
PHYSICAL REVIEW A VOLUME 49, NUMBER 5 MAY 1994

Atomic Bose gas with a negative scattering length
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We derive the equation of state of a dilute atomic Bose gas with an interatomic interaction
that has a negative scattering length and argue that two continuous phase transitions, occurring in
the gas due to quantum degeneracy effects, are preempted by a first-order gas-liquid or gas-solid
transition, depending on the details of the interaction potential. We also discuss the consequences
of this result for future experiments with magnetically trapped spin-polarized atomic gases such as
lithium and cesium.
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I. INTRODUCTION

Apart &om the intrinsic interest in cooling and trap-
ping atomic gas samples by means of electromagnetic
fields [1] and their potential use in various high-precision
experiments, the possibility of achieving Bose-Einstein
condensation is also an important motivation for study-
ing ultracold atomic gases in a static magnetic trap. The
first steps towards this goal were made with atomic hy-

drogen [2,3] and recent progress in lowering the tempera-
ture of the trapped gas using both conventional [4,5] and
light-induced [6] evaporative cooling shows that atomic
hydrogen is still a very promising candidate for the ulti-
mate achievement of Bose-Einstein condensation.

Due to their excellent optical properties a substantial
experimental effort is presently also directed to the alkali-
metal vapors cesium [7] and lithium [8]. However, to
ensure the stability of the condensed phase it is usually
(but see below) required that the interaction between the
atoms is effectively repulsive or more precisely that its
scattering length a is positive [9]. There is no doubt
that the above requirement is fulfilled for atomic hydro-

gen, but in the case of atomic lithium the state-of-the-art
triplet potential leads to a negative scattering length for
the doubly spin-polarized ~F = 2, M~ = 2) state [10]. In
contrast, the situation for atomic cesium is less straight-
forward. It has recently been shown that with the present
knowledge of the interaction potentials it is not possible
to determine the sign of a for the doubly spin-polarized
~F = 4, Mp = 4) state, but that the scattering length
for the also low-field seeking ~F = 3, MF = —3) state
of the lower hyperfine manifold has a pronounced reso-
nance structure, which offers the exciting possibility of
controlling the sign of a by an appropriate choice of the
magnetic-field strength [11].

In view of these circumstances it is of considerable
interest to investigate the properties of a dilute atomic
Bose gas with negative scattering length and to predict
what one might observe in experiments with magneti-
cally trapped atomic lithium and cesium. In particular,
it is interesting to see if also for these gases quantum
degeneracy leads to Bose-Einstein condensation at suffi-
ciently high densities. However, before we can begin with
a detailed discussion of these issues we must be some-

what more precise and realize that besides the scattering
length a, an interatomic potential is also characterized by
the hard-core radius r~, the finite range r~, and the well

depth ~~. In terms of these quantities the main differ-
ence between spin-polarized atomic hydrogen and spin-
polarized atomic lithium and cesium is that in the former
case the potential well is so shallow that it admits no
bound states, whereas in the latter case e~ )) h /mrv.
and many rovibrational states are possible.

As a result the relationship between the pressure p
and the inverse density 1/n at a fixed and nonzero tem-
perature T « eiv/ks is qualitatively difFerent and as
shown schematically in Fig. 1 [12]. At these temper-
atures atomic lithium and cesium may thus undergo a
first-order transition from a dilute (nrsv « 1) gaseous
phase to a high density (nr&~ 1) phase, which is either
liquid or solid depending on the details of the interac-
tion potential. The coexistence line of these two phases
is obtained &om a Maxwell construction and is there-
fore such that the areas of regions I and II are equal
[13]. Note that the critical pressure p, (T) found in this
manner is always larger than zero, because the area of re-
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FIG. 1. Qualitative picture of the relationship between
pressure and inverse density at a fixed and sufBciently low

temperature for (1) atomic lithium or cesium and (2) atomic
hydrogen. Note that possible cusps in the curves due to sym-
metry-breaking phase transitions are not shown here.
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gion I is bounded and the area of region II can be made
arbitrarily large since for low densities (nA « 1 where

