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Light-pressure farce in 1V-atom systems
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An analytical description of long-range collisions between atoms in a laser cooling field is devel-

oped. We begin by considering an N-atom master equation. In the regime of low atomic densities

(i.e., where the mean distance between two atoms is much larger than the laser wavelength) it is

possible to treat the atom —atom interactions in perturbation theory. Furthermore we assume tem-

peratures which allow a semiclassical treatment of the cooling process. The eKect of the presence of
other atoms can be separated analytically into two parts: an attenuation force due to the absorption
of the laser beams in the atomic cloud similar to the results of Dalibard [Opt. Commun. BS, 203

(1988)],which tends to compress the atomic cloud, and s two-atom force due to photon emission and

absorption cycles between different atoms. This force proves to be repulsive for the configurations
studied and prevents the cloud from collapsing. The result for the first-order perturbation expansion
in collision strength generalizes the model proposed by Walker, Sesko, and Wieman [J. Opt. Soc. B
S, 946 (1991))by including additional terms, such as those associated with Raman couplings.

PACS number(s): 42.50.Vk, 32.80.Pj

I. INTRODUCTION

The trapping of neutral atoms has been extensively
studied over the past few years. The deepest optical traps
so far are the magneto-optical spontaneous force traps
(MOT) which trap and cool at the same time [1—4]. This
trap was first established by Raab et al. [5]. These laser
cooling and trapping techniques enable temperatures be-
low 1 mK and trap densities have already exceeded the
range of 10 ~ atoms/cms [6]. As long as the atomic gas is
suKciently dilute the neutral atoms in the trap behave as
an ideal gas except when they undergo short-range colli-
sions. At the high densities reached in some current ex-
periments the atomic cloud becomes optically thick and
collective effects give rise to a profound change in the
characteristics of the atomic vapor.

So far the one-atom theory of laser cooling is well un-

derstood, both on the level of a semiclassical and a fully
quantum mechanical treatment [7—10]. Very little theo-
retical work, however, has been done on the light-pressure
force and diffusion in ¹tom systems and the dynamics
of dense atomic vapors in a trap. These many-atom cou-
plings have mainly two effects. The first is a force that
results &om the local imbalance of the trap-laser ampli-
tude, due to absorption in a random media. This force
was discussed in the context of optical molasses in Refs.
[11,12]. The second force has its origin in the process of
reabsorption of fiuorescence photons emitted by an atom
by a second atom and will in general give rise to a re-
pulsive force. This is basically the model used in Ref. [6]
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[called the Walker-Sesko-Wieman (WSW) model in the
following] for the explanation of the global characteristics
of their atomic cloud. The successful explanation of dark
spot cooling [13] has recently proved the wide range of
applicability of the model.

For an explanation of the interaction between atoms
in the cloud it is necessary to understand ultracold col-
lisions in the presence of the trapping light fields. Since
the preparation of the atoms by the near-resonant laser
beams and the collision itself can no longer be isolated,
the dissipative aspect of spontaneous emission in these
collisions has to be included in the description of spon-
taneous force traps. Burnett and co-workers [14—16] and
Julienne and co-workers [17,18] have given a theoretical
framework for the study of binary collisions in the ul-
tracold regime based on a master equation description
of the two-atom system. For the densities achieved so
far, the global observables of the traps are nevertheless
mainly characterized by the long-range regime of these
cold collisions.

This paper reports on a detailed derivation of a gener-
alized WSW-type model, including physical mechanisms
not contained in the model of Ref. [6], that change the
force between two atoms and including the change in tem-
perature due to collective effects. We start our calcula-
tion with a derivation of the full ¹ tom master equa-
tion including center-of-mass (c.m. ) motion and then de-
rive an expression for the semiclassical forces between the
atoms. Furthermore we derive a Fokker-Planck equation
(FPE) for an interacting ¹tom system, thus including
many-atom corrections in the diffusion coefFicient. We
discuss the semiclassical force in the limit when the atoms
are on the average far apart. This al]ows a perturbation
theoretical treatment of the atom-atom interaction and
mainly recovers the WSW model.

The model in its present form ignores localization ef-
fects of the atomic density on the scale of the laser
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wavelength as found, e.g. , for optical molasses in a lin-
early cross-polarized counterpropagating laser configura-
tion (linJ lin) [10]. We will discuss these effects in the
context of a 2-2 atomic system in a laser con6guration
in a forthcoming publication. For a magneto-optical trap
such spatial order of the cold atoms has not yet been ob-
served and we expect the conclusions &om our model to
be valid.

A. Coherent and incoherent Buorescence from a
N-atom system at lour laser intensities

We consider Zeeman-degenerate two-level atoms at
random positions z (cr = 1, . . . , N) in a counterprop-
agating cr -o+ plane wave laser field (frequency ~) along
the z direction. The electric field operator in the Heisen-

berg picture at position x of the atom a is given by

II. QUALITATIVE CONSIDERATIONS

The mechanism of damping and con6nement of atoms
in a MOT relies on the Doppler cooling of atoms with
Zeeman degeneracy in a magnetic field with uniform field
gradient [19]. In Fig. 1 we show a simple one-dimensional
model of an angular momentum F = 0 to F' = 1 transi-
tion under the influence of a negative uniform magnetic
field gradient in a o -cr+ laser con6guration. When the
atom moves out of the origin (no magnetic field) the ex-
cited F' = 1 states are split into their respective Zee-
man energy levels, and for red laser detuning we induce
a Doppler cooling light force by shifting the atom into
resonance with one of the laser beams. This Zeeman-
shift-induced force confines the atoms and establishes a
harmonic trap potential near the origin, while at the same
time cooling them. In addition to the Doppler cooling
light force the experiments show a strong dependence
on the spatial variation of the trapping beams, such as
misalignment of the Gaussian intensity profiles. The gra-
dient force that is induced by such configurations leads
to all kinds of difFerent cloud topologies [20].

Nevertheless the behavior of the atomic cloud strongly
deviates &om an ideal gas model due to long-range col-
lective eKects induced by optical thickness and photon
exchange between atoms. In the following we give a
qualitative discussion of these many-atom effects for the
regime of low atomic saturation and a summary of the
results we obtained for the high intensity limit including
screening efFects.

Energy

E'+'(z, t) = El+~(z, t) + E.',+'(z, t)

-) -, ).):—'~,'-, '(*-.-*;)~,', (t),

Ianna

q'

El„+l(z, t) = El,+l (z, t)-);):):—,'~,', '(=--*-.)
q Ppa q'.(&,',, (t)) (2)

which is a random quantity with respect to the center-
of-mass positions of all the atoms.

The resonance fluorescence spectrum, as seen by the
atom o., is proportional to the Fourier transform of the
electric field correlation function

(E' '(*= t)E"'(*= t')) (3)

The spectrum of resonance fluorescence consists of
a coherent b-function contribution, proportional to

(El l (z, t) ) (El+l (z, t') ), and an incoherent spectrum
which is related to the quantum mechanical fluctuations
of the electrical field, described by the operator

hE +~ (z, t)—:E +l (z, t) —(E~+~ (z, t)) .

where P~,~(z —zp) is the dipole scattering characteris-

tics [defined in Sec. III, Eq. (39)], p defines the sponta-
neous decay rate, p, is the reduced atomic dipole moment,
and Ap ~ (t) is the atomic lowering operator of the atom
at position zp in a spherical basis ey, eo [defined in Eq.

P

(35)]. In Eq. (1) E„,(z, t) is the vacuum field and

E,&+l(z, t) denotes the incoming classical laser field

The mean of the electric field operator, (El+l(z, t)),
defines an eH'ective electric field

e, laser

Magnetic Field

0

As long as the laser intensity is weak so that atomic
saturation eKects can be neglected, the coherent part is
dominant and the incoherent part of the resonance flu-

orescence light emitted by the atoms can be neglected
(which goes with the square of laser intensity). In this
limit the light is scattered elastically from the atoms.
Thus we can approximate the electrical field operator in
the lou intensity regime for coherent laser input fields

by

FIG. 1. One-dimensional model of a magneto-optical trap
on an F = 0 to F' = 1 transition. The inhomogeneous mag-
netic field has the form B(z) = —Pz and the lasers are de-
tuned to the red of the free-field atomic transition frequency.

El+l(-. , t) = E~+)(-., t) + E.'„+'(*-., t) .

The effective laser field is the sum of the incoming
laser amplitude and the field scattered by the randomly
distributed atoms in the atomic cloud. In the following
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we concentrate our discussion on the stationary limit of
Eq. (2). For low atomic saturation the stationary mean
atomic dipoles are proportional to the stationary local
electric 6eld and are given by

(6)

where gp is the polarizability of the two-level atom. In
writing Eq. (6) we find it convenient to drop the rapidly
oscillating laser frequency (i.e. go to a rotating frame).
The local electric field, averaged over the random posi-
tions of the atoms as indicated by (()), can be shown to
obey the Twersky integral equation of classical electro-
dynamics [21]

+ a ~ ~

FIG. 2. Schematic representation of the screened scattering
characteristic in terms of the multiple scattering series of the
unscreened characteristic.

equation for the coherent field, where the polarization is
expressed in terms of E,g q. We have solved this integral
equation for a J = 0 to J = 1 transition (see Sec. V) un-

der the assumption that the efFective field depends only
on z (one-dimensional model). This provides us with an
absorption coefficient for the laser and an index of refrac-
tion [compare Eq. (84)).

