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Photon-emission spectra of the H2+ molecular ion in an intense laser field
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Photon-emission spectra of the Hz molecular ion in an intense, linearly polarized laser Seld
(wavelength A = 1064 nm and intensities 10 & I & 10 W/cm ) have been calculated using an
exact method and compared to two-level models. The exact calculation requires solving a three-
dimensional time-dependent Schrodinger equation which allows a full treatment of all the electronic
states of Hq+ as a function of the internuclear separation R. Three separate excitation regions can be
defined which are associated with the 1crs -lcr„charge-resonant (CR) transition of the Hz molecular
ion: (1) for small It, the multiphoton excitation region; (2) for intermediate R, the near-resonant
excitation region; and (3) for large R, the strong-coupling region. Two- and three-level models are
used for the description of these excitations of the CR states. We will show in this work that (a) in
the multiphoton excitation region, an approximate solution of the laser-driven CR states is given by
WKB solutions of a Mathieu equation; (b) in the near-resonant region, Rabi or Mollow triplets are
obtained for all the harmonics; and (c) in the strong-coupling region, an analytic two-level solution
for the CR state excitation reproduces well the exact results. The efFects of ground-continuum
coupling and ionization is shown to be important for laser intensities I ) 10 W/cm .

PACS number(s): 33.80.Rv, 33.90.+h, 42.50.Hz, 42.65.Ky

I. INTRODUCTION

The study of photon-emission spectra of quantum sys-
tems in intense laser fields has attracted a great amount
of attention in recent years. One of the most promi-
nent features of the photon-emission spectra in very in-
tense laser fields is the emission of light by a quantum
system at &equencies which are multiples of the driv-
ing laser &equency, otherwise known as harmonic gen-
eration (HG). Photon-emission spectra have been stud-
ied for many quantum systems &om two-level system to
single-electron atoms (for a review, see, e.g. , Ref. [1]).

It is known that symmetric molecular ions have pairs
of charge-resonant (CR) states which are very strongly
coupled to electromagnetic fields, especially at large in-
ternuclear separation R [2]. Bandrauk and co-workers
first pointed out the importance of these CR states
as sources of highly nonlinear laser-induced effects in
molecules [3]. Ivanov, Corkum, and Dietrich have ex-
amined two-level models of symmetric molecular ions for
large B where the Rabi frequency is much greater than
the transition frequency of the CR states [4]. Recently,
Zuo, Chelkowski, and Bandrauk have calculated the HG
spectra for the H2+ molecular ion in very intense laser
fields by solving exactly a three-dimensional (3D) time-
dependent Schrodinger equation [5]. The molecular ion
is found to be a highly efEcient source for HG at larger
R due to its CR states when compared with atomic sys-
tems. At small R and high intensity (I ) 10 W/cm ),
the molecular system is found to behave analogously to
an atomic system. In this latter case, the laser intensity
is high enough that ground-continuum transitions dom-
inate the whole process and the details of bound state
structure become less important. As a result the HG

spectra show well resolved peaks of odd harmonics usu-
ally extending to very high order.

The present work concentrates on the calculation of
the photon-emission spectra of the Hz+ molecular ion
for moderately intense laser fields ( 10 W/cmz). As
will been seen, at small R, harmonic and nonharmonic
peaks coexist. We will show that this is explained by
an analytic solution of the equations for the laser-driven
CR states: these are obtained by a WKB analysis of the
Mathieu equation for the time-dependent Schrodinger
equation of a two-level system in a laser field. At in-
termediate R, we study an interesting case where the
transition frequency is close to the laser frequency (near
resonant). We show that the well-known Rabi or Mol-
low triplets are obtained for all the harmonic peaks ob-
servable for a given intensity and these are correlated to
the quasienergies of a two-level system. At large R, the
strong-coupling case, we will show again that each har-
monic peak is accompanied by two sidebands which are
described by analytic formulas in a two-level approxima-
tion. Couplings beyond the two lowest CR states and
continuum (ionization) states are shown to become im-
portant at intensities above 10i4 W/cmz.

Since the numerical techniques of obtaining the 3D
time-dependent solutions and calculating the spectra
once the solutions are available have been discussed in
detail in previous work [5,6], they are not repeated here.
Instead, analytic solutions based on WKB-Mathieu func-
tions (which is new to our knowledge) are discussed in de-
tail in order to explain the spectra. Results for the three
regions, the multiphoton excitation region, the near res-
onant region, and the strong coupling region will be pre-
sented and discussed in Secs. II, III, and IV, respectively.
Conclusions will be drawn in Sec. V.
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II. THE MUITIPHOTON EXCITATION RECION

Figure I shows some of the lowest electronic levels of
the Hz+ molecular ion [7]. We see that at R = 2 a.u. (the
equilibrium separation of Hz+ ) the ionization potential
is 1.1 a.u. and the energy separation between the 10.

g
state and 10.„stateis 0.436 a.u. , i.e. , starting &om the
ground state Hs+ one needs to absorb 25.7 (A = 1064
nm) photons to reach the ionization continuum and 10.18
photons to reach the first excited state, lo„.Since our
calculations show that very little ionization (2.3 x 10 %)
has occurred for H~+ interacting with a A = 1064 nm,
I = 10 W/cm~, fiat laser pulse for 30 cycles (107 fs),
we call this region the multiphoton excitation region (the
corresponding ionization rate is 6.4 x 10s/sec. ) [5].

