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A vector quantum field theory is developed to describe the interaction of an ultracold atomic ensemble

with a laser field. The ultracold atomic ensemble is composed of either bosonic atoms or fermionic
atoms. The photon exchanges between different ultracold atoms result in a long-range interatom in-

teraction. Under appropriate conditions, such a many-body interaction leads to an effective "Kerr-type"
nonlinearity of atomic waves. In terms of the nonlinearity, we construct a general formalism of non-

linear atom optics for an ultracold atomic beam. Applying the formalism to the diffraction of an ul-

tracold atomic beam composed of bosonic atoms by a standing-wave laser field, we find that the many-

body nonlinearity induces self-phase and cross-phase modulation of diffracted atomic waves. As a result,
a standing-wave laser acts as a nonlinear atomic grating which diffracts atoms in the same way as a non-

linear periodic medium diffracts photons.

PACS number(s): 03.75.Be, 42.50.Vk, 32.80.Pj

I. INTRODUCTION

In the past few years, rapid progress was made in laser
cooling and trapping of neutral atoms [1—6]. By cooling
techniques of neutral atoms, one can reduce thermal
motion of an atom and achieve a long thermal de Broglie
wavelength. Such cold atoms provide necessary tools to
study optical effects of atoms in atom optics [7].

On the other hand, the combination of optical cooling
and atom traps introduces the possibility of producing ul-

tracold atomic sources where bosonic atoms are expected
to lose their individual identities and degenerately con-
dense into a macroscopic single quantum state at ex-
tremely low temperatures together with suSciently high
densities. Such atomic sources are expected to have
properties similar to the role of lasers in conventional
coherent optics.

Although there are many limitations to the generation
of an ultracold quantum state of atoms in an optical trap
[8,9], in principle it is possible to realize such a quantum
state by other cooling and trapping techniques, for exam-

ple, evaporative cooling, magnetic traps, and atomic cavi-
ties [10—13]. By combination of different cooling and

trapping techniques, the temperatures and densities
achieved in current experiments are T-1 pK, n —10'
cm for cesium atoms [5] and T-100 pK, n —8X10'

cm for hydrogen atoms [6]. Such temperatures and
densities bring the samples towards the critical points of
Bose-Einstein condensation and the effect of quantum
statistics on the behavior of the samples in the near-
critical conditions should be of crucial importance. Par-
ticularly, quantum statistics lead to new aspects in atom
optics if the atomic beams used in current experiments of
atom optics are replaced by those from ultracold atomic
sources.

The existing theory for interaction of atoms with light
waves adopted either a single-particle density-operator
equation or a Schrodinger equation to describe the center
of mass motion of atoms, which forms the theoretical
basis for laser cooling and atom optics [14—22]. Such a
single-particle description is valid since the current ex-
periments in these areas only involve low-density atomic
samples. However, for ultracold atomic samples, the
single-particle theory is no longer valid and many-body
quantum statistics must be taken into account. In this
paper, we develop a quantum statistical theory for in-
teraction of ultracold atoms with light waves in the
framework of a vector quantum field theory. As a gen-
eral description, the ultracold atomic sample is assumed
to be composed of either bosonic atoms or fermionic
atoms. Considering a typical example in atom optics, we

apply the theory to the diffraction of an ultracold atomic
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beam by a standing-wave laser. For simplicity, the Bragg
resonance condition [16] is assumed in the diffraction of
ultracold atoms. In this case, we find that the standing-
wave laser acts as a nonlinear atomic beam splitter in the
ultracold regime. By employing this simple example, we
present our basic ideas in constructing a formalism of
nonlinear atom optics for an ultracold atomic beam in
the framework of quantum field theory.

This paper is a detailed extension of our previous pa-
pers [23—26] and is organized as follows: Sec. II de-

scribes the quantum field theory of interaction of ul-

tracold atoms with a laser field. A general vector non-

linear stochastic Schrodinger equation for ultracold
atoms and a general quantum propagation equation for
laser photons are obtained which form the basis to study
atomic nonlinear phenomena in atom optics and quan-
tum optics. Applying the nonlinear stochastic
Schrodinger equation of ultracold atoms and the quan-
tum propagation equation of laser photons, we develop a
general formalism of nonlinear atom optics for an ul-