A = /27rh /mk~T is the thermal de Broglie wavelength)
the equation of state reduces to p = nk~T. Hence, for
su%ciently low densities the gaseous phase is stable and
we are allowed to incorporate the influence of the inter-
action by means of perturbation theory around the ideal
Bose gas. Moreover, at the experimental densities of in-
terest, we are justified in using the T-matrix or ladder
approximation because nr& && 1 and we only need to
include all two-body processes in our description of the
dilute phase.

For an adequate determination of the coexistence line,
however, a more advanced theory is needed which is
capable of describing a strongly interacting system at
high densities. Fortunately, in the case of magnetically
trapped atomic gases we are dealing with a system that
is expected to have a large free-energy barrier for the
formation of a critical bubble of the dense phase. Hence,
if the density is isothermally increased beyond the point
of coexistence, a metastable supersaturated vapor will
be formed. From an experimental point of view the
relevant question to be answered is therefore the fol-

lowing: Can Bose-Einstein condensation also occur in
the (meta)stable region of the phase diagram (where
Op/Bn ) 0) of an atomic Bose gas with negative scat-
tering length? The answer to this question can still be
found within the &amework of the ladder approximation
and is the main topic of the present paper.

In order to do so we must consider the degenerate
regime where nAs 1 and allow for the possibility of
a second-order phase transition due to Bose degeneracy.
Consequently, we must first of all identify the appropriate
order parameter. This is achieved in Sec. II. Although
Sec. II is certainly an important part of the paper, the
discussion presented there is of a somewhat technical na-
ture and makes use of functional methods which are very
convenient for the derivation of the free-energy density
of the order parameters of interest. However, after the
correct order parameter is found we return in Sec. III to
canonical methods in order to arrive at the final results
of the paper in a physically more transparent and per-
haps more accessible manner. In particular, we derive in
Sec. III the equation of state of the gas and show that it
indeed, in the region of validity of the T-matrix approxi-
mation, leads to a relationship between the pressure and
the inverse density which is qualitatively in agreement
with Fig. 1. Most importantly, we are then in a position
to answer the question mentioned above. We end in Sec.
IV with some conclusions and with a discussion of the
experimental relevance of our results.

II. ORDER PARAMETER

We consider a homogeneous system of N bosonic atoms
in a volume V. Using a functional approach to the imagi-
nary time formalism, the Euclidean action of this system
ls

( 8 h,2V'2
S[Q', @] = dr dxvj)'(x, ~)

l

h ——
er 2m

d7. dx dx' * x, v
* x', ~ V x —z' x') v. x)7.

0

where P = 1/k~T, p is the chemical potential, V(x—x') is
the interatomic interaction potential, and possible three-
body forces are neglected since we are interested in the
dilute limit. In addition, the grand canonical partition
function is then given by the functional integral

Z~ = d[@*]d[g] exp
l

——S[g*,@]
(

(2)

over the periodic c-number fields g*(x, r) and g(x, 7).
For the ultracold gases considered here the range of the
interaction is always much smaller than the thermal de
Broglie wavelength (rv/A « 1), which implies that we
can replace the potential V(x —x') by the contact inter-
action Voh(x —x') with Vo = f dx V(x). Together with
the thermodynamic potential 0 = —(ln ZG, )/P this com-
pletely determines the thermodynamic properties of the
weakly interacting Bose gas.

thus incorporate the correct symmetry of the homoge-
neous and at high densities metastable state of the gas.
Clearly, both objectives can be achieved if we are able
to identify the correct order parameter. An immediate
choice is the thermal average (g(x, r)). However, this
choice turns out to be inappropriate for the atomic Bose
gas with negative scattering length as can already be
seen from. the following ad absurdum argument: Assum-
ing (g(x, r)) to be nonzero, the application of the usual
Bogoliubov theory shows that the long-wavelength fluc-
tuations in the order parameter are unstable for a ( 0
[9], which invalidates the initial assumption.