The tensor of the total local intensity at the position
of the atom o. is proportional to

with

x((E ir q (*p))) (7)

u„(z"—*p) =— rI@„—(z——zp)
2

(8)

and n(zp) the position dependent atomic density in the
cloud. Equation (7) expresses the local field as the sum
of the incident laser field and the light fields scattered
from the other atoms where the local field is calculated
in a self-consistent way. This equation can be recognized
as a Green function solution to the basic Maxwell-Bloch

where we have averaged again over the random positions
of the atoms as indicated by (()). This intensity consists
of a coherent and incoherent contribution corresponding
to the first and second term on the right-hand-side of
Eq. (9). We note that in the present context the co-
herent and incoherent intensity is defined with respect
to position Overoges. The intensity is a solution of the
integral equation

(-~)q((&'p'q(x:)&'X' q(x=))) =(—~)q((&'p'q(x"-))) ((&'p'-q(x=)))+) f~'xpvq (*=.—*p)v;.(*= —*p)a(*p)(-&)'
e

(10)

According to Eq. (10) the total intensity at the position of atom a is the sum of the coherent intensity at z plus the
contribution from the other atoms. The kernel of the integral equation (10) involves the function v~, (z —zp) which
is defined by the integral equation [21] [this basically rewrites Eq. (7)]:

vq, (z —xp) = aq. (x —zp) + ) f d xqaq, (x —xq)v, , (zq —zp)a(xq) .
e'

The function v~, is a screened scattering characteristic [21]. To see the physical significance of the integral equation
for v~, we iterate (11),

vq. (x —xp) = aq, (xo —zp) + ) f d'zqaq. , (x —zq)u. .(zqzp)a(zq)
s'

y 3 f pqxqdqxqaq (x —x„)a..(x, —x.q)a. .(xq —xp)a(xq)a(xq) + "
v' s'

(12)

The first term, us, (z —zp), represents the unscreened scattering characteristic of a scatterer P at position z
The second term is the correction to this scattering characteristic due to additional scattering &om another atom
at position z~. Therefore vz, (z —zp) represents the screened scattering characteristic from atom P going through
various other scatterers. In Fig. 2 we schematically show the expansion of the screened scattering characteristic into
the multiple scattering series.

In summary, the two Twersky integral equations for the coherent light scattering (7) and the total intensity (10)
constitute the basic equations for the light intensity in the atomic cloud [22].
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B. Semiclassical forces in the lorn intensity limit

In the regime where the laser cooling can be treated semiclassically, the mean Doppler cooling force on the atom o.
at rest is given by

with g e&A& the mean atomic dipole moment. If we insert the expression for the atomic dipole [Eq. (6)] we get for
the mean force

((&(*.))) =
((~l -~) (—~)'v&.'~,', (*.)~, ~E.';', (*=)+, "l)) (14)

where (()) again denotes the position average of the atoms in the vapor. The mean force is proportional to the negative
gradient of the tota/ intensity.

We can evaluate Eq. (14) by use of Eqs. (9) and (ll) and split the force ((F(x ))) into three different contributions,

((F(x ))) = Fs(x )+ ((F~(x=))) + ((F~(*-))) .

The first term, I"s, is the familiar semiclassical laser cooling force in the limit of negligible trap laser attenuation
(one atom theory). The second term, ((F~)) is an attractive force due to the attenuation of the trapping laser beam
amplitude in the cloud (proportional to the negative gradient of the coherent intensity). We will consider this force
for atoms at rest,

((F~(x=))) + Fs(* ) —= -n).(-1)'((~E.'&,', (* ))) &- (() &.'~,', (x=))) + c c
X~

(16)

Since the absorption length of the coherent intensity is smaller than the corresponding absorption length of the total
intensity the difference to the total force must give an additional repulsive force. There is of course a drift term
corresponding to the force proportional to the lowest order in velocity. This velocity dependent drift term which

determines the cooling time is considered in a future publication. The third term, ((FR)), in Eq. (15) is a repulsive
force,

((+ (*-)))= —~).(
—~)' f~'*~"- (*:—*~) - ";,(*:—*~)((u&.' ', (*~)r &."',(*~)))+"

+a

We will show that this is basically the (low intensity) repulsive force found in the WSW model [6].
Example: To be specific we consider now the case of an angular momentum J = 0 to J = 1 transition. Furthermore

we limit ourselves to the weak absorption limit, defined below by Eq. (85). The result for the attenuation force is

OO z

((F & (x) )) = I,(eo (crl, ) dz'n(z') — dz'n(z') e„
z

r—
OO

(18)

in agreement with Refs. [6,11]. The absorption cross section is defined by

I,j denotes the intensity of the incoming laser field, ko is the wave vector of the atomic transition, A is the detuning,
and co is the permittivity of vacuum.

For the evaluation of the repulsive force we neglect for simplicity the multiple scattering processes and replace

v~, (x —xp) by the unscreened scattering characteristic u~, (x —x)s). Using this simplification the repulsive part is

given by

((+R(*=)))= ) /~'*a"(*a) ) f,. (8 4)f;(~ ).)„.;;,.( —,

8

dvs;, , (v)s (v)) e„ (20)
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where fv, (8, P) defines the angular distribution part of

the scattering characteristic P, (x —xp) [see Eq. (39)]
and S s(v) denotes the Mollow weak field absorption
spectrum [23] for q polarized light defined by

S,e( )
—= —f dte' '( A At(t) ) . (2I)

The elastic part of the Mollow emission spectrum for an
atom at position z is given by

Thus we see that the repulsive part is determined by the
overlap integral of the emission and absorption spectrum
of the two-level atoms and inversely proportional to the
square of the distance between the atoms. We interpret
this result as a force due to absorption of photons by
atom n due to fiuorescence photons emitted by atoms )9

(Fig. 3). Note that Eq. (20) can also be written in the
WSW form [6]

with

(op)—:2zzS s(v = 0) . (24)

C. High intensity effects, screening and the Vlasov
equation

((F,it(Z ))) = I,ieo ((TL,)((rg)

/d' t"(.*et) &:&e(I d)f; ,(tt I).
8

(& —*)s) (23
4z ks2]z —xp]s

spectrum for a J~ = 0 to J, = 1 transition in a coun-
terpropagating 0' -o+ laser field (V system). In addition
to the WSW model we get other contributions to the
force. For the V system we find a Raman coupling be-
tween the 0 and 0+ transition; this has the tendency
to reduce the repulsive force E~. In addition we find for-
ward four-wave-mixing processes along the direction of
laser propagation [24] which tend to decrease the repul-
sive force on an atom o.. Nevertheless, the number of
atoms that are involved in these processes is small com-
pared to the slowly position dependent standard WSW
and Raman coupling processes and we expect the modi-
fication of the two-atom force by these wave-mixing pro-
cesses to be small. For the V system this inelastic force is
repulsive, but we expect that for other atomic configura-
tions the gain-absorption profile will show new interesting
features [25,26].

The above discussion of the two-atom force has been
limited to lowest-order perturbation theory (in a I/kr
expansion). In this approximation the repulsive force
decreases with I/r2 In .Sec. VI we evaluate higher-
order terms of the multiple scattering expansion. We
find screening effects in the repulsive force on a scale
given by the absorption length in the medium [see Eq.
(97)]. In our calculations we neglect the changes in the
density operator due to the incoherent background field.
This approximation is shown to be valid for mean atomic
distances much larger than the laser wavelength. Never-
theless, for very high densities the incoherent background
field changes the atomic density operator and therefore
the mean atomic dipole and spectra. A possible way
to include these corrections more properly would be the
use of radiative transfer equations to solve the one-atom
problem [27]. Our result for the force is valid in the limit
ki((r p)) &) I in the sense of an expansion in the inverse
mean distance between the atoms.

In Sec. IV we derive a Fokker-Planck equation for the
N-atom Wigner function (quasidistribution function for

For higher intensities of the laser beams part of the
Buorescence light is scattered inelastically &om the atoms
at frequencies that differ from the laser frequency. This
leads to a number of new eHects which are discussed in
Sec. V in the limit of mean atomic distances much larger
than the laser wavelength. We find that the attenuation
force Il~ decreases with saturation [see Eq. (88) in Sec.
V]. In agreement with the WSW model the repulsive force

FR is again proportional to the emission and absorption
spectrum as in Eq. (20) where

5-

4-

2-

ISIl
~ ~
I ~

I
I
I

~ I
I

~ I
~ I
I
I I
I ~

~ I ~ I
~

~ I

h;-1.5 y
Q=3.0 y

S (e) = —f dte ' e(At(t)A )

includes the inelastic components [see Eq. (89) in Sec.
V]. Figure 4 shows a typical emission and absorption

-15 -10 -5 0 5

(v—m) /y
10 15

FIG. 3. Pair repulsion of atoms due to absorption of Suo-
rescence photons.

FIG. 4. Emission (solid line) and absorption (dashed line)

spectrum for o+ polarized light as a function of the &equency
v for a J~ = 0 to J, = 1 transition in a counterpropagating
o-0+ laser con6guration. The parameters are A = 1.5p and

0 = 0+ ——0 = 3p. The negative regime in the absorption
spectrum corresponds to gain.
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positions and momenta). The drift term in this equation
contains the one- and two-atom forces while the diffusion
term (which is not explicitly calculated in the present
paper) corresponds to fluctuations associated with these
forces. In the simplest case one can derive an equation
for the one at-om spatial distribution function n(r). This
can be extracted from the ¹ tom problem by a screened
Vlasov approximation which only keeps pair correlations
between the atoms (see Sec. VII). The equation derived
in this way is equivalent to that used in Ref. [6] [Eq.
(101) in Sec. VII],

(26)

Here T,g denotes the effective temperature of the atomic
vapor determined by the atom-atom corrected diffusion
constant and cooling time.