tracold atomic beam in Sec. III. Two sources of the
atomic nonlinearity are identified by considering a
standing-wave laser. In Sec. IV we study the effects of
atomic nonlinearity induced by the absorption and
dispersion of laser photons on the diffraction of atoms.
The results show that the absorption of photons tends to
reduce the intensity of the standing-wave laser and the
dispersion of photons does distort the periodic structure
of the standing-wave laser. As a result, the standing-
wave laser is no longer a perfect diffraction grating for an
ultracold atomic beam when the absorption and disper-
sion of photons is not negligible. The conditions neces-
sary to eliminate the effects of absorption and dispersion
of laser photons are discussed. In Sec. V we study the
nonlinear diffraction of ultracold atoms by a standing-
wave laser with a negligible absorption and dispersion.
The Bragg resonance condition is employed to simplify
our discussions for the diffraction. In this case, the
standing-wave laser acts as a nonlinear splitter of an ul-

tracold atomic beam. By analogy with the propagation
of a light wave in an optical Kerr-type nonlinear medium,
we find that the long-range interatomic interaction due to
photon exchanges leads to an atomic "Kerr-type" non-

linearity which induces self-phase modulation (SPM) and
cross-phase modulation (XPM) of diffracted atomic
waves. Such nonlinear phase modulations result in a
diffraction dynamics of an ultracold atomic beam which
is fully different from that of a single-atom beam. A nu-

merical simulation for nonlinear Bragg scattering of an
ultracold atomic beam is given in Sec. VI. The con-
clusions are included in Sec. VII.

II. QUANTUM FIELD THEORETIC
DESCRIPTION OF ULTRACOLD ATOMS

The interaction theory of a single atom with a laser
beam including the center of mass motion of atoms has
well been developed [14—22]. In the single-atom theory,
the dynamic behavior of atoms is described by either a
single-particle density operator equation or a Schrodinger
equation. In this section, we develop a many-body quan-
tum statistical theory for ultracold atomic ensembles us-

ing quantum field theory. In order to take quantum

statistics into account, we describe the ultracold atomic
ensembles as a vector quantum field with different inter-
nal levels instead of the description of the conventional
single-particle wave function. In terms of our previous
papers [23—26] and Ref. [27], in the dipole approxima-
tion the single-particle Hamiltonian for a moving two-
level atom interacting with a quantized laser field has the
form

H=H~+HL+HF+H~ L+Hq-F )

$2+2
Hz = — +%co,cr o. ,

2

B~ po

HF =g AcotBqqBkq,
kA.

H„L= —J.A= —(J)2cr+J2,o ) A,

&& F= —&ggk~B~~exp( —ik r)(0.+c )+H. c. ,
kA.

where H~, HL, and HF are, respectively, the free Hamil-
tonian of the moving atom with resonance frequency co„
of' the quantized laser field with frequency coL, and of the
vacuum electromagnetic field which is introduced to de-
scribe the effect of the spontaneous emission of the atoms.
The Hamiltonian H~ L describe the interaction of the
atom with the laser field with vector potential A. H~ F
is the interaction Hamiltonian of the atom with the vacu-
um electromagnetic field Vect.or J~ =icoLp, j (i' =1,2)
is the matrix element of the transverse-electric-current
operator J and p, is the matrix element of dipole mo-
ment of the atom [27]. Here we take p,, =p; =p as a
real number. 8A. & and 8«are the bosonic creation and
annihilation operators of the vacuum electromagnetic
field. The coefftcient gzz=i(2ncok/A'V, )' p eke is the
coupling strength of the atom with the vacuum elec-
tromagnetic fields. The atomic transition is described by
the Pauli spin operators 0. and o .

For an ultracold atomic ensemble which is composed
of many bosonic atoms or fermionic atoms, the total
Hamiltonian should be the sum over all atoms in the en-
semble. A well-known theory of N two-level atoms in-

teracting with a light field was first developed by Dicke
[28]. The theory is very effective in the case where only
two atoms are involved. An application of two-atom
Dicke's model to laser cooling has been reported by
Smith and Burnett [29]. However, if the atomic number
N in the atomic ensemble is very large, Dicke's model is
no longer an effective method since a direct solution of
the N-body problem is impractical. Particularly it is
diScult to modify the model to include the behavior of
the atoms in the ultracold regime.