The photon-emission spectra obtained &om the full
(3D time-dependent) calculation is obtained from the
power spectrum [5]
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FIG. 2. Photon-emission spectrum of Hq+ at B = 2 a.u. ,
I = 1 x 10 W/cm, A = 1064 nm. The laser pulse is given
by Es sin(u—t) for 0 ( t ( 30 cycles (106.5 fs).

where the field-induced dipole moment d(t) is obtained
from the exact wave function Q(t),

d(t) = (&(t)I&i&(t)). (lb)
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In Fig. 2 we see that harmonic peaks appear only up to
the third order. Higher-order peaks are immersed into
a broad background dominated by a prominent (here-
after referred to as multiphoton resonance) peak at en-

ergy 10.18~. This is the resonance condition for the log
to the 10„transition or CR transition. Careful exami-
nation of Fig. 2 indicates that satellites occur at 8.18 and
12.18)ho. We will show next that these features can be
explained by a two-level analysis. The emitted radiation
at 14.6', 16.6k', 18.6~, etc. comes from higher cou-
pled 82+ levels, notably the lo.

g min„M20'g transitions
in the laser field as we show below. Figure 3(a) gives the
spectra calculated kom an exact numerical solution of
the time-dependent Schrodinger equation involving only
the log and the le„states at the same laser intensity.
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The fact that both the harmonic peaks and the multipho-
ton resonance peaks appear clearly in the two-level cal-
culations suggests that further analysis of the two-level
system can be useful for the explanation of the harmonic
and especially the multiphoton resonance peaks. We per-
form this analysis through an analytic solution obtained
by making appropriate approximations to the two-level
time-dependent Schrodinger equation.

For a two-level system, one writes the time-dependent
wave function g(t) = cq(t)gq + cs(t)gs, where Qq and
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FIG. 1. Energy levels of some lowest states of Hz+.
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FIG. 3. Same as Fig. 2 but with two-level calculation. (a)
exact time-dependent calculation; (b) WEB-Mathieu calcu-
lation.
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v(2 are the time-independent eigenfunctions of levels 1
and 2. The time-dependent Schrodinger equation for this
two-level system interacting with a laser field becomes

where b = 1dp/[1dp(1 —q/2p2)]. From trigonometric rela-
tions for cos (z sin(8) ) and sin (z sin(8)) in terms of Bessel
functions J„(z)[8] we can write that

'ccI = —(dpcI + OR cos(ddt)c2~

zc2 = OR cos(Qrt)cI.
(2a)
(2b)

A = cos[Pt —h sin(2t)] (7a)

Here ~ is the laser &equency, ~0 is the transition &e-
quency (heep ——E2 —EI) and OR = dpEp is the Rabi
frequency with do and Eo being the transition dipole mo-
ment between levels 1 and 2 and the maximum absolute
amplitude of the external electric field, respectively. Dif-
ferentiating (2a) one more time one obtains

iCI = ldpCI—+ OR Cos(ddt)C2 —ORtd Sln(ddt)cg.

B = bsin[Pt —h sin(2t)] (7c)

= cos(pt) ) e2»J2„(h)cos(4nt) + sin(pt) ) e2»+I
n=0 n=o

x J2„+1(h)sin(4n+ 2)t, (7b)

For nonresonant field excitation, such that uo pp ~ the
term OR1d sin(ddt) c2 on the right hand side of (3) is small
compared with the other two terms. Consequently by
neglecting this term, one obtains by also using (2b) that

= b sin(pt) ) e2»J2» (h) cos(4'At) —b cos(pt) )
n=0 n=o

x J2„+1(h)sin(4n+ 2)t, (7d)

c; —itdpc'1 + OR cos'(ddt) c1 ——0. (4)

Making a further approximation that —i1dpc'I ——1dpcI [in
Eq. (2a) this assumes (dp » OR], one arrives at the
second order equation

c1 + [p —q cos(2t)]c1 ——0,

where p = [(1dp2 + OR2/2)/1d2)1~2, q = (OR2/2)/ur, and
t = tdt —m/2. Equation (5) belongs to the family of the
well-known Mathieu equation.

Since it is assumed that up » OR, then p » q.
Under these circumstances, seeking a WEB solution of
the type exp(ki fpdt) where p = QP2 —qcos(2t)
P[1 —q/(2P2) cos(2t)] to (5) is appropriate since the
square root has no zeros or turning points. After some
manipulation one can show that the normalized WKB
solution of (5) satisfying the initial conditions for t = 0:
cq ——1, c~ ——0 and cq ——i~o, is given by

c1 ——cos P
~

t — sin(2t)
~

( q

4 2

+ibsin P ~

t — sin(2t)
~

= A+iB,q

4 2

where ep ——1; e„=2, n = 1, ..., Oo, h = q/(4P). Using
Eq. (2b) and keeping in mind the initial condition that
c2 ——0 when t = 0, we have, furthermore,

C2=
iO~ .OR(A+ iB) sin t dt + i Bp

.OR ~ lBsintdt+ i
~

Asintdt+ Bp
~

. (8)

Here, Bo is an integration constant which takes a real
value so that the initial condition for c2 is satisfied. The
laser induced dipole moment is by definition

d(t)= dp(cIcz) + c.c.