In summary, we have shown that we can derive a
WSW-type model from an N-atom master equation un-
der essentially three conditions. First, a semiclassical
treatment must be valid. Second (mainly for conve-
nience), the mean distances between the excited atoms
have to be much larger than the trap laser wavelength.
Finally, the collisional processes must be weak enough
to ensure a small correlation between the atoms (i.e. , all
higher-order correlations are approximately given by a
product of atom-pair correlations).

f g2
H ~ = ) + a&.gP&.

i 2m
(28)

is the free atomic Hamiltonian, where the first term corre-
sponds to the kinetic energy of the atom, and the second
term refers to the internal structure of the atom. The
second term in (27) is the free Hamiltonian of the quan-
tized radiation field,

H~F = )/ d q(uqbq bpq, (29)

with bpq the lowering operator of the mode with fre-
quency urq, polarization A, and wave vector q. The last
term in Eq. (27),

HAF — d x Dpg x E+ z +Ec] z~t +Hc. ,

(30)

D.q(z) = ) Di lb(z —X )—:) Dl, l(z) (31)

describes the interaction of the atoms with the light field
at position X (X is the position operator), where

is the atomic dipole operator,

III. THE MODEL E~+l(z) = i )f d q — epqbpqe
2ep 27I

(32)

A. Generalized optical bloch equations for a system
of N two-level atoms

We consider mechanical light effects in a system of
o. = 1, . . . , N distinguishable atoms strongly driven by
laser light, and interacting via long-range dipole-dipole
interactions. The internal degrees of freedom of each of
these atoms are modeled by a two-level system with Zee-
man ground states

~
Jg, Mg) and excited states

~
J„M,)

corresponding to an angular momentum Jg ~ J, tran-
sition. We define a dipole transition operator from the
excited to the ground state by D,:—Pgp, P, with Pg
and P, atomic projection operators, and p the atomic
dipole operator. The total Hamiltonian of the system is
(we set 5 = 1 in the following)

the electric field operator, and E,)(z, t) the classical inci-
dent laser field. By epq we denote the polarization vector
for the mode characterized by A and q.

Treating the radiation field as a reservoir, we derive a
master equation for the N-atom reduced density operator
p(t) by tracing the total density operator W(t) over the
vacuum modes of the radiation field, p(t) = try W(t). We
obtain

i ) [H.~ p(t) —p(t)—H ]
a&A

+~+f ~'*~'*'&&:&)*) &(&)

a,P

~ = HoA + IIoF + HAP ~ (27)

Here with H & an effective non-Hermitian Hamiltonian

P~ l+
~

d'zD~ ~(z) E+ (Z, t)+H.c.
~

—Z ) f d'zd'z'D&, &(z) g (z —z') D&Z&(z').' p~-
(33)
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A derivation of this equation &om the point of view of
an Ito formalism of quantum stochastic difFerential equa-
tions can be found in Appendix A.

In Eq. (33) 6 = w —u,s denotes the laser detuning,
and p is the spontaneous decay constant. The complex
(tensor) interaction potentials g = C +iP, as defined
by

describe the dipole-dipole and radiative interactions be-
tween the atoms located at z and x'. These potentia»
are functions of the interatomic distance

~
z —z' ~. For

large interatomic separations P, C -+ 0 and Eq. (33)
reduces to the generalized optical Bloch equations for N
noninteracting two-level atoms. Note that for x ~ z'

(atomic self-interaction) the term pF(0) = p reduces to

the radiative decay width of the atom while G(z ~ z')
contributes to the Lamb shift of the two-level atom (in
the following we assume that this contribution is included

in the transition frequency u,s). Explicit formulas for F
and G can be found in Refs. [28—30] and are given below
in Sec. IIB.

Equation (33) is based on the Markov approximation
which assumes that the time scale associated with retar-
dation is short compared with the typical time scale of

evolution of the system, i.e., ~
i —x' ~/c && &t = 1/~

with
~
z —x'

~

L the dimension of the atomic sample,
and c the speed of light. For a detailed discussion of the
validity of the Markov approximation we refer to Refs.
[31,32]. If the Markov approximation is not made, the
efFect of N-body interactions is to effectively screen the
interaction potential [33]. However, this screening length
is large compared to that associated with scattering of
real photons (see later) provided that p~ z —i' ~/c && 1
is again satisfied. Furthermore, in deriving Eq. (33) we
have assumed a rotating-wave approximation (RWA). It
can be shown that by extending all &equency integra-
tions over the interval —oo & ~ & +oo, we obtain results
which agree with calculations that include all the nonro-
tating terms [31,34].

On the right-hand side of the master equation (33) we

have contributions involving the non-Hermitian Hamilto-

nian H~s (the first two terms), while the last term de-
scribes the return of electrons to the ground state after a
photon emission [but modified by two-body interactions

via P(x —2.")]. The non-Hermitian Hamiltonian H,z
in Eq. (33) consists of a kinetic energy term, the free
two-level Hamiltonian including radiative damping, the
atom-laser interaction term, and the dipole and radiative
interactions between different atoms. This interpretation
is supported by rewriting Eq. (33) in terms of n-photon
contributions to the density matrix p(t): introducing a
projection operator P~"l on an n-photon subspace we de-
fine a reduced density operator p~"l (t) = tr~P&"l W(t),
so that P~"l (t) = tr& p~"& (t) give the probability that the
system has emitted n photons at time t. For p~"l(t) we
find the equation of motion

d,
p'"'(t) = -i ).[H."p'"'(t) —p'"'(t)H."']

+p— dO„- ) d xe '"'"' D~, l(z)
~ (1 —nn)p" (t) . ) d z'e'"'"' D~pl(z)(

)

The last term in this equation involves p~" i&(t) and is thus a source term for the equation describing the time
evolution of p~"l(t). It describes the collective quantum jump of the ¹tom system which is associated with the
spatially coherent emission of photons. So we see, that if the system is observed to have emitted a photon in direction
n, the quantum jump projects the system onto a quite complicated superposition state of all the atoms. For the
problem of two two-level atoms this state is a coherent superposition of the superradiant and subradiant vector state
[28,29] if we initially start with both atoms in the excited state. The relative phase factor strongly depends on the
relative position of the two atoms.

B. Angular momentum decomposition

For speci6c applications we choose a spherical vector basis e~ with q = 0, +1 and diagonalize with respect to
e . J, s = J; . The corresponding eigenvectors are denoted by ~gms) and ~ems), respectively, and we introduce the
atomic lowering operators

) (Jsms lq) J,m, ) (gms) (em, (, (35)

with Clebsch-Gordan coefficients (J,m, lq[ Jsms). Expanding the electric field amplitude in the basis e~,
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f~+~ X = d x E x b x —X~ e*
q=o, +

we can write the master equation as

= —i) (Ht &p(t) —p(t)B& &&)+ —) ) f dt&~p&, (d)e " '"A" & -&p(t)A& & e+
a n q

+q ) ) 'A,' '
~ f dt«dt's'dt(S —X )p'«(d —d')p(t)dt(i' —Xp)

~

A', , ',
(a &) q, q'
a/P

with

Pl, l(z —x')—:lim —— . dA„(hqq-—n qn*, j e'" ~* l"'( 1)q+—q

e-+0 4jt m' u —u) g
—ie

Ilqq (x —z') = 1m[Pi, ,l(z —z')],

and the angular distributions

No(n) = —[1 —(n eo) ]4

Np(n) = —[1+ (n ep) ].
8

The effective Hamiltonian of the system is given by

"2

Beg + i feme ge~e + + l p d xb x —X~ —1 f q x + H.c.
mc q

-'- » fdt*dt*'d.t(* X)dt(*' —X)d&, ,&(*——*"')At & Atp&.

PW~ q q'

The atomic dipole moment p is defined by

~ = (e II D
II g) IV'» + 1

For a discussion of the function P, (z —z') we rewrite the 8qq
—n qn*', term in terms of spherical harmonics,

sr i
Nqq (n) = 8qq

—n qn*, = h'qq
~

—
~
Y, q(n)Y, q '(n),

where n:—(8, p) are the spherical coordinates of n.
If one notes that the exponentials in the integral of P, can be expressed by

e'"""= 4x) i j (k~rg) Y (n)Y '(n'),
e,m

with spherical coordinates n' = (6', y') of r" and jg denoting spherical Bessel functions [35] we can evaluate the

functions (t&, explicitly (see also [32]).

t&', '(d —d') = ~ d«( &l* —to*'I)+(—t)'t'2' '(«')~&«I, ,
I

» &,"(tol*—*'I)I
—+o i

— 'I

: fqq (n'), for kp) x —x'
] m oo.

p z x

hI, denotes the Hankel function of the first kind of order k. For kp~x —x'~ && 1 we find ho (kp~x —z'~)

—h2 (kp~x —x ]) = i
& ~,

~

and—the expression for Q, (x —x ) can be written as a product of an an-(/) I .exp —iko tx —x'
l

~ (—)

gular distribution fqq (n ) and a spherical wave function. The angular distributions we need in Sec. V are given
by
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3 (1
fx z(n') = f x x(n') = —

~

—(1+cos 0') ~,
2 (2 j

fl, 1—(n') = f'
&, &(n') = —

~

-e " »n' t '
2q2 j (4O)

C. Equation of motion for the signer function

For a semiclassical solution of the problem we use the phase space methods commonly used in laser cooling of
atoms instead of classical trajectory descriptions often used in collision physics. For further reference we review the
most important relations. The Wigner operator equivalent to the density operator of a system with c.xn. dynamics is
defined according to Wigner by

3r~(*»" *tv v» " & () = . , ~" " *i —-"»" I((()(*i+-"» ").~" 27ra s 2 2a

Note that W is still an operator for internal degrees of &eedom. This formula has an inverse relation given by

(v1 ' "I( (()ll*i " ) = j ~'(:" ' = '~
(

2
(%+*i) "Pi",( I,

Our aim is to derive a differential equation for the Wigner operator. This equation will be the starting point of our
semiclassical expansion and can be easily written down if one uses some rules of general validity, which have been
derived for translating the master equation to the Wigner representation.