A more rigorous argument is based on the free-energy
functional for the time and space-independent value of
the above order parameter

A. Bose-Einstein condensation

Nevertheless, to extract useful information from Eqs.
(1) and (2) we must resort to perturbation theory and

where I 0 is the 2n-point vertex function with all
2n —1 momentum and kequency arguments equal to zero
[14,15]. Using the T-matrix approximation the latter can
easily be evaluated in the symmetric (low density or high
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temperature) phase with the result [15]

I'o~ = hZ(0; 0) —y,
—= —p',

has the same form as in the Landau theory of second-
order phase transitions [16]. In particular, the free en-

ergy is bounded &om below and acquires at temperatures
below the critical temperature of the ideal Bose gas

I' = 2T (0, 0, 0;2p'), (4b) 2~5' $ n l'~'
kn &((-',)) (7)

rp""' = 0 for n & 3. (4c)

In deriving Eq. (4b) we also made use of the fact that
for the momenta hk « h/rv and Matsubara frequen-

cies u„« h/mrs, of interest the self-energy hK(k;~„)
is well approximated by the constant 2nT2B(0, 0;0)
S~nah2/m T.he self-energy thus only leads to a shift in
the chemical potential and we Gnd that p' is obtained
from the equation of state of the ideal Bose gas

a minimum for (Q)—:ange', which determines the con-
densate density np. However, for an electively attractive
interaction (a & 0) this is not true, because the coeffi-
cient of the quartic term in the &ee-energy density is neg-
ative. We are therefore again led to the conclusion that
in the case of an atomic Bose gas with negative scattering
length (Q(z, r)) is not the correct order parameter and
that Bose-Einstein condensation in this canonical sense
does not take place.

1
n = —) N(eg —p), (5)

B. Evans-Rashid transition

1

TMn(0 0, 0;2p, ')
1 1 &(eg —p')

T'B(0 0 0) V e„- —p'

(6)

Through Eqs. (4)—(6) we observe that for an effectively
repulsive interaction (a ) 0) the free-energy functional

with e&
——h2k2/2m the kinetic energy of the atoms and

X(e) the Bose distribution 1/(e~ —1). In addition, the
many-body T matrix can now be expressed in terms of
the two-body T matrix T (0, 0; 0) = 4m ah /m, via [15]

Instead, an analogy with the BCS theory of supercon-
ductivity suggests that if the atoms have an efFectively
attractive interaction, a phase transition with the order
parameter A(z, ~)—:Vo(g(z, T)Q(x, T)) occurs. To see if
this is indeed the case we must derive and solve the equa-
tion for the equilibrium value of A(x, 7 ) in the ladder ap-
proximation, which requires the inclusion of fluctuations
around the usual BCS (mean-field) theory. As a first step
towards this goal we perform a Hubbard-Stratonovich
transformation by multiplying the grand canonical par-
tition function ZG. by

(
1 = JV d[A*]d[A] exp

2 0
dr dz

~
A(z, r) —Vog(z, 7.)Q(x, ~) ~'

and integrating over the fields g'(z, r) and Q(z, v.).
The latter is conveniently accomplished in Nambu
space and requires the introduction of the two-
component field P(z, w) = (g(z, r), g*(z, 7.)) and the
corresponding matrix of exact (normal and anoma-
lous) one-particle Green's functions G(z, r; z', r')
—(T [P(x, r)Pt(z', 7')]), obeying the Gorkov equation

and contains all the desired information on the possibil-
ity of a BCS-like phase transition. In particular, it can
be expanded in powers of b, (z, w) by using the Dyson
equation G = Gp —Z, leading to

Tr[ln( —G ')] = Tr[ln( —G, ')] —Q, (11)