~

—A Bsintdt+ B Asintdt+ BpB
~

l2ORdp t'

= "a+"~) (9)

where we have used Eqs. (6) and (8). In Eq. (9),
dh = "

(—A f Bsintdt + Bf Asintdt) and d
"+BpB. Using the expansions (7b) and (7d) we ob-

tain readily for each term in (8),

f b . sin(1 —p —4n)t sin(1+ p+ 4n)t sin(1 —p+ 4n)t sin(1+ p —4n)tBsintdt = — ez»J2» h +
4 - " "

( 1 —P —4n 1+P+4n 1 —P+4n 1+P —4nn=o

b ). sin( —1 —P —4n)t sin(3 + P + 4n)t

sin( —1+P —4n)t sin(3 —P+ 4n)t~+ —1+P —4n 3 —P+ 4n (10a)

1 —cos(1 + P + 4n)t —cos(1 —P —4n)tAsintdt = — e2„J2„h +
4 ( 1+P+4n 1 —P —4nn=o

—cos(1 + P —4n)t —cos(1 —P + 4n)t ~
+ +1+P —4n 1 —P+ 4n
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1 (—cos( —1 + P —4n) t —cos(3 —P + 4n) t
+ ) e2n+1 2n+1 ( ) +—1 + P —4n 3 — + 4n

—cos( —1 —P —4n) t
—1 —P —4n

—cos(3+ P + 4n)tl
3+ P+ 4n

(lob)

1= 1 1 1 1
go ——) e2„J2„(h)

4 - " " ~l+4n+P 1 —4n —P 1+4n —P 1 —4n+P)+ + +
n=o

1 1 1 1
+ ) e2n+1 J2n+1 (h) +

4 i
—1 —4 +P 3+4 —P 3+4 +P —1 —4n —P

(10c)

We obtain finally from (7a), (7c), (10a), and (10b)

h

b / sin[(1 —4n) t —h sin 2t] sin[(1 + 4n) t + h sin 2t]

4 l
1 —P —4n 1+P+4n

n=o

sin[(1+ 4n)t —h sin 2t] sin[(1 —4n)t + h sin 2t] l
+

1 —P+ 4n 1+P —4n )
b . ~ sin[( —1 —4n) t + h sin 2t] sin[(3 + 4n) t —h sin 2t]

sin[( —3 —4n)t —hsin2t] sin[( —1 —4n)t —hsin2t] &

+ +3+P+4n —1 —P —4n

Using an expansion like (7d), e.g. ,

sin[(l —4n) t —h sin(2t)] = sin[(1 —4n) t] ) e2„J2„(h)cos(4n't) —cos[(l —4n) t] ) e2 +1J2„+1(h)sin[(4n' + 2) t]
n'=0 n'=0

—Q e2n~ J2n~ (h) ( sin{[i + 4(n' —n)]t}+ sin{ [1 —4(n + n')]t})
~l O

——) e2n~+1J ~ 2n(+hi)(si {[n3+4(n' —n)]4+ sin{[1+4(n+ n")]t})
n'=0

—1 ) E2n J2„(h)(cos{[1+ 4(n' —n)]mt} + cos{[1—4(n + n')]mt})
~l 0

1
+ —) e2 +1J2n +1(h)(cos{[3+4(n —n')]mt + cos{[1+4(n' + n)]mt}),

n'=0

where the relation t = ut —m. /2 has been used, it is easy to show from (12) that (11) only contains frequencies at
odd harmonics, i.e. , 1, 3, 5, ..., (2n+ 1)u. Equation (11), i.e. , dl„generates the odd harmonic spectrum. It can also be

shown that the strength of the first harmonic peak is proportional to (OR Jo (h)), that of the third peak proportional

to (ORJo(h) Ji(h)), and that of the fifth peak proportional to (ORJ1(h)) and so on (if h = OR/8uruo is small).
Thus in the weak field limit (h « 1) the perturbative formula for the laser-induced dipole moment is recovered, i.e. ,

the dipole moment component of nth harmonic is proportional to the nth power of electric field. Furthermore, from

(7d) we obtain
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d = 2ORdpBQB
m

2ORdp 5
Bp —) t2» J2„(h)(sin(p + 4n) t + sin(p —4n) t}

n=p

b
Bo

2 ) &2»+1J2»+x (h)(sin(p + 4n + 2)t + sin( —p + 4n + 2)t}
n=p

ORdpBpb ) &2»J2»(h)(»n[(p+ 4n)~t —px/2] + sin[(p —4n)ut —p~/2]}

) &2»+x J2»+1 (h)( —sin[(p + 4n + 2)ut —pn /2] + sin[(p —4n —2)~t —p~/2]}
n=p

Equation (13) contains nonharmonic &equencies at P,
P + 2,..., P 6 2n times the driving &equency ~. These
are clearly harmonic sidebands of the resonant &equency