Density operator p~(t) Wigner function W(Z, p, t)

d i P
dt ~& X

8 Pg

e'"' W(x, g7+ 25k, t)

F(X)pg

pgF (X)

- jd k F(k) e's' e '~~'~ '+)'l W(i g7 t)

f d k P(k) e's e' " ~ '+ l W(z, p, t)

Using the notation on the right-hand side of the above tabulation we can write the Wigner operator equation in a
rather coxnpact forxn

+) V W(t) = i) [h,~ W(t) —W(t)h—,~ j
a a

iV) ) g(-) j~().-))(,(v).-'" "I(- )v=l)( (()g( )'
qq

+ ) ) g( ) jd N()(v) '-', a, -
I( —')v; +(—')v.-~)&(()g(p)

(a.&) qq'
aWP

with
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h(~ — -4 —i-

P/a

I' + p) A )f d kf(k, A)eg„e'"' e*&"'( '" ' i+H.c.
q

i ~) ikpra (p: —xp) imp kpR (—ihVp )
qq~ yA e

Ep~O 47I 7]' ~ (d —(dp& —zE

(42)

By E(k, A)e& & we denote the Fourier components of the
classical laser field. Note that the displacement operators
in Eq. (42) are a signature for the processes of momen-
tum exchange between laser and atoms and atoms with
atoms due to the recoil effect of spontaneous emission. So
we see that, in fact, the momentum kicks in the recycling
term [last two lines in Eq. (42)] have both the same di-
rection and show the change in the c.m. momentum. In
the eH'ective Hamiltonian we find the opposite direction.
This shows the change in the relative momentum.

IV. DISCUSSION
OF THE SEMICLASSICAL FORCE

In the preceding section we have derived the master
equation for an N-atom system in a Wigner function rep-
resentation for the c.m. coordinates. Below we will con-
sider the semiclassical limit of this equation, and derive
a Fokker-Planck equation for the N-atom distribution
function

f(z, p, t) =tr;„,W(z, p, t) (4S)

by adiabatic elimination of the atomic internal degrees
of freedom. tr;„q() denotes the trace with respect to
the internal degrees of &eedom. This will provide us
with expressions for the mechanical light forces between
the atoms. The semiclassical approximation is based on
the assumption that the width of the atomic momentum
distribution b,p is broad compared with the momentum
transfers AIc associated with photon emissions and ab-
sorptions, Ap && Ak. Adiabatic elimination of the inter-
nal degrees of &eedom assumes that the atomic distri-
bution changes slowly on the scale given by the internal
atomic dynamics. Although our derivation of the Fokker-
Planck equation for f(z, p, t) is fairly general, our discus-
sion will focus on the atomic light forces (drift terms in
the FPE), and we leave a more detailed study of the dif-
fusion terms to a future publication.

A. Semiclassical expansion

In a semiclassical analysis the Wigner function is ex-
panded as

W(. . . , p +5k, . . .) = 1+) ) hk' 8
W Q 2

82+-) ) r'k. k~
Bp Bp+P 22

xW(. . . ,p, . . .) (44)

= (l:p + l:i + l:2) W(z, p, t), (45)

where 80, Z~, and Z2 are, respectively, the zeroth-, first-,
and second-order terms in the Ak expansion.

Zeroth order

The zeroth-order term Zo is the optica/ 8/och operator
for the N-atom system (see Lehmberg's discussion of the
X-atom master equation [28]). We find it convenient to
write this operator as the sum of two contributions,

0 +&0(&) (2) (46)

a single-atom term corresponding to a semic/assica/ mean
field theory, and a two-particle term which describes the
deviations &om this mean field picture. The single-atom
term 80 is

keeping terms up to second order in hk. In this approxi-
mation the equation of motion for W(z, p, t) takes on the
form

t'B .p. B )—+ ) — W(z, p, t)
(Bt m Bz )

PciiW =i ) (4 +i—
) Pi i —) [Ac icp~i (z )*+Hc],W +p) AcWAc

q n, q

(47)

with E,& (z, t) an effective field determined by a mean atomic polarization (A ) [which will be defined below in Eq.
(49) as the self-consistent solution of the Maxwell-Bloch equations for the propagation of the incident laser field in
the atomic medium]. The term l:o is a turo atom interaction-
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Z("W —= -i~ ) ) 4(,,'(z-. Z—p)(A:WA pq' —A Apq W) —i~ ) ) y,",,'(z-. *—;)(WAq'Apq A.WA pq').

a+P qq' agP qq'

Here

A' = A' —(Aq) (48)

is defined as the atomic lowering operator with its mean value subtracted, 4 +, denotes the complex conjugate of

~E(."(*;)=~E(,"(=.) —);).)'-~,', '(*---*-.)(A )-
q Ppa q'

(49)

is the mean field which is the sum of the incident field and the Beld radiated by the atomic dipoles. Note that by
( ) we denote the expectation with respect to an independent particle density operotor o' defined as the steady state
solution Zo 0' = 0 [see Eq. (69) below].

2. First order

The first-order term in the hk expansion is

Ziw = ——) (F~ l(x ), W) ——) i Gqq (z —zp) i
(AqApq +ApqAq, w)

—i )~ — F,q (z —xp) ~

[AqApq +ApqAq, W]
4 (Bz " ) »

where

i ) ~ Fqq (z xp) ~

' (2Aq WAp 2Ap WAq )4 . (Bz " &»a,p

F (x ) = ) Aq y,E,~ (z )+H.c.
,

( . ,g 8 (+)e.

(50)

will be identified below in the Fokker-Planck equation for f(z, p, t) as the single-atom force due to the mean field
E(&l, and the last three lines will give rise below to turbo-otom forces.

8. Second order

Finally, the second-order terms are

.1 . . 02
r.,w=i-) )

;, »'.'»'-

.i & a+ -).):8
asap ii

) Aq pE(+i

al (a al
»p) &»'- »')

(z ) + H.c. , W

I' -. (-)) —,y,(,,'(z-. zP)A:Apq' W-+ H.

+) ) ~') 'AqwA"
8'Bp' I )
.i(a al &a al

. . 8 (»~ »p) Op' Bp') ) pFqq (x —zp)Aq WApq
19' Oxp

(52)

(53)
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is the average value of n'n~ on line q, where n is the
angular direction of the momentum of the fluorescence
photon. =0. (54)

Pal Blachpref(x&p) = ~opref(z&p) ' pref(z& p)m xa

Discussion The projection operator is defined by

Before we discuss the main features of the adiabatic
elimination procedure, we comment on these terms again.

(1) l:0 is identical to the Bloch problem of N "inde-
pendent" atoms. The atom e located at x is affected
by the effective stochastic field E,ff, which is the sum of
the incident laser field and the mean radiated field of all
the other atoms P.

(2) l:o are the two-atom contributions that give a
correct&on to the mean field picture. ZQ = Cp + Cp

(~) (2)

corresponds to the Lehmberg Bloch operator [28,29] in
the zero-velocity regime (v = 0) and describes a system of
N interacting atoms without any mechanical light effects.

(3) l:q is first order in hk and associated with the

atomic light force operator. The first term, Ii (z ), de-
scribes the usual one atom force operator in an effective
(mean) laser field.

(4) The rest of i"q is associated with incoherent radia-
tive interactions between atoms.

['P&1(* p) —= p- (x p)«'- (&(*p)}

f(z, p, t) =—tr;„,(W(z, p, t)}, (56)

['Pwl(* p t) = p- (* p)f(* p, t) (57)

T X=PX.

Using these definitions, we can write Eq. (45) as

(58)

(a .p. O l—+) —. w(z p, t)
(at -m az. )

= (l'B& h + l'~ + l'2) W(x, p, t) (59)

Obviously P has the characteristics of a projection oper-
ator

B. Adiabatic elimination of internal degrees
of freedom

If the internal dynamics and the time scale of colli-
sions is fast compared with the cooling time one can
adiabatically eliminate the internal degrees of freedom
and derive an equation of motion for the signer func-
tion f (z, p, t) = tr;„t(W(z, p, t)}, which completely de-
termines the c.m. motion of the atoms. The adiabatic
elimination is done by the projection operator formal-
ism worked out in detail in Ref. [36] although we are
careful to include atomic motion in our projection oper-
ator. The choice of our reference state is fixed by the
AI(.. = 0 terms and is therefore defined by the solution of
the N-atom Bloch equation without any mechanical light
effects, since one expects the deviation &om this steady
state to be rather small. Explicitly the reference state
for adiabatic elimination is given by

with

l:n)„hW= l:ow —) — p„f(z,p) tr;„t(W},

l. W = ((l. ) .. + (l ),. ) W

—p„r(x,p) ) — tr;„t(W}
m ~aa

(60)

—) — (1 —'P) W,-mOz

l.",W = (l:g —(l:g)p...+ l:z —(l:2)p...) W .