To formulate a general theory for a many-atom ensem-
ble including the quantum statistics in the ultracold re-

gime, one must resort to other techniques, and we employ
quantum field theory in this paper. Owing to the pres-
ence of light waves, the internal transition of atoms are
involved. Hence the conventional scalar quantum field

theory must be extended to including the internal levels
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of atoms. For simplicity, in this paper, the ultracold
atomic ensemble is described as a two-component vector
quantum field c/i(r)=1i), (r)~1)+pi(r)~2). The state vec-
tors

~
1) and ~2 ) denote the internal ground state and ex-

cited state of the atomic quantum field. The Hermite
conjugate components gi(r) and $1.(r) of the quantum
field f(r) describe the annihilation and creation of the
atoms with the internal state

~j ) (j=1,2) at position r.
The ideal two-level model for the atomic quantum field is
a simplified treatment for the real electric dipole transi-
tions. Although in the real cases, both the ground state

I

~1) and the excited state ~2) are usually composed of
many sublevels, the ideal two-level model can be con-
sidered as a reasonable approximation and a useful tool in
studying the interaction of atoms with light waves. A
general extension of the methods developed in this paper
to including the multiple-sublevel structures of atoms is
straightforward and will be left for a further publication.

After introducing the vector quantum field, the sys-
tematic Hamiltonian for the ensemble composed of many
two-level ultracold atoms, the laser field, and the vacuum
electromagnetic field can be written as [23,24]

2

H,„,= g fd r ft(r}
—AV

itjl
(r)+ f d r Pi(r)fico, gi(r )+HL +Hr f d —rJ,i Ag, (r)gi(r)

2m

&f'd—'r g g)',&B„&e '"' it)(r) 1(i(r) fif d—r

hagi',

iBi,~e '"'1(((r)pz(r)+H. c .
kA, kA,

(2)

Hamiltonian (2) is the integral of the single-atom Hamil-
tonian (1) over the distribution space of the atomic quan-
tum field. In order to take quantum statistics into ac-
count, we introduce the following equal-time commuta-
tors for atomic quantum field operators:

[y;(r),yJ(r') ],= [y;(r), y, (r') ],=0,
[g;(r},lit~(r')] =5,J5(r—r'),

where we have used the notation [A,B] =AB qBA—
with q =1 corresponding to Bose-Einstein statistics and
q = —I to Fermi-Dirac statistics. On the other hand, the
quantized laser field satisfies the commutation relations in
the Coulomb gauge [27],

[ A, (r), AJ(r'}]=[D,(r),D, (r')]=0,

[D,(r), A (r')]=i5,"(r—r') (i,j=x,y, z),

&Xg))B)s(t}e.
kA,

ifi =ficokB),), fig)*,)„f d—r e
(}t

Xgi(r, t)f, (r, t)
3p e fk'I'

(Sb)

(Sc}

~X gtiB) ) (t)e
kA,

gi i.
e'" 'B„&(t),

kA,

(5a)

where D= —eoE= —eo(}A/(}t is the electric displace-
ment vector with E the field strength and 5r(r —r') is the
transverse delta function. The Hamiltonian (2) and the
commutation relations (3) and (4) determine the Heisen-
berg equations of motion for the atomic quantum field
components g (r), the quantized laser field E, and the
vacuum electromagnetic field operator Bk&. In the
Schrodinger picture they have the following forms
[24,27]:

Eg 1 (} E (} P(g)
2 (k) 2

c Bt dt
(Sd)

where E'*' is the positive frequency and negative fre-
quency part of the electric field E and the operator
P'+'= [P' '] =pg)fi defines the positive frequency part
of the polarization of the ultracold atomic ensemble in
the Schrodinger picture. Equations (Sa) and (Sb) deter-
mine the dynamic behavior of the atomic quantum field
in the presence of the laser field and the vacuum elec-
tromagnetic field. Equation (5c) describes the time evolu-
tion of the vacuum electromagnetic field due to spontane-
ous emission of atoms and Eq. (Sd) determines the propa-
gation of laser photons in the presence of the ultracold
atomic ensemble. Solving Eq. (Sc), one obtains