4a70 +0~P uo. In fact, since P = ', " —ere, the cen-

tral (broadest) multiphoton resonance peak closely cor-
responds to the level spacings up. The strengths of these
multiphoton resonance peaks decrease according to the
order of the Bessel function, i.e., the strength of the P+2n
peak is proportional to [Oxx J2„(h)l . Figure 3(b) gives
the spectrum calculated froxn the above analytic solution.
A comparison between Figs. 3(b) and 3(a) shows that the
analytic solution is capable to predict all the correct emis-
sion f'requencies. Quantitative agreement is achieved for
the strengths of the first order harmonic peak and the ze-
roth order multiphoton resonance peak. The analytic so-
lution, therefore, agrees well with the spectra &om the ex-
act two-level calculation [Figs. 3(a) and 3(b)] so that the
origin of the multiphoton resonance peaks are now easily
identifiable. The conditions that the Mathieu-WKB so-
lution is valid is that the photon &equency u &( ~p and,
furthermore, the resonance &equency up && OR = dpEp,
the Rabi frequency. These conditions are well satisfied,
since for H2+ at R = 2 (do —1.05 a.u. ), A = 1064 nm,
I = 10 W/cm, we have ufo ——11.86 eV; Oxx = 0.46 eV,
and u = 1.16 eV. Furthermore, it can be shown that the
Mathieu-WKB treatment also applies to an equally sep-
arated, equally coupled three-level system. The analysis
for this three-level system is very similar to the two-level
case, which can be found in the Appendix.

Let us now turn to the explanation of the high-order
nonharmonic radiation, i.e., radiation at the &equencies
14.6hcu, 16.6~, etc. We will show that this radiation
comes &om higher coupled H2+ level. Figure 4 is a spec-
trum &om an exact three-level time-dependent calcula-
tion. The three levels included are the lowest three levels
of H2+: the 1'~, the 10'„,and the 2o~. The inclu-
sion of the 2'~ level is necessary as the energy separa-
tion between the 1cr„and the 2o~ levels, ~j is 7.67@v
(for the lo~ and the 20'g levels, uo is 10.18Ru) and the
dipole moxnent is 0.81 a.u. (for the 10's and the lo'„
transition this is 1.05 a.u.). Figure 4 shows that the
los -+10„~2ossystem radiates at (a) the odd harmonic
frequencies (&u, 3u, ...,); (b) the multiphoton resonant &e-
quencies (10.18&v,(10.186 2)ur, ...,) and (c) the high-order
nonharmonic &equencies ((17.85 + 1)tu, (17.85+ 3)ur, ...,).

@(t)=) exp( —iext)4x(t)
2

= ) exp( —ice t) ) g~ exp(inst),

(14a)

(14b)

where e~ is the jth quasienergy and in Eq. (14b) we
have used the fact that 4~(t) is a periodic function with
the same period as the laser. We call gx the nth Floquet
mode of 4~ (t). Next we define a time-correlation function

I'(r) = (~(t )I~(t + r)). (14c)

It can be shown by using (14b) and (14c) that the time-
correlation function can be expanded by a Fourier series
associated with the dressed state energies (the Floquet
or quasienergies), i.e.,

P(r) = ) ) d'„exp[—i(e, —nor)r], (14d)
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FIG. 4. Same as Fig. 2 but with three-level calculation
involving the 1cr~ -+1o„—+20'~ transitions.

We will show that all these &equencies can be clearly
explained in a Floquet (dressed) picture. According to
the Floquet theory [9] the time-dependent wave function
@(t) can be expanded into a Floquet series:
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where d~ are the corresponding expansion coeKcients
The power spectrum of the time-correlation func-10&. Th

tion is given by

T2
2

~P(co)
~

= P(~)e * d~/(T2 —T, )
T1

(14e)

c(2p p)
0

c(1p„) e(1cr )
I +i I

The Floquet energies are then obtained from the power
spectrum of the Fourier series. Figure 5 gives the Fourier
power spectrum of the time-correlation function of the
three-level system described above. It is seen that in
Fig. 5 three quasienergies can be readily identified. These
are marked as 1—3. Each peak corresponds to a Floquet
mode Q~ which has a definite parity oz( —1)", where o~
is the parity of the jth bare state of the system [11].The
transitions between pairs of the Floquet mode with oppo-
site parities (even parity +; odd parity —in Fig. 5) give
rise to the radiation at various &equencies as illustrated:
(1) the harmonic frequencies indicated by solid horizontal
lines; (2) the multiphoton resonant frequencies by dashed
horizontal lines; and (3) the high-order nonharmonic fre-
quencies by the dotted horizontal lines. It is noted, how-

ever, that the high-order nonharmonic radiation from the
full calculation (Fig. 2) is much stronger than that from
the three-level calculation. The high-order nonharmonic
peaks are also split and slightly shifted from the three-
level predictions (e.g. , 16.6hu vs 16.85hu). These are
attributed to excitations of even higher H2+ levels and
continuum, which are included in the full calculation.
One sees clearly from the exact calculation (Fig. 2) and
the three-level calculation that the log ~1o.