Obviously we have 'Pl:n)«h —— l B)Ph—:0 and 'PZzP:—
0. Note also that we have included the c.m. motion
through the P—terms. Up to second-order perturbation
theory in hk we get for the equation of motion for the
Wigner function f(z, p, t) (see [37]) (assuming that the
time scale of cooling is much longer than any other time
scale so that the Markovian approximation can be made)

OO—„f(*.p. t)+).=,. f(*,p, t) = [(l'-.). , +(l'-.), ,]f(*,p, t)+ &.t;-.([l-. -(l-.), ,l
'" ~- - --'

Cl 0

[l- —(l- ) .l - (* )}f(*»t) (61)

with (l:q)~, , given by

(l:g), = —) tr;, [I' ' (z )p„f]——) l
4, (z —xp)

~

. „;„t~A Ap p„g
~

8 =(,)„pf c) (+)„58 (

.f c) () „)0——) l
4, (x —xp) ( tr;„,

~

Ap~A p„g (4.;&~= "
& ~p= & )
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and (82)~, given by

02 82

Bp Bpp (Bz Bzp

Equation (61) contains several types of terms: a veloc-

ity dependent drift part and diffusion terms. Note that
the diffusion term [last term in Eq. (61)] actually con-
tains two time scales, a short one which is determined by
the spontaneous decay time and a longer one that can be
identified with a collision time that has its origin in the
kinetic term in the exponential, which leads to the evolu-

tion of Zi under a velocity ~ for time 7 Phy.sically this
means that the force between two atoms shows a long
term correlation since an atom can run through several
correlated photon absorption and emission processes be-
fore they separate from each other. For small velocities
one can expand the drift term up to first order in the
velocity and obtain a static force and a linear damping
term.

Here we are mainly interested in the static drift terms
(p7 = 0). So for the present we formally drop the kinetic
part in l:g~«h. This defines a Liouville-type equation for
the ¹ tom Wigner function

B
f(~ P t) + ) .—B- f(~ P t) = (& ) ...f( P t)

B .p B
m Bza

~(1)Here I' is the single-atom force in the mean field

(49). F~ l is a two-atom force which is proportional to the
gradient of the mean potential energy between the atomic
dipoles in the reference state of Eq. (54) (note that the
interaction of the mean dipoles was already taken into

account into the single-atom force). Finally, F~ l is a
small correction to the one-atom force which arises &om
the changes in the atomic coherences due to the incoher-
ent back ground field (for a more detailed discussion see

Sec. VA). F can then be written in the form(2)

x Ai phE~ l(x ) +c.c.
ZQ

Prcf

with 6E~~ l(z ) defined by the quantum fiuctuations of
the electric field,

with

(64)

Note that due to the random distribution of the atoms,
the effective mean field and the force are still random
quantities in the position variables zp of the atoms.

and

C. Semiclassical ¹ tom force
in perturbation theory

xpE~~l (i ) +c.c. ~,

F."'(~=) —=
l ).):2 B &,','(&- &p)—

P ee'

x(Ap q
At )p, + c.c. ~,

FP'(*=) —=
l ) ):2B- &,','(*= —&p)(A-.')-

p n'

x (Apt )p, , + c.c.
I

+l ) (—1)'(A:)~..B-

(65)

In the preceding section we derived expressions for the
one- and two-atom forces [see Eq. (65)]. These forces
were defined with respect to the reference state p„f[Eq.
(54) in the limit of zero velocity]. This reference state
is the solution of the ¹ tom Lehmberg-Bloch problem.
In this section we construct this reference state in per-
turbation theory starting &om N independent particles.
Since the asymptotic behavior of l'.0 is dominated by the
1/r characteristic of C ~+&(z —ip), we seek a solution
by treating these interaction terms in perturbation the-
ory, which is certainly permissible if the mean distance
between two atoms is much larger than the laser wave-
length. We will see that the lowest-order term contains
the WSW model [6]. We illustrate the formal results de-
rived in the following subsection by the example of a V
system in a o -o+ laser configuration.

A perturbation expansion for p, g is derived by iterat-
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ing the integral equation mean field

Pref —0 + dC c~~ 0~ Q pO,aP
0 a,P

F('l—:[ ) (At ) „
IJ,E,ff (z ) + c.c. . (70)

=o+ dt e~ 0 J 0+
O,aP

0 a,P
(68)

The two-atom force is

with o the solution of the independent particle equation

l:'0=) r' 0 =0

[Note that Zo contains the efFective field E ff, (49),(47).]
In first order we obtain for the one-atom force due to the

I

F~ = —) ) 0 qqi trint, (A~,qAp, q' pref )
pA~ q, q'

+—) ) 4l l Ptr; i(Apt A, q p„r),
p/a q, q

p

y(Apq (t&Ap, & ([A q, A, (t&]»)
oo

+i )p~ l, p — dt((Apt, Ap, , (t)) ([At, (t), A .]).
s,e' 0

In deriving these results we have converted the pertur-
bation expression involving the time-evolution operator
of the density matrix to atomic correlation functions via
the quantum regression theorem. In Grst order, I' = 0."(3)

The central result of this section is the expressions (70)
and (71) for the asymptotic (perturbative) one- and the
two-atom force, respectively. In particular, the two-atom
force (71) is proportional to the convolution of (single)
atom correlation functions describing the emission and
absorption of Quorescence photons: the Fourier trans-
form of

(72)

is proportional to the incoherent part of the resonance
fiuomscence spectrum [38], while the Fourier transform
of

([A' .„A,(t)]).

the intensity squared, i.e., will under these low intensity
conditions be small in comparison with respect to F~ ~.

V. DISCUSSION: N-ATOM FORCES

IN A V SY'STEM

le, le, q
&

In this section we will give a detailed discussion of the
one- and two-atom forces for a V system (Js ——0 to
J, = 1 transition) in a (T -o+ plane wave laser config-
uration (see Fig. 5). We will calculate average forces
under the assumption that the atoms are randomly and
uniformly distributed in space on the scale given by the

is related to the u&eak field absorption spectrum of the
atom [23]. We emphasize that in perturbation theory
these correlation functions are the familiar Mollow corre-
lation functions defined for a single (independent) atom
in the state cr.

For low laser intensities (below saturation) the one-
atom force (70) is proportional to the intensity of the
local laser Geld. On the other hand, the two-atom force
(71) is proportional to the incoherent part of the spec-
trum of resonance Buorescence and thus will scale like

Igo )
FIG. 5. Atomic-level scheme for a Jg = 0 to J, = 1 transi-

tion in a o -or+ con6guration.
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wavelength of the light (see the discussion of the Vlasov
equation in Sec. VII). First we will discuss the low in-

tensity regime (in this context see [ll]), which is char-
acterized by the condition that the Rabi frequency O~
for each wave is smaller than the natural linewidth p. In
a second step we discuss the regime of strong saturation
under the assumption that the dimension of the atomic
cloud is not larger than the absorption length. We em-

phasize that for convenience our discussion considers the
force for zero velocity (v = 0).

A. The effective one-atom farce

For low laser intensities light scattering is essentially

elastic and F~ )(z ) can be neglected. The atomic co-
herences in the stationary state are given by

„pE+ ~ +c
a

We write this mean force as the sum of three contribu-
tions [6], the familiar spontaneous light force (as calcu-
lated in the theory of laser cooling and trapping for sin-
gle atoms [39)), an attenuation force [11],and a repulsive
part,

(76)

The spontaneous force due to the incident laser field E(& )

1S

(74)
+ s=— ) (—1)' ~&' '(* )&z + p'/4 "~ M

q

and the force E, averaged over random atomic posi-"(~)

tions (()), is

xpE(,+) (2: )+c.c.

We de6ne the attenuation force by

(77)

((+."~(*)))+4's(*) = ) ( &)'~(( .@-'~',(*)))7 (( &"'~",(.-*))) . , +" (7s)

which differs from (75) by factorizing the average over the atomic positions (coherent part). Finally the repulsive
force is defined as the remaining incoherent contribution according to Eq. (76). We will identify the attenuation

force ((F& )) as a compressive force due to the absorption (attenuation) of the incident laser amplitude in the atomic
cloud which results in a diferent Rabi &equency &om the left and right propagating laser beaxas. On the other hand,

((F&( )) will be shown to give a repulsive force due to photon exchange. Defining the "scattering characteristic" [21]

"m(* -&p) -=@„(&-&p)(+) - - '(-~+ "2)
+2+ 7

4
(79)

we can write the effective Beld in the form

E.',', (* ) = E.',,'(* ) + ):) ..(* —*p)&.',';(*p)
Pga q'

(so)

by using Eq. (74). We can evaluate this expression following classical multiple scattering theory [21],

((+.("&) = ) .(—1)' (( E.'~,', (~=))
Z ((~&,'~,', (* )))&a

+).(-1)' ' v"(*= *p)Z- v,'.(*-- ~-p)(( E.'~,'. (~p)I &.'~, .(*p)))
8 a

xA(xp)d xp + c.c. + c.c.)'

~
~'+q'/4 (s1)
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vqq'(z zp) = uqq'(z zp)

+) f~"(*= —*.)":q (*.-*~)
8

xn(z~)d z~ (s2)

with n(z) the spatial atomic density. Here vqqi (z —zp)
is defined by the solution of the integral equation [see
Eq. (14—29) in Ref. [21]]. (As indicated in Sec. II this is

just a Green function solution of the Maxwell equation
for the Geld with the polarization written in terms of the
local field variables)

The real part of ci(z) is the absorption coefficient and ki
is the laser wave vector. In writing Eq. (83) we have

restricted ourselves to a one-dimensional model with z

dependence.
In the weak absorption regime, i.e., when the dimen-

sion of the atomic cloud is less than the absorption
length, we can expand the solution up to first order,

((E.",' ( ))) = "' ''E.
,+( )

1 — dz'o. (z')
I
E,i + (z),

z

&((E.",', ( ))) = [ g (~)][ k + ( )l((E.',,( ))) (83)

where

37rp p/2 —iA
A Z =0!OAZ = 2 AZ (s4)

According to classical multiple scattering theory we in-
terpret vqq~ (z~ —zp) as the screened scattering charac-
teristic from z to z)s going through all other scatterers.
An iterative solution of Eq. (82) gives the whole series
of multiple scat tering.

