25) that as the

density increases, the Stark broadening results in a nearly

inversely proportional decrease of the peak cross section.
However, gain can still increase with density due to the

increase in three-body recombination and the greater
number of ions available for stimulated emission.

A subset of the calculations that have been carried out
for H and He is presented in Figs. 6—10. There is no

lower temperature limit below which gain is not possible;
indeed, due to the T ' dependence of three-body recom-

bination, gain increases at lower temperatures, assuming,
of course, that the plasma is initially fully stripped. To
obtain a gain of -2 cm ' lasting at least a few ps, the

electron temperature in a He plasma must be 15 eV,
whereas for H the electrons must be no hotter than 3.5
eV. An upper limit on the density is set by the desired

gain duration. Note from Figs. 6—10 that, as expected,

where Oz& (0 &z) are the emission (absorption) cross sec-

tions in cm for the transition at the peak of the profile
and the Ãs are the population densities of the n = 1 and 2
levels. In Eq. (24) a positive number corresponds to
amplification and a negative one to absorption. For Ly-

a, cr~, =o,z/4, and n =2 must have at least 4 times the

population of the ground state to obtain gain. Clearly,
this can only occur on a transient basis since population
tends to pile up in n =1, which has no radiative decay
channel. However, three-body recombination from the
bare nucleus, per unit statistical weight, is approximately
proportional to n IT. Therefore, one anticipates a brief
period of gain for an appropriate range of suSciently low

temperatures, if n = 1 is initially empty.
A key feature of the present work is that we have em-

ployed the best available representation of the Ly-a cross
section, namely self-consistently calculated Stark profiles
for both H and He [17]. For H, we find that 0 &z is ap-

proximately given by
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FIG. 6. Ly-a gain coe5cient for H as a function of time, as-

suming an initially fully stripped plasma of the indicated atomic
densities. Electron temperature is 1 eV; ions are assumed cold
and Stark profiles are employed to obtain the gain cross section.
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FIG. 9. As in Fig. 8 except that the electron temperature is 5
eV.

the gain increases with density, but decreases with in-
creasing temperature. However, the duration of gain de-
creases sharply with increased density since the absorbing
n=1 level fills up correspondingly more rapidly. For
gain duration of at least a few ps, the electron density
must be no higher than -2X10' cm for He, or
4X10' cm 3 for H. Since the lifetime of the H Ly-a
transition (n averaged) is 2.1 ns, compared to 133 ps for
He, one might initially expect considerably greater gain
duration for H. However, the corresponding collisional
mixing rates are nearly an order of magnitude faster for
H at a given density, and the interplay of these efFects re-
sults in comparable gain durations for both elements
(ranging from a few ps to tens of ps).

Refraction of the x-ray laser beam can pose a serious
threat to the practical attainment of amplification, due to
the density gradients expected in short-pulse laser-driven
plasmas. This issue has been analyzed by Amendt et al.
[5], who assumed a Gaussian beam profile. If b is the
beam waist radius, the x-ray lasing length Zz is approxi-
mately given by
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and Stark profiles are employed to obtain the gain cross section.
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FIG. 10. As in Figs. 8 and 9, except that the electron temper-
ature is 10 eV.
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where n„;,is the critical density, defined above. Typical
electron densities for good gain in H and He are 2 and
4X 10' cm, respectively (cf. Figs. 6—10). We take the
beam waist radius to be 13 pm, as measured in a recent
demonstration of optical guiding of intense laser beam
pulses [18]. For these conditions, Eq. (26) gives a propa-
gation length of 0.3 cm for H and 0.9 cm for the consid-
erably shorter wavelength of the He laser. Figures 8 and
9 indicate that gain-length products (gl) greater than or
equal to 4 are achievable for He if T, 5 eV. For H,
T, 1 eV is necessary to achieve a similar gl. As pointed
out in Ref. [5], a larger beam waist radius would
significantly relax these requirements. In addition, the
presence of a beam guiding channel [18] with a more
favorable refractive index profile would very likely lead to
considerably longer propagation lengths.

IV. SUMMARY AND CONCLUSIONS

We have presented a procedure to calculate the residu-
al energy of a plasma during the recombination period
after passage of a high-intensity, short laser pulse. We
then calculated the expected residual energy and degree
of ionization for H and He over a range of wavelengths
and laser intensities. These results are shown as contour
plots in Figs. 2 —5. The inclusion of a plasma oscillation
does not significantly modify the residual electron energy
[other than the factor-of-2 reduction due to the residual
plasma oscillation, as discussed at Eq. (16)],as long as the
plasma density is not close to the critical density.

While our model does not include it, we do not expect
the space-charge heating reported in PIC simulations
[8,10] to be important for parameters where significant
gain should be found. The short pulse width limits heat-
ing due to instability growth and variations in drift veloc-
ities [10]. The laser power required is not ultrahigh (i.e.,
I «10's Wcm ), and the density is relatively high, so
both electron cavitation and its effect on the final plasma
temperature [8] should be minimal; even if this were not
true, electron-cavitation heating seems to be much less
important when tu r /2m. ) 1, which is the case for the
high-gain densities given here.

Although certainly not conclusive, it is gratifying to
note that our results are close to recent experimental
measurements by Mohideen et al. [19]. Their experiment
measured residual energy in a low-density (7X 10 atoms

cm ) He gas, where the factor of —,
' from averaging over

the late-time plasma oscillation in Eq. (16) should be
omitted. The laser wavelength was 0.820 pm, with inten-

sity 7X10' Wcm and pulsewidth 180 fs. Although
their pulsewidth was slightly longer than assumed here
(which would tend to increase the residual energy), Fig. 5

shows that for these parameters the predicted residual
temperature is roughly 20 eV, compared to the 30 eV
measured best-fit temperature.

Through the residual energy and ionization calcula-
tions, we have established the plasma conditions during
recombination. We have then used an inclusive atomic
model to calculate gain and those conditions for which
significant gain is obtained. These results are shown in
Figs. 6—10. The region in the contour plots where the
plasma is both fully stripped and has residual energy
within the given limits is where gain is expected. For H,
fully stripped plasma is obtained at intensities above
4X 10' W cm; the necessary electron temperature, less
than 3.5 eV, is satisfied at all wavelengths. For He, fully

stripped plasma is obtained when the laser intensity is
above 1.7 X 10' W cm; if this is true, the electron tem-
perature is below the maximum 15 eV when the wave-

length is below 0.6 pm.
The minimum density for which adequate gain is ob-

tained can be seen from Figs. 6-10 to be roughly 10'
cm . Although the residual energy increases with in-
creased density, mostly because of inverse-brems-
strahlung, the most important efFect is the decrease in

gain duration (for a fixed residual energy) with increased
density; this limits the electron density to roughly
4X10' cm for H, or 2X10' cm for He.

The simple model used here notably omits considera-
tion of collisions. At typical laser-heated plasma parame-
ters of kT=10 eV and n =2X10' cm, the collision
time is about 0.8 ps. Thus, these plasmas are marginally
collisional, and collision effects should be studied. Still,
collisions do not clearly dominate, and there is probably
some validity, at least for simple estimates, to the residual
electron energies given here.
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