„

transition
emits at its resonant frequency uo ——10.18m with even
sidebands, uo 6 2u. This is in agreement with the two-
level analytic solution, Eq. (13). Higher sidebands occur
at the combination kequencies u' = no+ u~ 6 ~2n+ l,u

1
o

i.e. , the log ~1o„-+2o~transition frequency, is accom-
panied by odd harmonics. This is in agreement with
the quasienergy spectrum, Fig. 4, which shows all tran-
sitions (emissions) occur between different parity (+ and
—) states.

III. THE NEAR-RESONANCE REGION
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At the internuclear separation R = 5 a.u. the tran-
sition kequency between the lo~ and the lo„state is
0.047 a.u. (about l.loco). We now enter the near-(one-
photon)-resonance region. Photon-emission spectra for a
two-level system resonantly driven by a relatively weak
laser field have been extensively studied over the past
few decades (see, e.g. , the review Ref. [12]). A well-
known feature of the photon-emission spectrum, Mol-
low's triplet [13] can be explained in a field-dressed pic-
ture as, e.g. , described in Ref. [14]. Radiation emitted
by a resonantly driven hydrogen atom has recently been
theoretically studied by LaGattuta [15]. We will show in
this work that multiple triplet structure appears for the
spectrum of a resonantly driven H2+ molecular ion in an
intense field, i.e., Mollow triplets occur at each (odd) har-
monic order. We will also show that recurring triplets can
be explained by a dressed picture analysis. Figure 6(a)
shows the spectrum from the 3D time-dependent calcu-
lation for the H2+ at R = 5 a.u. interacting with a

1064 nm, I = 4 x 10is W/cm2 laser field (with
an ionization rate of 7.04 x 10 /sec. ). The spectrum is
well reproduced by a two-level (exact) calculation as is
shown by Fig. 6(b) (Rabi frequency A~ = 1.86Lu), in-

dicating that the resonant coupling of the lo and theg
10.„states with the driving field dominates the whole
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FIG. 5. Power spectrum of the time-correlation
P(~) for Fig. 4. [cop = e(lcr„) —

e(los�)

co& ——e(2og) —e(lo„)= 7.67co.]

function
10.18';
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FIG. 6. Photon-emission spectrum of H2+ at R = 5 a.u. ,

I = 4 x 10 W/cm, A = 1064 nm. The laser pulse is

gi by E f(t) ( t), h f(t) = p( —~— ' ~

) ft2
5

0 ( 't ( tip and f(t) = 1 for 30 & t & tip, where ts ——5 cycles
and tip = 10 cycles. (a) 3D time-dependent exact calculation;
(h) two-level calculation.
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process. The strengths of these peaks quickly fall in in-
tensity or eKciency &om small to large harmonic orders,
showing that the probability of the process of n-photon
absorption followed by subsequently single-photon emis-
sion becomes much smaller as the number of virtually
absorbed photons n increases. It is also seen that each
harmonic peak (up to the seventh order) is accompanied
symmetrically by two strong sidebands. The energy sep-
arations between the neighboring sidebands all take the
same value. These can be explained in a dressed molecule
state picture [16].

Let us denote two levels with opposite parities by ~a)
and ~b) and define the Rabi frequency by

Q~/2 = (b, n —1~Vg~a, n),

tions at frequency 0 as illustrated in Fig. 7(a). Now let
us go to higher order terms. Figure 7(b) illustrates the
dressed two-level system with higher-order photon states,
i.e., nonresonant states. Here the transitions induced by
real resonant photon processes are marked as horizon-
tals, those induced by virtual processes are marked by
the dashed lines. The virtual transitions correspond to
the fact that the matrix elements (b, n+ l~VL, ~a, n) g 0.
We see that, for example, the ~a, n) state is now not only
coupled to the ~b, n —1) by the resonant photon tran-
sition but is also coupled to the ]b, n + 1) state by the
virtual photon transition. Similarly, ~b, n —1) is coupled
to ]a, n —2) state for the same reasons as above and so on.
Consequently, the dressed state wave function is given by
the linear superposition

where VL, ——p, . E is the two-level matter-laser interac-
tion hamiltonian where p is the dipole moment and E is
the field operator. In the rotating-wave approximation,
the dressed states are a linear superposition of the initial
state a and the final state b,

~+, n) = ~a, n) + Ib, n —1). (16)

Figure 7(a) shows the two-level system in the dressed
representation. The ~+, n) are formed due to the radia-
tive interaction (15). The transition matrix elements
for spontaneous emission between the ~k, n) and the

, n —1) states are nonzero since the spontaneous one-
photon radiation matrix element

(Oy, b, n —l~y, EI, ~lg, a, n —1) = (OI, ~EI, ~lI, )p, s g 0,

(17)

where p, g is the transition moment and EI, is the electric
field operator for the spontaneous photon of wave vector
k. The ]+,n) states are, therefore, radiatively coupled
to the ~k, n —1) states by emitting spontaneous pho-
tons at &equencies ~, u 6 O. The effective &equency
0 = gb2 + O&2 is determined by the detuning b and the
Rabi &equency OR. Mollow's triplets occur as transi-
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FIG. 7. The dressed energy levels of a near-resonant driven
two-level system (a) spont. aneous emission for resonant
states; (b) complete set of dressed states showing resonant
(solid arrow line) and virtual (dashed arrow line) transitions.