Effective field and attenuation force The .mean eKec-

tive laser field ((E(& (z))) [with the polarization index

q = —1 (q = +1) denoting the right (left) propagating
o + laser wave] obeys the Maxwell equation (see Sec. 14—5
of Ref. [21])

z

1 — dz'o. (z') E,i, (z),
)—OO

(85)

and we 6nd the following result for the attenuation force:

which gives the force due to the imbalance of the local
Rabi kequencies. This expression is identical to the one
found in Eq. (24) of Ref. [11]and Eq. (4) of Ref. [6].

Repulsive force In the .weak absorption limit we can
approximately write vqq (z —z)s) uqq (z —zp) and
obtain for the mean 6eld repulsive force

((Z. „(z)))= k,~, '-, 2Re[~,]
-(i) - 1 Ifl il'/2

f oo z

x dz'n(z') — dz'n(z') e„(86)
z —OO

2

"!)*)))=&. ~-..f~'*~"(*.)),~"~ &)~:;)'&)„.*; *
~

(,).((I E.'~,'.(*~)IE.'~, .(*) )))
(g2 + ~2/4)

cxq 7 &q & ) (87)

where fq, (e, P) denotes the angular distribution of

C( )(z —z') given in Eq. (40). The expression in an-

gular brackets is the product of the elastic in' peak of the
MoQow resonance fiuorescence spectrum [38] (which is

proportional to the total intensity) and the Mollow weak

field absorption spectrum [23] evaluated at the laser fre-

quency.
Solution of the integral equation (82) for vqq (z —z)s)

has been discussed in Sec. 14-6 of Ref. [21]. This amounts
to summing all terms due to multiple scattering of the
elastic portion of light emitted kom an atom o. which is

scattered &om all the other atoms while traveling to atom
P. Equation (87) is the zeroth-order term, neglecting all

these multiple scattering processes. Inclusion of these
processes gives rise to an absorption length for the total
intensity propagating through the cloud (see also Sec.
VI). In particular, we point out that according to Ref.

[21] the absorption length of the coherent intensity of
the light Geld is shorter than for the total intensity.

Finally, for laser intensities close to saturation the
atomic dipole is given by

( ) 6 —ip/2
'/ Ifl ( )I

where the effective Rabi kequency is defined by

I
~.ir(z-) I' = —.'[I fI.~,+(z-) I'+

I
fI.~.-(z-) I'] Thus

the absorption coefficient defined in Eq. (84) (and there-

fore the force F(i)) decreases with higher laser intensity.

B. The two-atom force

For high intensities the two-atom force ((I'( ))) must be
considered. This term is related to the incoherent part of
the Mollow spectrum of resonance Buorescence. We find
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p, . p,q~t ~,„~ ~ + Ch, t ~ p, i, p it

—2iko )X —8p (

+ dt ~q t, 8 cT pg ) p I ~e +c c (89)

S', (v) = — dte'"'(At(t)A, )2x

ivt

~:,'.(~) = —
„ f «""'(IA,&f(&)))

te'"', t t

(90)

we rewrite the 6rst term as

Consider the first term in parentheses in Eq. (89). In
view of the expressions for the incoherent emission spec-
trnm and the atomic weak field absorption spectrum,

two-photon correlation part has opposite sign compared
to the standard WSW term and the total repulsive force

is actually smaller.
The third and fourth terms in Eq. (89) are strongly

oscillating functions of the position of the atoms z)s, ex-

cept for a small cone along the propagation directions

of the two laser beams. These forward effects can be
interpreted as four-wave-mixing processes. The factor

(Ap q(t)Ap q) is related to the two-photon correlation

of the individual cr and sr+ resonance Buorescence line

found in the photon number fiuctuation of a forward di-

rection balanced homodyne detection experiment using

a local oscillator with 0 (respectively, 0+) polarization

(see also Ref. [40,41]). As such it is a quantity which can
be related to the "squeezing" of the field. The commuta-

dt p, pq~ t ~ q,
0

le, ) le„)

+c

which is the mean of the overlap of incoherent exnission
and absorption spectrum in agreement with the WSW
model [6]. Physically, this term corresponds to the trans-
fer of momentum by the emission of photons by an atom
at i~p and subsequent absorption by the atom located
at i . The weak field absorption spectrum has positive
(absorption) and negative parts (gain). Typically the
absorption part will dominate so that this portion of the
two-atom force will be repulsive (see Fig. 4); it would
be of considerable interest to 6nd atomic and laser con-
6gurations where the two-atom force is attractive. For
low laser intensities this term scales proportional to the
square of the laser intensity. The second term in Eq. (89)
shows the Raman coupling between the 0 and sr+ reso-
nance Quorescence line of a V system. For low intensities
one can interpret these two-photon correlations in terms
of the Feynman graph shown in Fig. 6(a). In Fig. 6(b)
we plotted the relative size of this part in comparison
with the total position independent force (including the
mean field part) as a function of the Rabi frequency for
various detunings. For small laser intensities and high
detunings we find a rather large (i.e., —20Fo) deviation
from the standard WSW model of Ref. [6]. Note that this

(a
Igo

10
(b)

-10-

-40-

-50-
5= -2.5 y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Qly

FIG. 6. In (a) we indicate schematically the lowest-order
Feynman graph that shows the two-photon correlation be-
tween the o aud a+ resonance tluorescence line. In (b) the
ratio B of the two-photon correlation part and the total force
(including the one-atom force) is plotted as a function of the
Rabi frequency 0 = 0+ ——0 . We have neglected all forward
terms.
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tor ([At, Qt (t)]) is related to the absorption coeffi-
cient appearing in four-wave-mixing processes due to cor-
relations in the absorption (or emission) of two photons
of &equency ~i and subsequent emission (absorption) of
one photon of &equency ~~+v and another of su~ —v, when
the laser and the resonance Huorescence photons emitted
into the two Mollow sidebands are in phase (which hap-
pens only in the direction of the laser propagation [40]).
The absorption spectrum of a two-level system in a probe
field with &equencies u~ 6v and a pump field of &equency
u~ is discussed in some detail in Ref. [24]. A discussion of
the corre1ated sideband emission in the laser propagation
direction can be found in Ref. [42].

The last term is a four-wave-mixing backward term
related to correlations between the cr and 0'+ lines. Note
that in the linear absorption limit all the spectra can
be calculated by replacing the local mean fields by the
unattenuated classical incoming fields.

To summarize this section, we have seen that the force
on an atom at rest in a o -0'+ laser Beld decouples into
an attenuation part, which tends to compress the atomic
cloud and a force due to photon emission and absorption
processes, that is, of repulsive nature for the discussed
configuration. The absorptive regime in the Mollow weak
Beld absorption spectrum for a V system dominates the
gain region for the parameters used in the experiments.
We have also shown that the Raman coupling terms are
important and have to be included in the calculation of
the force.

VI. HIGHER-ORDER PERTURBATION THEORY

medium to some extent by including the mean field emit-
ted by the atoms. The main effect of the medium is to
cause absorption (screening) of the fields. However, if
there is a considerable number of excited atoms in the
medium (i.e. , if it is close to saturation) then the strong
incoherent background Geld can actually change the pop-
ulations (density matrix elexnents). In general the self-
consistent solution taking into account incoherent fields
would be very dificult. One such approximate method
would be to use radiative transfer for the incoherent part
and Maxwell-Bloch for the coherent (see Ref. [27]).

As a first approximation we will assume that the
medium is rather dilute (kp((~ z —zp ~)) )) I) and the
laser intensity is not too high, so that modifications of
the mean atomic dipoles and spectra due to the incoher-
ent background Beld are small. Then the modification
of interactions is primarily due to scattering from atoms,
and (as we see below in Sec. VI) leads to screening of
the dipole-dipole interaction by effectively an absorption
length.

For higher-order perturbation theory Fls~ (z) is no
longer zero due to "quantum corrections" to the clas-
sical mean Beld picture. As mentioned above, for very
high saturation and atomic densities the incoherent back-
ground Beld actually changes the density matrix ele-
ments. F~ j(z) is the strong field correction to the mean
field force F~il(z) due to the change of the atomic co-
herences. We restrict the discussion of this term to
the second-order perturbation theory and furthermore
we only consider the case of a nondegenerate two-level
system in a running wave configuration for notational
simplification.

So far we have restricted our discussion of the interac-
tion between the atoms in the high intensity limit to the
lowest-order perturbation theory in the interatomic inter-
action. A consideration of higher-order terms is necessary
because the field of one atom at position z falls off like
1/r so that a calculation of the difFusion coefficient would
actually diverge. We have already taken into account the

I

A. Corrections to the one-atom force

In the second-order perturbation F (65) is deter-"(3)

mined by the second-order correction to the atomic co-
herence (at)~, given by

2 t t'

(a.'). , = —4,lim «' ds) .4'.",'C".,'((a,'(t')a. (s))-([a'.(s) [a-(t') a'. (t)l])-t-+oo

+(at (s)a~(t')) ([a (s), [at (t'), at (t)]]) j
2 t t'

lim dt' ds) 4l+l4~+l(at(s)at(t')) ([a (s), [a (t'), at (t)]])
t —+oo

2 t t'

lim dt' ds ) I'~ lC'~ l(a~(t')a~(s)) ([at (s), [at (t'), at (t)]])
0 0

(92)

where we have dropped all the rapidly oscillating terms
that average to zero.