(6)
I

B&i(t)= Bii(to)+ig~ f dt' fd re' " '
'&2(r t')P(r t')+ig)') f dt'f d re' " ' P(r t')gi(r t') e

fo fo

where the first term Bi,i (to) gives the free electromagnetic field operator which describes the vacuum fluctuations and
the second and third terms give the fields of the radiation or the scattered fields of the atoms. In the single-atom theory
[27], the second term is usually neglected due to the rotating-wave approximation. In our many-atom quantum field
theory, this term leads to two-body interaction between difFerent ultracold atoms. Substituting Eq. (6) into Eqs. (5a) and
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(Sb}, and working in the rotating frame with laser frequency col, we obtain the reduced equations of motion for the
atomic quantum field:

f2+2

t 2m
kA,

t —
70

+iaaf d r' f dr[G' '(~, r —r')]' 1(z(r', t ~—)g, (r', t —~)pz(r, t)
0

t —lo
if—if d r' f d~G'+'(~, r —r'}1(z(r, t)g~(r', t ~—)p, (r', t —r),

0

z fiV

kA,

(7a)

/ —
10i' f—d r' f dr G' '(r, r —r')g, (r, t)g, (r', t ~)Pz—(r', t r)—

0
t —fo

+ifif d r'f dr[G'+'(~, r —r')]' 1((r', t r) (1~(—r', t ~)—p, (r, t), (7b)
0

—i(col, + L )~+i k (r—r')
where G' —'(r, r —r')=pi&lgi&l e " are the photon Green's functions and h=cot —co, is the detuning
of the laser frequency from the atomic resonance frequency. In Eqs. (7a) and (7b), the integrals over time depend on the
field operators g (r, t —w) (j=1,2) with the time delay ~. According to the Weisskopf-Wigner radiation theory [27],
the radiation fields of atoms have the Markoff property and the effect of the time delay on the atomic quantum field can
be neglected. In this case, the delayed quantum field operators can be removed from within the integrals over time v. in

Eqs. (7a) and (7b}. By rearranging all operators in normal order, we finally obtain the Heisenberg equations of motion
for the atomic quantum field operators

a, S2V2
iR = — f, —p E' 'gz+iA fd r'L(r r')gz~(r'—, t)g, (r', t)gz(r, t)+G, (r, t),

m
(Sa)

i' = —
1(z

—R(b, +iy/2)1(i —p E'+'gi i' fd r'L—(r r')'gi(r', —t)gz(r', t)gi(r, t)+G, (r, t),
m

where y =4lpl cot /3Rc is the spontaneous emission rate of a single atom in the ensemble. The usual Lamb level shift

of a single atom induced by the vacuum electromagnetic field has been included in the detuning 6 in Eq. (Sb). The non-

linear two-body correlation or collision coefficient for excited-state and ground-state atoms has the definition in the
Markoff approximation

f —to
L(r —r')= lim f de[ [G' '(~, r —r')]' —G'+'( rr—r')]

f —f ~m 00

27TCOk
lp. ekXl'. ~&(~k ~L)+P

AV, COk COL

—ik (r —r')+ p
COk +NI

e ik (r —r')
(9)

where P indicates a principal value. To evaluate the summation over all wave vectors k of the radiation fields in Eq. (9),
we pass to the limit of infinite quantization volume V, ~ ao in the usual way [19],and then obtain the expressions

for

L(r r')=y[K(r —r—')/2 —i W(r —r')] (10a)

3 .
z& sing

( q&}
cosg sing (lob)

(10c)

where we define g= lkt (r —r')l and 0 is the angle between the dipole moment p and the relative coordinate r —r'. The

noise terms in Eqs. (S) are defined as

6 (r, t)= —%[I "(r,t)gt+QII &(r, t)] (jul=1, 2),
—i [cok+( —1)ja)L jt+ik r

with the operators I (r, t ) =gi,ig„iBi,&(to )e " '
(j= 1,2) giving the effect of vacuum fiuctuations on

the atomic quantum field. The noise operators I (r, t) satisfy the following random correlations:
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(I i(r, i)I 1(r', t')) =(I i(r, t)I/(r', t')) =0,(, t }) Q I I I

' ~„+(—1)'~i J(i —t')+i&.(r —~')]~

kA,

G' '(t —t', r —r'} (j =l =1}
= 'G'+)(t —t', r —r'} (j=l=2)

0 (jul=1, 2).
(12)

The bracket "( )" denotes an average over the vacuum
states of the free electromagnetic field. In the Marko8'
approximation, the above correlations are identical to
those of "white noises" [27].