( gB +hV
—S*(x,~) gB hV G(z, r;z, r )

hz + 2 +p) and by taking the self-energy matrix equal to

= M(x —x')b(~ —r') . (9) hE(x, ~; z', T')

In this manner we arrive at an effective action for the
order parameter A(x, w), which is formally given by [17]

S[A*,K] = —Tr[ln( —G ')]

1

2Vp

AP

d*" ~&(*,T) ~' (10)

For our purposes we are especially interested in the
quadratic term in this expansion. After performing the
trace over both coordinate and Nambu space it is found
to be
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Ap hp
S~ ~)6*,6) = — dv dd d '7f dd'6'( 0, 7)0G ~(dr;x, v')6(d', v'),

0 0

where the "noninteracting" Green's function of the order parameter obeys

G& (z, r;z, r ) = Gp ii(z, r;z, r )Gp ii(z, r;z, r ) + h(z —z )h(r r ) (14)

or equivalently

Ga(z, r; z', r') = 2AVpb(z —z')b(r —r')
hp

dv." dx' 0qq x, ~;x",7" G0$] zyvjz )T G& z y7 jx
0

Transforming to &equency-momentum space then gives

1++ 't i+i & ++ 'fc 2-K

+ 2~ —
ed~2+)

—
ed~2 )

Ic

having the solution

Gn(K; 0„)= 2' (0, 0, K; ihO„+ 2p) . (17)

In mean-field theory we neglect all fluctuations and as
a result conclude that the Evans-Rashid transition [17,19]
occurs at a temperature determined by

f
op

dr dz Gn'(z, 7-; z, r)
0

=Gn 0;0
—1 1 =0

2ATMn(0 0, 0; 2p)

1

TMB(0 0 0. 2&I)

]. 1 .N(ez —y, ')
T2n(0, 0; 0) V eg —P'

=0

Consequently, the critical temperature of the Evans-
Rashid transition is slightly above the critical temper-
ature of the ideal Bose gas, i.e. , TER = Tp[1 —O(a/Ap)]
[isl.

which corresponds exactly to the Thouless criterium
for the onset of the BCS instability [18]. For a di-
lute gas, however, mean-field theory is not sufficiently
accurate and we must also consider the fluctuations.
Fortunately, Eq. (17) shows how we can apply the T
matrix approximation to the Evans-Rashid transition.
Indeed, due to this relationship the renormalization of
the quadratic term in the action caused by the presence
of the [b [ and the 16[s "interactions" can be accounted
for by replacing in the above discussion the noninteract-
ing Green's function Gp, ii(k; u„) = h/(ihu„— e& + ))I) by
its renormalized (within the ladder approximation) value

5/[ifau„— e&
—AZ(k; pd„) + ))d]. Since AE(k;u„) is well

approximated by the constant 2nT2B(0, 0; 0) this implies
just a replacement of the chemical potential p by p'. The
onset of the BCS-like instability is therefore in the dilute
limit determined by

Notice that the above discussion shows that the pair
field g(z, )rQ(z, r) can be used even if the interatomic
potential has a negative scattering length without having
a bound state. This is a truly many-body effect which
occurs because bosons prefer to scatter into (momentum)
states that are already occupied. As a result the bind-
ing between two particles is efFectively increased and a
resonance, which must always lie just above the contin-
uum threshold for a to be negative, becomes bound at
a density-temperature combination determined by Eq.
(»)

III. STABILITY OF THE GASEOUS PHASES

In the preceding section we have argued that in
the degenerate regime the relevant order parameter for
an atomic Bose gas with negative scattering length is
b, (z, r) = Vp(g(z, 7)g(z, r)). In order to proceed and to
discuss whether the corresponding phase transition can
take place in the (meta)stable region of the phase dia-
gram we must now also consider the gas below the critical
temperature TER. This can of course be achieved by the
functional approach used above, but to make the follow-
ing more transparent we will from now on use canonical
methods.