Every single atom a is probed by the incoherent field
emitted by other atoms p and the atomic coherence
of atom o. is changed in second-order response. Note
that we have kept again the position dependence in the
optical Bloch equations and correlation functions like

(a~(t')a~(s)) oscillate with e
In order to estimate the change of the mean atomic

dipole by the incoherent background field we evaluated
Eq. 92 in the dressed state basis using a secular approx-
imation [43] in which we assume /02 + b, 2 )) p. The
result is
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at = —a~
04,(-) (n' b)(n' h)

).f'( ),
~

(93)

ing the coherences and populations in a self-consistent
way with Maxwell-Bloch (coherent part) and radiative
transfer equations that treat the incoherent background
field as a broadband chaotic field [27].

In the high field limit this correction is independent of
the field intensity and can be neglected if the mean dis-

tance between the excited atoms is much larger than the
laser wavelength. One could extend this model to the
regime where this condition is not satisfied by calculat-

B. Two-atom fore-- -econd-order expansion

The second-order correction to the two-atom force is
given by the expression

((h'~ ~Ft ~(c ))) = —inc — ) - 4 p&r;„(cpa b p„c}+cc))
i t,'

tr jilt(a&a b p„f}= ) lim dt' da tr &(a a eco'(t —&)g( ) e&0'(&' —~)g(2)
t-+oo

788M 0 0
(94)

By using the quantum regression theorem the remaining terms can again be added up to a sum of products of
correlation functions of the individual atoms. We will drop all kinds of backscattering terms (which take into account
the change of the atomic spectra by the incoherent background field). For notational reasons we drop any terms with
forward scattering behavior and give the result for the second order part of the force that does not strongly Quctuate
with position

3 t t'

((~'"+"'(~=)))= i~o»m — «' ds ): -' C".p'C'.",'~,'p'((ap(t)ap(s))([a.'(t') a-(t)])
P ~to

x ([at (s), a~ (t)])) —I ( )4
& 4& ((a&t (t') ap (a)) ([at (t), a~ (t')]) ([at (a), a (t)])

l
+(a&~(s)ap(t'))([at (t), a~(s)])([at (t'), a (t)])j ~

+ c.c. (95)

By 4~
&

we denote the complex conjugate of 4 p .
Second order ge-rieralization of the WSW type mode/. T-he summation over atom 7 in Eq. (95) can be performed by

using the method of stationary phase [21] if we replace the two-atom spatial distribution by the product of one-atom
distributions (see Sec. VII for a discussion of the screened Vlasov approximation). In the limit of ko~r —rp( )) 1 the
main contribution comes from the atoms on the line connecting the atoms u and P. We get

if we assume that the density is slowly varying on the
distance r p and neglect the dependence of the spectra on
the local effective Geld parameters. For convenience the
subscripts have been dropped in the angular distribution

f(8) of the spontaneous emission. Obviously this term is
the second-order extension of the WSW model (see Fig.
7). If the absorption profile dominates the gain behavior
of the atoms in between cr and P, the repulsive force on
o. is weakened. We will argue later in this section that
the presence of additional atoms gives rise to a screening
term, of which Eq. (96) is the appropriate first-order
expansion (i.e. e = 1 + x +.. .).

I

though we did not evaluate all of the time integrals the r
dependence and the number of terms agree with the sec-
ond order of an efFective screened two-atom interaction.

Screened WSlV-type model. The calculations up to
third order motivate a generalization of the WSW model
by including screening eEects. In the limit of k~r p && 1
one can hypothesize an analytical expression (an expo-
nential damping as is expected &om the physics of the

C. Two-atom force—third-order expansions

We evaluated the third-order expression in the per-
turbation series for nondegenerate two-level atoms. Al-

FIG. 7. Screening of repulsive force between a pair of atoms
n, P due to absorption of resonance Huorescence photons by
a third atom p.
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situation) for the whole series of terms that generalize

the WSW terms. For simplicity we also assume that the

atomic density does not change with position on the scale

of some screening length and furthermore, dependencies

of the spectra on the local effective field parameters are

neglected. We thus expect the following model for a

screened two-atom interaction that is consistent with our

perturbation expansion

((+."'(* ))) = f~'*~"(~o)f'(~),
ko2 ~i —i~p [

x — dvS' (v) S (v)
2

(97)

Again f (8) denotes the angular distribution of the spon-

taneous emission, 8 is the angle between x —xp and the
direction of laser propagation, and S s(v) is the absorp-

tion spectrum defined in Eq. (90). Note that for gain fre-

quency ranges in the absorption spectrum the exponen-

tial factor amplifies the gain characteristics. Neverthe-

less, for high laser intensities the incoherent background

field changes the fluorescence properties of the atoms and

one has to correct this model (see [27]). In addition one

would have to include the local dependency of the spec-

tra on the effective field and replace the exponential in

Eq. (97) by a Dyson series of some "mean" absorption
coefficient and then perform the random average (()) of
the whole expression.

and integrating over N —1 pairs of quasiparticle coordi-
nates. The result is similar to Ref. [11],including screen-

ing effects.

Oy, 1(-'+. V.f-=-V= —(F'()))-
Ot m( 7efr )

+D,a V„fi-(.99)

By (()) we denote the average with respect to the c.m. co-

ordinates and w, ir (respectively, D,tt) represents the cor-

rected cooling time (respectively difFusion constant) due

to multiatom interactions. The effect of the rest of the

cloud on a single atom at position r is smeared out and

modeled by an average force ((E(r))). Adiabatic elimina-

tion (which is valid ) of the kinetic degree of freedom gives

a Smoluchowski equation for the spatial atomic density

n(i, t) [44,11]

m
' = —V„- ((F(r)))n(r, s) —ksT,sV„n(r",s-)On(r, s)

|98

(100)

V„- ((P(~g))n(~q —k,T.,V ~(~g = 0. (101)

where T,g has the dimension of a temperature deter-

mined by the atom-atom corrected mean diffusion D,ff

and cooling time w,g. The time s is measured in units of
7 g. The stationary spatial distribution is the solution of

VII. THE SCREENED VLASOV
APPROXIMATION

f(*,p t) =8 fi(* J t) (98)

So far we have concentrated our discussion on the N-

atom Liouville-type equation for the Wigner function f
and discussed the mean of the static forces in terms of

a screened two-atom interaction. Equation (61) gives a

N-atom Fokker-Planck-type equation. We will discuss

the correction to the cooling time (via the term propor-

tional to the velocity in the force —rather than v = 0 as

considered here) and diffusion term due to interactions

with the other atoms in a later publication. For the

calculation of the atomic density we need an equation

for the effective one-atom spatial distribution function.

In the screened Vlasov approximation for the associated

BBKGY hierarchy of the N-atom Fokker-Planck equa-

tion we can derive an equation for the one-atom Wigner

function fi(z, p, t) The screen. ed Vlasov procedure as-

sumes that the correlations between different atoms are

small and can be approximated by two-atom correlations.

This procedure corresponds to treating the systems as

N-independent screened quasiparticles rather than N-

independent atoms. The screening is of course due to
the absorption as in Eq. (97). Formally this can be done

by replacing the N-atom Wigner function in the N-atom

FPE including screening terms by the product state

Such an equation is used in Ref. [6] for the calculation

of the spatial density of the atoms in the cloud without

correcting the diffusion coefBcient for multiatom effects.
To summarize, the WSW model of Ref. [6] makes use of

two major approximations. The screened Vlasov approx-

imation, which assumes that all ¹ tom correlations can
be approximated by products of two-atom correlations

and additionally the approximation that the stationary
state of the N-atom Bloch problem can be construct us-

ing perturbation theory with respect to the atom-atom
interaction.

VIII. CONCLUSIONS

In this work we have developed an analytical descrip-
tion of the semiclassical light force for atoms in an atomic
cloud. In the Vlasov limit for screened interactions we
reduced the ¹ tom equation to an equation for the one-
particle Wigner function (actually a screened quasiparti-
cle) and by adiabatic elimination of the velocity degree
of freedom we end up with a Smoluchowski equation for
the one-atom spatial distribution function [44,11]. The
expression for the force occurring in this equation [Eq.
(101)]is evaluated in perturbation theory. Our first-order
perturbation expansion in terms of the long-range inter-
atomic potential shows that the effect of the presence of
other atoms can be separated analytically into two parts
similar to the model of Walker, Sesko and Wieman al-
though the absorption force derived in this paper gener-
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alizes their results to include Raman couplings among the
Zeeman sublevels. The local imbalance of the laser fields

due to absorption effects causes an attractive potential
with its minimum in the center of the atomic cloud. The
resulting attenuation force found is similar to the result
of Dalibard [11]and tends to compress the cloud.

The origin of the other force is photon emission and
absorption. Each atom is affected by the absorption of
the resonance Quorescence photons emitted by the other
atoms. For the V system discussed in Sec. VI the gain
profile of the absorption spectrum is too small to com-
pensate the absorptive part and leads to a repulsive force
by simple momentum conservation. We expect that for
other atomic configurations the gain-absorption profile
will give rise to new interesting features for the incoher-
ent two-atom force (see [25,26]). We have also given a
discussion of terms found in higher-order perturbation
expansions and argued that this gives rise to an expo-
nential screening which corresponds to the absorption of
the radiation in traveling &om one atom to the other.

We point out that our procedure can easily be gener-
alized to more realistic internal structures for the inter-
acting atoms. The model is limited to the semiclassical

I

regime. For the extremely low temperatures found in
optical molasses the semiclassical approach breaks down
and the c.m. degrees of &eedom have to be treated quan-
tum mechanically.
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APPENDIX A: DERIVATION OF THE N-ATOM
MASTER EQUATION

For the derivation of the Ito equation [45,46] we ne-

glect the laser term for the moment, since it is obvious
how to build it in afterwards (see [47]). The interaction
Hamiltonian can be written in the form

r
~ qg ~ — g. .~~, & —&'+q b„-D„~p,&-&'+q &p, (A1)

where we have defined g = 2, ~& ~, and Deg

P,pP&. In order to obtain a standard form we define
the following vector of distributions:

g++l (A, q, k, k') = g((u) —e '
pqb(k —k' + q),

4)p

For the Ito equation we need the time-evolution oper-
ators of the difFerent terms for the uncoupled situation.