The nonlinear stochastic Schrodinger equations (8) and
the quantum propagation equation (5d) determine the
collective dynamics of a two-level ultracold atomic en-
semble in a laser field. In addition, they form the basis to
construct a formalism of nonlinear atom optics for an ul-
tracold atomic beam. The nonlinear terms in Eqs. (8),
which originate from the interaction of the ultracold
atoms with the vacuum electromagnetic field, describe
the many-body collective correlation between ultracold
atoms. These terms show that the interaction of the
atoms with the photons of vacuum fields leads to a direct
interaction between the atoms. This case is very similar
to that of electrons interacting with phonons of lattice vi-
bration fields in a superconductor [30]. The real part
yK(r —r') of the nonlinear correlation coefficient
L(r —r') accounts for the dissipation of the atomic quan-
tum field due to collisions caused by many-atom spon-
taneous emission. The imaginary part —y W(r —r'} cor-
responds to the interatom interaction potential, which is
the result of photon exchanges between the ultracold
atoms via the vacuum fields. In terms of Eqs. (10}, the
correlation coefficient L (r —r') has a sharp peak when
the interatom distance is close to the atomic resonance
wavelength. Hence it determines a long-range correla-
tion of ultracold atoms in the range of atomic resonance
wavelengths.

III. FORMALISM
OF NONLINEAR ATOM OPTICS

turn state where bosonic atoms lose their individual iden-
tities. Due to optical excitation, the atoms in a laser field
are either in the excited state or in the ground state.
However, only the atoms, which remain in the ground
state after the interaction with the laser field, can trans-
port spatial coherence at large distances [31]. This condi-
tion is realized when the interaction of atoms with laser
field is in the adiabatic regime where the interaction time
ro is longer than the characteristic time [max(b„y)]
In this case, the excited-state component of the atomic
quantum field in Eq. (8b} has the adiabatic solution
[16,31]

g(+)
2(b, +iy/2)

Id r'L(r r')'g, (r—')$2(r')g, (r)b+iy 2

+
6

A(h+ i y /2) ' (13)

$2+2 + V(r)+ Vz (r)
2m

where we have defined the Rabi frequency
Q'*'=2l. E'*)/a

Substituting (13) into Eq. (8a) and neglecting the
higher-order terms O[(i)),2+y /4) 3i

] in the adiabatic
regime, we have the reduced equation for the ground-
state atomic quantum field operator f„

Equations (8) and (Sd) describe the general dynamic
behavior of ultracold atoms in a laser field. They are ap-
plicable to both bosonic atoms and fermionic atoms. In
this section, we apply them to construct a basic formal-
ism of nonlinear atom optics for an ultracold atomic
beam composed only of bosonic atoms. This assumes
that the atomic beam is prepared in an ultracold quan-

+ J d r'Q(r, r')it)ti(r', t)P, (r', r)it), (r, t } . (14)

The efFective single-particle potential V(r) and the intera-
tom interaction potential Q(r, r') have the following ex-
pressions:

StQ'+)i'
V(r)= 4(6+i y/2)

(15a)

12

Q(r, r')= L(r —r')Q'+'(r)Q' '(r'}+ . L(r—r')'Q' '(r)Q'+'(r') — iQ'+'(r')I
4(b, '+y'/4) y/2 i b, — y/2 i b, —

(15b)
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V„(r):— l

2(b, +iy /2)

X [A'Q' '[I &(r, t)+I z(r, t)]+H.c.j, (16)

The single-particle potential (15a) is the usual dipole po-
tential in the single-atom di6'raction theory in the adia-
batic approximation [16,31]. In addition to the single-
atom dipole potential and the interatom interaction po-
tential, Eq. (14) includes a random potential with the
form IA

,
'';BI'!

No

which is due to vacuum fluctuations coupling into the en-
semble in the spontaneous emission process of the atoms.
In terms of Eq. (14), the vacuum fiuctuations are
equivalent to a random scattering source of atoms with
the statistical average ( Vs(r})=0. The higher-order
statistical properties of the random-scattering source are
determined by the random correlation functions (12).

In addition, the single-particle potential V(r) is non-
Hermitian due to spontaneous-emission decay. The in-
teratom interaction potential Q (r, r') is the result of our
many-particle quantum field theory. It originates from
the photon scattering during spontaneous emission and
the photon exchange between the atoms via the vacuum
fields. It is evident that the interatom interaction leads to
a nonlinearity of the ultracold atomic beam in the laser
field. Such a nonlinearity results in a many-body correla-
tion which changes the propagation properties of the ul-

tracold atomic beam. The interatom potential Q(r, r') is
also non-Hermitian with the real part determining the in-
teratom interaction energy due to photon exchanges and
the imaginary part giving the loss rate of atoms due to
many-body collisions induced by photon scattering.