I+ n) = ~la n) + P~b, n - 1) + ~lb n+1)
+([a,n + 2) + re~a, n —2) + $~b, n —3) +

(18a)

~

—,n) = a'~a, n) + P'~b, n —1)
1) + I,

"
Ia, n+ 2)

+ l'r~ ,an—2)+f'Ib, n —3)+ (18b)

where the coeKcients denoted by Greek letters are, in
principle, determined by the detuning and the couplings.
Now it is seen, for example, that the nth dressed state
contains a ~b, n —1) component whereas the (n —3)th
dressed state has the ~a, n —1) component. Again due to
the existence of nonvanishing spontaneous radiation ma-
trix elements between the [a, n 1) and ~b—, n 1) stat—es as
in Eq. (17), the nth dressed state is therefore capable to
emit photons at &equencies 3~ and 3' 6 0', where 0' is
an effective Rabi &equency for that process. In a similar
manner, it can be shown that the dressed state picture
always predicts radiation at frequencies (2n + 1)ur and
(2n+1)m+0', i.e., multiple triplets centered on each odd
harmonic. A Mollow triplet is the first order approxima-
tion to the complete picture. One way to determine the
value of the effective Rabi &equency 0' is to diagonalize
the complete matrix involving all the ~6, n), n = 0, ..., oo
states illustrated in Fig. 7(b). It is worth it to note that
even harmonics, i.e., the emission of 2n~ energy pho-
tons is impossible from the above analysis since the n and
(n —2) dressed states never have a and b components with
the same laser photon number [Eq. (18)],which is a pre-
requisite for an allowed spontaneous transtion [Eq. (17)].
It is possible, however, that the odd harmonic sidebands
move to and coincide at the even harmonic (2nhu) posi-
tions for certain intensities thus giving rise to radiation
of even harmonics [4,17].

An alternative way to determine the effective Rabi fre-
quency 0' is to numerically propagate the laser-matter
system in time and calculate the time-correlation func-
tion P(7 ) [Eq. (14c)]. Since the time-correlation function
can be expanded by a Fourier series associated with the
dressed state energies (the Floquet or quasienergies), as
described by Eq. (14d), the Floquet energies (and sub-
sequently 0' which can be shown to have a simple rela-
tion to the difference of the Floquet energies) are then
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obtained from the power spectrum of the Fourier series
[Eq. (14e)]. Figure 8 shows the power spectrum of the
time-correlation function for the resonantly driven two-
level system. One sees pairs of identical quasienergies
separated by Ru, one sharp and one broad and these are

as marked with 6 signs (+ for even; and —for odd)
[11] (also see Sec. II). It is the transitions between these
Floquet modes with the same numbers (i.e. , sharp-sharp
or broad-broad) and different parities that gives rise to
harmonic generation, whereas those with different num-
bers (sharp-broad) and difFerent parities yield the side-
bands [17]. The radiation frequencies obtained from Fig.
8 match well those from Fig. 7(b), thus confirming the
quasienergy contributions to the sidebands.

We emphasize that Figs. 6(a) and 6(b) correspond to
the calculated coherent spectrum. Contributions from
Raman-hke processes can also occur and are therefore
incoherent processes. The features of coherent scattering
are evident from Fig. 6: there is much less scattering
at the driving frequency and its harmonics than at the
sideband frequencies. This is in agreement with two-level
models 15].

IV. THE STRONG-COUPLING REGION

From molecular orbital theory, we know that the en-

ergy separation uo between the H2+ 10~ and lo„states
decreases exponentially as the internuclear separation R
increases [7]. At R = 10 a.u. we have that ufo

——0.014ur

(A = 1064 nm) and O~ = 1.96hu = 0.084 a.u. (for

,Icm j, i.e., we are now in a region where
~ » coo and OR » ufo, the strong coupling region. The
strong coupling as measured by the Rabi frequency OR
is associated with the fact that the transition dipole mo-
ment of the charge-resonant states grows as R/2 asymp-
totically [3]. In this region, an analytic solution can
be found for the two-level system interacting with a

monochromatic light [14,4,18,5]. The expression of the
Fourier components of the laser induced two-level dipole
moment can be found, according to, e.g. , Refs. [4] and [5]

also recover similar results for the three-level case],

d2-+~ = d~, 2(lc~(0) I' —Ic2(o) I')
(2n+ 1)~

x J2o+t (20@/ur)exp[i(2n + 1)art], (19a)

d2„——d q, 2 [cq (0)c2 (0)exp(iA't) —c2 (0)cz (0)

x exp( —iD't)] Jz„(2AR/ur)exp(2inurt), (19b)

where d2„+q are the Fourier components for the odd
harmonics at the frequencies (2n + 1)ur and d2„ for
the radiation at the frequencies 2' 6 0', where 0' =
urp Jp(20~/ur) [4].