Denoting the equilibrium value of b, (z, r) by 4p and
applying the BCS approach in combination with the T-
matrix approximation, the Hamiltonian of the gas is ap-
proximated by

H=fd Id~(*)l—
r

—
)

'
I @(*)

+,'~'(=)4'(=) + '4 (*-)~(*-)

12Idol 'Tma(0 0 0))2V0 (20)

in the Schrodinger picture. After a diagonalization of this
Hamiltonian by means of a Bogoliubov transformation
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[20] the density n = (@t(z)Q(z)) and the order parameter
Ap = Vp(@(z)@(z)) are easily calculated, resulting in the
equation of state

~= —) [
" "nr{r;)+ ' (21)

and the BCS gap equation [17,19]

1 1 .1+ 2N(fuff, )

respectively.
As will become clear in a moment it is important to

note that in the dispersion hug = g(eg —p')2 —~hp~2

of the Bogoliubov quasiparticles there is a minus sign in
front of ~Ap~2 instead of the usual plus sign since we are
dealing with paired bosons and not with paired fermions.
Moreover, the gap equation has an ultraviolet divergence
due to the neglect of the momentum dependence of the
interaction. However, anticipating the fact that ~Ep~ is
at most of O(~nT2B(0, 0; 0) ~) and thus much smaller than
h2/mr&2, we find from the Lippmann-Schwinger equation
[21] for the two-body T matrix that this divergence is
canceled by a renormalization of 1/Vp to 1/T2B(0, 0; 0).
Therefore the gap equation becomes

1 1 .N(fuug)

T (0 0 0) V @up
(22)

] &g
—P ck —Pn=n + —) " N(Ru„-)+

A:+0

which is &ee of divergencies. Together with Eq. (21)
it determines both p,

' and ~Ap~ for a fixed density and
temperature.

At high temperatures the gap equation has no solution
and we must use ~Ap~ = 0. In that case Eq. (21) reduces
to the expected equation of state for a dilute Bose gas in
the normal phase [cf. Eq. (5)]. Below the critical tem-
perature TER, determined by a linearization of Eq. (22)
which correctly leads to Eq. (19), the order parameter
~b, p~ becomes nonzero and the gas is in a superfiuid phase
with paired atoms. Lowering the temperature, both ~b, p

~

and p,
' increase, but in such a manner that the gap in

the dispersion of the Bogoliubov quasiparticles decreases
since otherwise the system would not be able to ac-
commodate the same number of particles. Evidently, this
behavior is possible due to the above mentioned minus
sign in the dispersion relation.

At a second critical temperature TBE~ the gap
closes and the number of particles with zero momen-
tum diverges, which signals a Bose-Einstein condensa-
tion (BEC). Below that temperature we have ~b p~
—p' and ~& equals the famous Bogoliubov dispersion

e2 —2p'e& [20]. Furthermore, Eqs. (21) and (22) are

replaced by

and

1

T (0 0 0)

np 1 ).N(Rug)
pI

%+0

(24)

2(eg —p')

[2

+ n'T'B(0, 0; 0)
2T (000)

—;) 1-(1- -'"")

where we have again canceled an ultraviolet divergence
in the expression by renormalizing 1/Vp to 1/T2B(0, 0; 0).
The above expression is valid for all temperatures if we
use ~Ap~ = 0 above TER and [Ap~ = —p,

' below TEEc.
In Fig. 2 we show the behavior of the pressure as a func-

tion of inverse density at a fixed temperature. At high
densities the pressure stays negative, which is unphysical
and caused by the fact that the T-matrix approxima-
tion incorporates the hard core of the interatomic poten-

I
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FIG. 2. Pressure as a function of inverse density for a 6xed
temperature such that ~a/A~ = 10 . The inset shows the
cusp in the pressure caused by the Evans-Rashid transition.

determining now p' and the condensate density n0 for a
fixed density and temperature. Notice that the mecha-
nism for Bose-Einstein condensation is identical to the
mechanism causing Bose-Einstein condensation in the
ideal Bose gas. In particular, there is no spontaneous
breaking of symmetry associated with the second tran-
sition and the order parameter is np and not (g(z, v)),
which is zero also below Tp,pc.