So far, we have only discussed the origin of atomic
nonlinearity due to photon scattering and exchanges in
the spontaneous emission process. Below we will show
that the absorption and dispersion of laser photons are
also an important source of atomic nonlinearity. In
terms of Eq. (Sd), the interaction of atoms with laser pho-
tons results in the change of the propagation properties
of the laser field. In the adiabatic regime of atomic
motion, substituting Eq. (13) into Eq. (Sd) and neglecting
the higher-order nonlinear absorption terms, we obtain
the quantum propagation equation for the laser field in

the rotating frame with laser frequency,

V' Q'+'+k Q'+'=2 k (3,/y i /2)g (~—r) li(r) Q'+',

where o =y /(4b, +y )cr „kis the absorption cross sec-
tion of the atoms and cr~„&=2~)M,,2~ cot /fiycE0=3AL/2'

V
p =-4k&

t}t'

FIG. 1. The schematic diagram for Bragg scattering of an
atomic beam by a standing-wave laser beam: A denotes the in-

cident atomic beam, B the near-6eld interference region, C the
standing-wave laser beam, and D the detection screen.

and for the laser field along the —y axis,

Bn'+'-y 1 id, t (+)
2y y

1 1 —y
(19b)

In the derivation of Eqs. (19), we ignore the variation of
transverse spatial structure of the laser field in the slowly
varying approximation. By solving Eqs. (19), we obtain
the corrected Rabi frequency due to absorption and
dispersion of photons,

is the peak absorption cross section of the atoms. In the
above expressions, kL and kL denote the wave number
and wavelength of the laser field. The right-hand side of
Eq. (17) is the polarization of the ultracold atomic ensem-
ble in the adiabatic approximation. The real part of the
polarization induces dispersion of photons and the imagi-
nary part results in absorption of photons. To solve Eq.
(17), we consider a standing-wave laser which is com-
posed of two counterpropagating traveling waves (see
Fig. 1). In this case, we can express the Rabi frequency
as

Q'+'(r)=Q'+'(r)exp(ikty)+Q'+'(r)exp( ikt y )
—. (18)

In the slowly varying envelope approximation, Eqs. (17)
and (18) give the propagation equations for the laser field

propagating along the +y axis,

(+)
Qy —+i cr g, g—)Q (19a}
By 2 y

~Q'+'(r)~'= —Q(r)' exp —o f g,g, dy' +exp o f 4&—4&dy
4 —00 y

+2exp — cr f f&p—&dy' cos 2kly — cr rtr—, g, dy'
2 00

(20)

where Q(r)=QOF(x, z) with Qo denoting the peak Rabi
frequency and F(x,z)=exp[ —(x +z )/2WL] is the
transverse profile of the two counterpropagating laser
fields at y = —~ and y = ~ which are assumed to have

identical transverse profiles to form a standing-wave
laser. In terms of Eqs. (14), (15), and (20), it is evident
that the absorption and dispersion of laser photons lead
to an atomic nonlinearity as well. The atomic nonlineari-
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ty due to absorption and dispersion has a more compli-
cated form than that due to spontaneous emission.

Equations (14)—(16) and (20) form the basis of non-

linear atom optics in the adiabatic regime. In this paper,
we will consider diffraction of atoms by a standing-wave
laser in atom optics. Before discussing the nonlinear
diffraction, we analyze the effects of the absorption and
dispersion of laser photons.

IV. ATOMIC NONLINEARITY
DUE TO ABSORPTION AND DISPERSION

In terms of expression (20), the absorption and disper-
sion of laser photons result in spatial distortion of the
laser field. Such a distortion depends on the spatial dis-
tribution of the incident atomic beam. For a low-density
atomic beam with o f"„1(,1(,dy' «1, the spatial distor-

I

poexp
y

2
Wy

(21)

where po is the peak density of the incident atomic beam
and w„is its width in the y direction. We assume that the
widths of the incident atomic beam in the x and z direc-
tion are much larger than that in the y direction and ig-
nore the spatial variation of the incident atomic beam in
the x and z direction. Substituting the initial density dis-
tribution (21) into Eq. (20), we have

tion of the laser field due to absorption and dispersion
can be neglected. However, for an ultracold atomic
beam, one must evaluate the effects of absorption and
dispersion. As an approximate analysis, we replace the
atomic quantum field by its initial density distribution
with the form