~ ~

go, int D(a) —i~0 t D(a)
eg eg

(ii) S, ' ' = d(ue ' 'dE(~), (A2)
0

(iii) S," b(k —k''+ q) = b(k —k'+ q)e *'g'e' - ',

g ~ l (A, q, k, k )—:g((d) eqqb(k ——k —q) .
(dp

Using this notation, we can write the interaction Hamil-
tonian in the standard form found in Ref. [48).

q'=2
If we collect these individual terms, we get the unper-

turbed time evolution of the distributions g ~+ and g

tg,", = *g ) fj dgk. dgk.'[k.)(k'.
[~

aGA

x [D(~)bt(gw+) ) D(~) b(gw
—) )]

Sg g
+

(A, q, k, k') = g ~+l (A, q, k, k')e'~ ' + - &'

8;g ~-&(A, q, k, k') = g ~-l(A, q, k, k')e*~--"+- l'.
(A3)

with

b (g~+l) = )f d q g~+l(A q k k')b

According to a generalization of [48], the corresponding
Ito equation for the interaction picture time-evolution
operator Uq in the weak-coupling limit is given by

dU, = ) ff d k d'k' [k )(k'[[Dt.t dA[(g++t) —Dt t. ding(g+ t)[
CX

) ff d kgd kg(kg).(kg( [Dt (g&t&[ggt+t) Dtgt]dt) U,

with the following tensor coeKcients and Ito algebra:

(A4)
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0

(g' 'lg"') = "'(g' 'l~ g'")ch

dAd(g'~ ))dAkt(g'+ ) = 2Re(g~ )~gal), ,dt,

dAt(g'(+))dA, (gp( l) = 0.
(A5)

As mentioned before, this equation is valid in the weak-coupling limit which implies validity on a time scale determined
by the coupling constant between bath and system which is much larger than the correlation time of the bath variables.
Note that for simplicity we restrict to a zero-temperature bath. The effect of finite temperatures can be built in easily
(see [48]). The Ito equation with an additional plane wave laser field is given by (see [47]).

dUe = ) ff d k d k'[k )(k' [(D&&[dd&e(g&e&) —get'g*(k —k' +kt)dt)
aCA

—Dlsl[dAi(g l ) —geiE'(k —k' + k()dt]) —i ) ht(kkPl )dt

) ff dtk dtk'd'kgdtkg[k kg)(k'kg[[D&, &(g& &[gg&+&) D&g&[dt ——) ) [e )(e [ct)U, .

(a,P).axe a sa
(A6)

p is the radiative decay rate of a single atom. For a more explicit form of the Ito equation we evaluate the tensor of
distributions (g ]g p+ ), by using the spectral representation of Sd,

oo 3

(g l~g~p+l) = d(d —~g(Dc)~'h(k + kp —k' —kp)
0 o

r
x )I dA„-(1—n 8 n)h(kp —kp+ q) 7rh((u —kU, ) —iP

o
A, e~

(A7)

where we have used the Sokholsky-Penely formula and the definition cu = u —eq —
2
—"kp . qo with q = n w . In

an approximation, consistent with the "nonrelativistic" description of the atom, we used (d (d0.
If we write out all the terms explicitly and change from the momentum to the position representation we can write

the Ito equation in. a more familiar form:

dU, = ) D&, f d *fd&& "b(z —X )e
' 'dB„-(t)"'

agA (
—D~ d z dO„-b z —X e'"'*"'dB„-t

with

+g ) D,'.' f d'zd'(z —X )g(z) —D&, & f deed'(z —X )t"(z) Ct

P2
i ) —56 —i Pl l Ck ——i ) dt

aeA k r acA

——) D& & f d zd z'
t&

& &(z —g')d (z —X )C (z' —Xg) D&g&dt U„
ad@

p ( l(z —x') = G (x —x') + iF (x —T')

= lim —— . dO„-(1—n &3 n)e'" (*
a~0 4'7t K p (d —MP —2E

(A8)

(A9)

In deriving Eq. (A8) we used a RWA. All the non-rotating terms can be included by simply extending the frequency
integral in Eq. (A9) to —oo [31,32]. The Ito algebra of the noise difFerentials is defined by

(dB„-),. (dB„,), —:2—b(n —-n. ) (h,, —n;n, ) Ch

By use of standard Ito algebra one can derive a master equation for the N-atom system. Use of the operator version
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of the classical Ito formula allows us to evaluate the difFerential of the density operator p(t) = Uqp(0) U,

dp(t) = (dU&Ut) p(t) + p(t) (UcdUt
~

+ (dU, Ut) p(t) (U,dUt
~

.

The N-atom system operator, defined by p(t)—:trb q~ (p(t)) solves the following master equation:

= —) (H~ lp(t) —p(t)H~ l")
aGA

+q ) Dt. t fd'pd'z'6'(6 —X )F (8 —6')p(t)6'(z —Xp) D.'Pt

(n,P)GAx A ( )

where we have defined an effective Hamiltonian

(A10)

;~ P. + .+ d'*b'(*- -X.)D~:l . E(*-) + H..
2m

-'-
& Dt;t f 6'*6'*'6'(*--X.)ttt-t(*--*-)6'(*-'-X ) Dt'. t.

re/a

We introduce a convenient notation

D~,l(z):—b (z —X )D~,i.

The output field in direction R defined by

B„-"'(t)—= U,'B„-(t)U,

is given by

(All)

(A12)

(A13)

dB„-",'(t) = dB„-,,(t) + ) —N„(R)e-'""&""'A&,, (t)dt

P,q'
(A14)

so that the total output field

dA;"' = f d66„-dB'-"'(t) (A15)

is given by

dA —dA +) dO Nqq(n)
' ~ l A q(t)dtt,q t)q 4x P~q

P q'

APPENDIX 8: DIVISION INTO N-PHOTON STATES

Let us define a Schrodinger wave function by

~e, t) = U, ~e, 0),

where ~8, 0) is some initial vector for the composite system and then divide that wave function into the linear
combination

(y, t) = ) )y, n, t) = ) P&"&~8, t),
n=0 n=O

where P&"& is the projection operator on the n-photon subspace. The set of ~8, n, t) obeys the Ito equations
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didn, , t) = ) [ f d zDt, t(z) f dB„-e ' ""'"d'B (t)[dn , —I, t)
acA

d zDi t(z) f dB„-e'"'""dB„(t)[-d,n+ 1, t)
h

e
a
g

~
I n»

i~n~ q ~»~
~ n

»
t 1

+g ) f 'd(zD t (t.)zd(z) —Di, t(Z) d'( ))z[d, tn)dtI
aGA

——) ff d'zd'z'Di, i(z) ti i t(z —z') Di d(tZ')[8, nt) td

(~ P)
a/P

i )— —4 —i P, + — ~6, n, t)dt, ]8, —l, t) =—0
P('-) &

2 2m) (B1)

by construction.
Now define

p" (t) = Trb g h(~e, n, t)(e, n, t~) (B2)

and derive equations of motion for this "n-photon part" of the atomic density matrix. Obviously p(t) = P„op" (t),
tr~(p" (t)) & 1. By the use of the Ito relation

d(]8, n, t)(6, n, t]) = d]8, n, , t) (8, n, t~ + ~8, n, t)d(8, n, t~+ d]8, n, , t) d(8, n, , t~

we get an equation for p" (t) of the form

dp" t = —iH,~p" (t) + ip" (t)H.~+ p ) d zd z'D~, ~(z) P(z —z') p~" 'l(t) D~P (z'),
(~ P)

"
2

H, e = ) —dt —
i& P, +

2
+d f d z[D:', '(*) d(Z) -De', )(Z) d'(z)i

n&A

——) ffd'zd'z'D. ', '(z) t) i '(z —z') . Dtdt(z')
Pga

(B4)

Define P"(t) = tr~[p" (t)], then P"(t) is the probabil-
ity that the bath is in an n-photon state (B2). To see
the emergence of a rate process f'rom Eq. (B4) we make
the ansatz

(') =P (&)"o (B5)

where ro is some equilibrium atomic density matrix with
unit trace. Using this ansatz we obtain the rate equation
for P"(t),

d—P~"l(t) = —RP "l(t) + RP " 'l(t)
dt

characteristic for a Poisson counting process. The rate
R depends on the output number process A(t) defined in
Ref. [49]. It is given by the expression

So B is equivalent to the time derivative of the expec-
tation of the output number process R =

&~ (A(t)) asso-
ciated with photon counting in the stationary limit (see
Ref. [49]). We can therefore interpret it as the sum of
rates of photodetection in detectors located all around
the atomic cloud. The detection rate of any of these sin-
gle photodetectors strongly depends on its relative posi-
tion with respect to the atoms and on the relative po-
sitions of the atoms themselves, not only by the trivial
angular distribution of the spontaneous emission of single
two-level atoms. This shows the spatial coherent charac-
teristics of the model.

If the atoms in the cloud are treated as independent
particles in the sense that one can neglect all collective
efFects the rate R is given by

R = —) .) .f d"=(dqq —"-."'-, ) (—')"'
(~,P) e e'

(K —Xp)A: ~(P) f~( )x r;„«e roj ~

R = ) $ f dB Nq(n)tr; q[At trAt tre) . (B7)
cx q
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