Figure 9(a) shows the spectrum of H2+ at R = 10 a.u.
for the laser condition A = 1064 nm and I = 10 W/cm
obtained from an exact two-level time-dependent calcu-
lation. Both odd and even harmonic peaks appear al-
though the even peaks are much weaker. The appear-
ance of the even peaks is due to the fact that uo and
consequently 0' are so small that the splitting between
the 2n+ 0' and 2n —0' lines are simply indiscernible
on the scale of Fig. 9(a). The strengths of the peaks are
given by (19) which in turn clearly depends on the

'

tial state of the two-level system. These initial states are
completely determined by the turn on of the laser pulse
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FIG. 8. Power spectrum of the time-correlation function
for a two-level H2+ at R = 5, I = 4 x 10' cm, a = 1064
nm. Pairs of quasienergies ez, e2 repeat at every ~.
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FIG. 9. Photon-emission spectrum of Hq+ at R = 10 a.u. ,
I =1x10" 2cm, A = 1064 nm. The laser pulse shape
is the same as for Fig. 6. (a) two-level calculation; (b) 3D
time-dependent exact calculation.
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[4,19]. Figure 9(b) shows the corresponding exact spec-
trum calculated by solving the total 3D time-dependent
Schrodinger equation for H2+ . Good agreement between
the two calculations can be found for the third and the
6fth harmonic peaks and especially, the appearance of
the second, fourth, and sixth even harmonic peaks. The
two spectra disagree for radiation with &equency larger
than 7u, the maximum harmonic obtained in the two-
level inodel [Fig. 10(a)]. This must be due to radiative
couplings between the 1o.~ -1o'„CRstates and upper en-

ergy surfaces (it takes about 11.3 photons to reach the
closest upper level, the 3o'z). It is also seen that the
strength of the 6rst peak &om the 3D calculation is two
orders of magnitude larger than that &om the two-level
calculation. This difference reflects the coupling between
the ground state and the continuum (14 photons are re-
quired for ionization) via multiphoton transitions. This
coupling is ignored in the two-level calculation. With this
in mind, the two-level calculation is seen to give reason-
able results at I = 10is W/cm~, where little ionization
occurs (the ionization rate is 1.41 x 10s/sec. ).

Now we consider the high 6eld case where
I=10 4 W/cm2, OR = 6.2u. Significant ionization is ob-
served (57% of H2+ is ionized by a 30 cycles laser pulse
leaving to an ionization rate of 6.1 x 10 /sec. ) in this
case. Figure 10(a) shows the spectrum from the two-level
calculation. It again predicts both odd and even har-
monics. A 6rst plateau region is also identifiable for the
spectrum with a cutoff at the eleventh harmonic order.
This value of the cutoff agrees with the order n = 2O~/u,

which can be obtained &om the asymptotic behavior of
the Bessel function J„(2OR/u), Eq. (19a) as discussed
in detail in Ref. [5]. This corresponds to the maximum
energy acquired by the electron in the two-level system
in presence of the field. Figure 10(b) gives the exact
spectrum from the 3D calculation. It is seen that the
peaks with a cutoff up to the eleventh harmonic order
(referred to as the molecular plateau [5]) appear again
but are more than one order of magnitude stronger than
those of the two-level model, Fig. 10(a). The even har-
monics are too weak to be seen. Furthermore, a second
plateau up to the 47th harmonic order which is associ-
ated with the ground-continuum coupling (referred to as
the atomic plateau) can be identified. The cutofF value of
the atomic plateau can be well explained by a semiclassi-
cal model of ionizing electrons [20]. We conclude that for
intensities I ) 10i4 W/cm2, the two-level description is
not adequate any more and coupling to continuum elec-
tronic states must be considered. This is corroborated by
the exact calculations of the lo'~ ~1o.„population differ-
ence, Ici(t) I

—Ic2(t) I, which appears in the laser-induced
dipole expression (19a). For an exact two-level system,
this population difference should oscillate between —1
and 1 as described by Ref. [5], i.e. ,

ci(t)
I Ic2(t)

I

= cos 1»n(~t)
I

/2OR

(2O~ l - (2OR l= Jo +2 .J2i
I

)
„ i 4 ~ )

x cos(2kut). (2o)

(a)
Oscillations occur at 2', 4~, ..., 2k~ for OR )) ~, in agree-
ment with Fig. 11. From Fig. 11,one sees clearly these os-
cillations are considerably dampened due to higher level
excitations and ionization. The damping rate can be es-
timated to be 6 x 10i2/sec. , which is in agreement with
the ionization rate.
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FIG. 10. Photon-emission spectrum of H2+ at R = 10 a.u. ,I = 10 W/cm, A = 1064 nm. The laser pulse shape is
the same as for Fig. 6. (a) two-level calculation; (b) 3D
time-dependent exact calculation.

FIG. 11. Population difFerence Ici(t)I —Icq(t)I, between
1cre and 1cr states in H2+ at R = 10 a.u. , I = 10 W/cm,
A = 1064 nm. Oscillation frequencies follow Eq. (20). (1
cycle=3.55 fs).
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V. CONCLUSIONS

In this work the photon-emission spectra of the
H2+ molecular ion in moderately intense laser 6elds
(10is W/cm2 & I & 10i W/cm ) at A = 1064 nm have
been calculated. The dominance of the 10.