~Q'+'(r}~ =—Q(r) exp — ow po[1+erf(y/w )] +exp — ow pc[1 —erf(y/w )]
t/7r

v'7r
+2exp — ow po cos 2kl y v'm o—w poe—rf(y/w~) (22)

kI —(b, /y )[(v'm/2)o. w~po]erf(y /w )y
(23)

In terms of Eqs. (22) and (15a},we numerically calculate
the dipole potential V(r) as shown in Figs. 2-4, where
the dipole potential is normalized by a complex constant.
Figure 2 is the result for a very small absorption with the
condition (v n. /2)o w~pp && l. In this case, the dipole po-
tential exhibits periodic structure with period A,L/2.
However, for a large absorption with (v n/2)ow po.&1,
the dipole potential is distorted. We show the distorted
dipole potential in Figs. 3 and 4 for different values of the
detuning. Considering the spatial symmetry in the y
direction, the dipole potential is only plotted in the re-
gion y &0. Figure 3 corresponds to a negative detuning
and Fig. 4 corresponds to a positive one. In both cases,
the absorption of laser photons in the regions where the
atomic beam passes through the laser beam results in the
reduction of the height of the dipole potential. Such a
reduction is due to the weakening of the laser intensity in
the absorption regions. On the other hand, we see that
the spatial oscillation period of the dipole potential de-

pends on the sign of the detuning. The negative detuning
results in a decrease of the spatial oscillation period and
the positive one results in its increase. In terms of Eq.
(22}, the spatial oscillation period of the dipole potential
can qualitatively be expressed as

V(r)

4-

{ { CCcc

Ccc

QQ{ +ccc
{ cc
{ Cgccc

QQ{ {Ccc

CC{-{:cc
{ CCcc c

Qg&ccc

Q{ Cccc~

+CHIC.

cc

(b)

In expression (23), the wave number kL of the laser field

is changed by a factor which is proportional to the detun-

ing 5 and the atomic density distribution. The changing

of the wave number of the laser field is due to the disper-

sion of photons which is caused when the atomic beam

passes through the laser. The dispersion induces a phase

shift of the laser field which results in a modification of

FIG. 2. The dipole potential V(r) for a negligible absorption
aud dispersion [(v'n /2}ow~po=0 01 j: (a} the spatia. l structure
of the dipole potential, and (b) the contour of the dipole poten-
tial in the y-z plane. The detuning chosen are 5=+10y.
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the spatial oscillation period of the dipole potential. Such
a spatial modification tends to destroy the "perfect"
periodic structure of the dipole potential.

In terms of the above discussions and Eq. (20), the ab-
sorption and dispersion of laser photons depend on the
spatial distribution of the atomic beam. Evidently a large
absorption and dispersion could seriously change the spa-
tial shape of a standing-wave laser and distort its "per-
fect" periodic structure as shown in Figs. 3 and 4. There-
fore the standing-wave laser is no longer a perfect
diffraction grating for an ultracold atomic beam. To
avoid the distortion of the laser beam and to observe
effective diffraction, one must reduce the absorption and
dispersion of laser photons as much as possible. Accord-
ing to Eq. (22), the condition (v'n/2)o. w po«1 is re-
quired for an effective diffraction. This gives a limit to
the laser parameters such as the detuning, and the atomic
parameters such as the peak absorption cross section, the
width, and the density of the atomic beam. As an exam-

pie, we consider the ultracold regime where the intera-
tomic distance is close to the atomic resonance wave-
length and the atomic density approximately satisfies
ppA I 1 . In this case, the detuning must satisfy the con-
dition b, »(y/4)+3w /v'mAL for negligible absorption
and dispersion.

On the other hand, the spontaneous emission of atoms
results in the dissipation and random fluctuations of
atoms in the laser field which cause random scattering of
atoms and destroy the coherence of the atomic beam.
Hence to avoid the effects of dissipation and random Quc-
tuations due to the spontaneous emission of atoms, a
large detuning is also a necessary condition.