To discuss the question of the mechanical stability of
the various phases and consequently the experimental ob-
servability of the two transitions we must calculate the
pressure of the gas. Since the Hamiltonian in Eq. (20)
is quadratic this is easily accomplished by evaluating the
thermodynamic potential 0 = —pV and we find
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IV. CONCLUSIONS AND DISCUSSION

In the case of trapped atomic gas samples such a spin-
odal decomposition should be easily visible experimen-
tally because it causes an increase in the density at the
center of the trap and consequently leads to a sudden in-
crease in the number of two-body relaxation and three-
body recombination processes that severely limit the life-
time of the system. Therefore, we present in Fig. 3 the
spinodal line, following from the condition

1 1 1V(eg —p')

T2n(0 0 0) & ep
k

(26)

We notice that the degeneracy parameter nA3 is al-
ways smaller than t,"(s2) 2.612, implying that it is
easier to obtain the required condition for phase sep-
aration than the condition for Bose-Einstein condensa-
tion in the case of an atomic gas with positive scattering
length. This is particularly true for atomic cesium in the
~I" = 3, M~ = —3) state, which can have large negative
values of the scattering length by tuning the magnetic

tial only in an eHective way. For a dilute gas nr& (( 1
and this is indeed justi6ed. At higher densities, how-

ever, the hard core becomes of the utmost importance to
avoid the complete collapse of the system and must be
treated with more care. Nevertheless, we can conclude
&om Fig. 2 that the gas passes in thermal equilibrium
through a Grst-order transition &om a gaseous phase to
a phase with high density. The dense phase cannot be
described accurately within the &amework of the ladder
approximation and a more advanced theory, capable of
describing a strongly interacting system, is required to
discuss whether it is liquid or solid and also its possible
superfluid properties.

However, as explained in the Introduction, for the ex-
perimental observability of the Evans-Rashid transition
we only need to answer the question if it can take place
in the (meta)stable region of the phase diagram, where
Bp/Bn ) 0. It is not difficult to show [by comparing Eq.
(26) with Eq. (19)] that this is never the case. There-
fore, we expect the following behavior of the atomic sys-
tem: By increasing the density or lowering the temper-
ature, the gas will evolve from a stable to a metastable
state until, when Bp/Bn = 0, a point on the spinodal
line is reached. Increasing the density further the gas is
quenched into the unstable region of the phase diagram
and will experience a phase separation by means of a
spinodal decomposition.
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FIG. 3. Spinodal line in the (nA, na ) plane, separat-
ing the (meta)stable and unstable regions of the phase di-
agram. The dashed line corresponds to the condition for
Bose-Einstein condensation in a Bose gas with repulsive in-
teractions.
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field strength. Whether the dynamics of the spinodal de-
composition is also observable is unclear at this moment
because it requires a detailed study of the growth of the
liquid or solid phase taking into account the release of
latent heat and the enhanced importance of inelastic col-
lision processes that lead to decay of the sample.

Summanzing, we have studied the dilute atomic Bose
gas with negative scattering length and have shown that
although Bose-Einstein condensation can in principle also
occur in this case, it does not take place in the gas phase.
In contrast, we argue that the gas separates into a nor-
mal gas and a (possibly superfiuid) liquid or solid. For
magnetically trapped atomic lithium or cesium the most
likely scenario is phase separation into a gas and a solid
since both the thermal energy as well as the energy due
to zero-point motion are much smaller than the depth of
the potential well. However, a more elaborate discussion
is necessary to con6rm this conjecture. In any case the
separation proceeds by means of a spinodal decomposi-
tion and gives a clear experimental signal if one monitors
the decay of the atomic density.
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