g
—lo.„charge-

resonant states of the symmetric molecular ion separated
by transition frequency ~o allows one to de6ne three re-
gions. The multiphoton excitation region: u (( up,' the
near-resonant region: cu ~0., and the strong coupling
region: O~, ~ &) coo, where O~ is the Rabi &equency,
according to the variation of internuclear separation B.
Simple models are compared to a rather computationally-
demanding exact 3D time-dependent method. In the
multiphoton excitation region, harmonic peaks, multi-
photon multiplet peaks and other nonharmonic peaks
coexist. It is shown that both the harmonic and the
multiphoton resonance structures can be described by a
two-level analytic theory based on a %KB-Mathieu equa-
tion solution. High-order nonharmonic radiation can be
explained in a dressed state analysis involving more levels
and frequency assignments are con6rmed by calculating
the Floquet (quasienergy) states from a time-correlation
function. In the near-resonant region, a multiple Mollow
triplet structure is obtained. This structure is explained
using a dressed picture analysis for a two-level system.
The splittings between the neighboring sidebands are due
to transitions between field-molecule quasienergy (Flo-
quet) states and these are confirmed by Fourier analyz-

ing the time-correlation function of the dressed state sys-
tem. The two-level description is found to be quite accu-
rate in this resonant case. In the strong coupling region,
a two-level analytic solution is shown to explain some
of the key structures in the low f'requency part of the
photon-emission spectra, especially the splittings of the
even harmonics which are shown to depend on the Bessel
function Jp(AR/u), which is a measure of the separation
of the quasienergies. The two-level model is shown to
become inadequate as the laser intensity increases be-
yond 10 W/cm because of its neglect of the bound-
continuum or ionization transitions. A complete calcula-
tion such as the 3D time-dependent calculation employed
in this work becomes necessary then. Finally, we empha-
size that all calculations reported here are for single, iso-

lated molecules. Inclusion of macroscopic eHects should
enhance the coherent spectrum reported here [21].
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APPENDIX: THE %VKB-MATHIEU SOLUTION
OF AN EQUALLY SEPARATED, EQUALLY

COUPLED THREE-LEVEL SYSTEM

We suppose that the total time-dependent wave
function g(t) =g,. i c;(t)vP;, where g; is the time-

independent eigenfunctions of level i. The time-
dependent Schrodinger equation for the equally sepa-
rated, equally coupled three-level system interacting with
a laser field is written as

ic'i = —(dpcr + OR COS(ddt) C2

2c2 = AR cos(ddt) (ci + cs),
2cs ——Apcs + OR cos(hest)c2.

(Ala)
(Ajb)
(Alc)

Here u is the laser frequency. The energies of levels

1, 2 and 3 have the values of —~0, 0, and ~0, respec-
tively. We de6ne the Rabi frequency O~ ——doEo, where
do ——dq q

——d2 3 being the transition dipole moments be-
tween the 6rst and second levels and between the second
and third levels, and Eo being the maximum absolute
amplitude of the external electric 6eld. Next we de6ne
new electronic state symmetry amplitudes x = cq + c3
and y = ci —cs. By adding and subtracting (Ala) and
(Alc), we have

ix = 20R cos(ut)c2 —(spy,

iy = —~0

2c2 = AR cos((alt)x.

(A2a)

(A2b)

(A2c)

We note 6rst that this has the same structure as the
two-level Bloch equations (see Eq. (5), Ref. [5]). Dif-
ferentiating (A2a) one more time and using (A2b) and

(A2c) one obtains

iz = —2uBR sin(~t)c2 —2izOR cos (art) —iurpz.

Since we will be in the regime u « up (i.e., ~p/~ = 10)
and AR « tdp (i.e., Rabi frequency less than the level

separation), the term —20Rur sin(art)c2 on the right hand
side of (A3) is small compared with the other two terms
and consequently neglecting this term, one obtains that

z + [ldp + 2QR cos ((dt)]x = 0, (A4)

or

z + [P —q cos(2t))x = 0. (A5)

Here, p = [(up2 + 02R)/A)2) ~2, q = OR/urz, and t = ut-
7r/2. Equation {A5) belongs to the family of the well-

known Mathieu equation. Since we are in the regime
where ~p && QR, this implies P && q, so that we can
seek a WKB solution of the type exp{+ifpdt) where

p = QP2 —qcos(2t) = P[l —q/(2P2) cos(2t)] to (A5),
since the exact p has no zeros or turning points. It is
easy to show that the normalized WKB solution of (A5)
satifies the initial conditions that when t = 0, cq ——1,
c2 ——0, and c3 ——0 is given by

x = cos P
~

t — sin(2t)
~

q

4 '

+ib sin P ~

t — sin(2t)
~

I' q (A6)

where b = up/[cuP(j —q/2P2)]. This has the same struc-
ture as the two-level solution, Eq. (6) of Sec. II, so that
the ensuing analysis in Sec. II applies. The main dif-
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ference between the three-level and the two-level case, is
that q is now increased by a factor of 2 in the three-level
case. Thus, the ar~~ment h of the Bessel function J„(h)
is also increased by a factor of 2 for calculating the har-
monic and multiphoton resonant spectra [see Eqs. (11)
and (13)]. This ixnplies a stronger photon emission for

the three-level case as compared to the two-level case.
Of interest is that following the analysis of the Math-
ieu function given in Sec. II for the two-level model, the
three-level model with equal energy separation and equal
radiative couplings gives no resonance scattering at &e-
quency 2~o [22].
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