In this paper, our main purpose is to present the basic
ideas of atomic nonlinearity and its role in nonlinear
atom optics. Hence at this stage we wish to eliminate dis-
sipation and random fluctuations due to spontaneous
emission of the atoms. This is achievable in the off-
resonance regime. Meanwhile, absorption and dispersion

V(F )

(a)

Ccm~ ~a&
Qcw ~

I

(b)
(b)

z/ WL

FIG. 3. The dipole potential V(r) for a negative detuning
5= —10y and a large absorption and dispersion
[(&m/2)crw p0=3]: (a) the spatial structure of the dipole po-
tential, and (b) the contour of the dipole potential in the y-z
plane.

z/ WL

FIG. 4. The dipole potential V(r) for a positive detuning
6= 10y and a large absorption and dispersion
[(V~/2)ow~p0=3]: (a) the spatial structure of the dipole po-
tential, and (b) the contour of the dipole potential in the y-z

plane.
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is negligible as well in this regime. Then the atomic non-

linearity is mainly due to photon-exchange interaction
between atoms.

V. NONLINEAR DIFFRACTION
OF ULTRACOLD ATOMIC BEAM

In this section, we concentrate on studying the effects
of atomic nonlinearity due to long-range photon-
exchange potential W(r —r') on difFraction of ultracold
atoms in the off-resonance regime. Neglecting absorption
and dispersion, we have the Rabi frequency

x +z~Q'+'(r)~ =Q0exp — cos (kiy)

large number of bosonic atoms condensing in a macro-
scopic quantum state. In this case, the mean-field ap-
proxirnation is applicable [26,32] and the atomic quan-
tum field operator for the ultracold atomic beam in Eq.
(24) can be replaced by a c-number macroscopic wave
function 4(r }.

When the atomic beam passes through the standing-
wave laser beam, the periodic structure results in
diffraction of the incident atomic beam into many com-
ponents in the y direction. For stationary propagation,
the atomic macroscopic wave function can be expanded
in terms of the diffraction modes as follows [23]:

in terms of Eq. (20}. Then from Eqs. (14) and (15}we ob-
tain the simplified equation of motion for the ground-
state atomic quantum field in a standing-wave laser with
dissipation and random fluctuations ignored [24]:

a'V' «o x'+z'
iA = — + exp — cos (kiy)

2m 4b,

x +z—
iris' exp — cos (kLy )P,1(,g, , (24)

where y=Q0y V, /2b, defines the two-body collision rate
of ultracold atoms in the adiabatic regime of atomic
motion and V, = ~ f W(r }d r

~
gives the effective scatter-

ing volume of atoms due to photon-exchange interaction.
In the derivation of Eq. (24), we have used the sharpness
of the long-range photon-exchange potential W(r —r') in
the region of the atomic resonance wavelength. In this
case, the Rabi frequency and the atomic quantum field

operator can be considered as spatial slowly varying func-
tions and removed from within the integrals in (14).

The physics implicit in Eq. (24) is very clear. The
standing-wave laser induces a periodic atomic potential
along the y axis. The nonlinear term depends on the den-
sity of the atomic beam and the two-body collision rate y
which plays a similar role to that of a nonlinear optical
susceptibility of a Kerr-type medium in conventional
nonlinear optics. The density of the atomic beam plays
the role of the intensity of light in conventional optics.
By analogy with the conventional nonlinear optics, Eq.
(24) is similar to that of a light wave propagating in a
nonlinear periodic dielectric medium. Therefore we see
that atoms and photons exchange their role in conven-
tional nonlinear optics. In other words, the light wave
just acts as a nonlinear "medium" for an ultracold atomic
beam in nonlinear atom optics.

To simplify our discussions, we study a typical example
in atom optics where the incident atomic beam propa-
gates along the z axis with momentum vector
(p 0=0,p 0=fiK0,p,0=AEC0, ) and kinetic energy E. In
this example, the width of the incident atomic beam in
the x direction is assumed to be wider than that in the y
direction and narrower than the width of the laser beam
so that one can ignore the propagation of the atomic
beam in the x direction. The incident atomic beam is
provided by an ultracold atomic source where there are a

where 4„(y,z} is the spatial slowly varying envelope of
the diffracted atomic beams. Substituting (25) into Eq.
(24} and neglecting the second derivatives 8 4„/By,
8 4„/Bz in the slowly varying envelope approximation,
we have the equations of motion for the diffracted beams,

ae„ ae„
dr By

=(u„4„+g(q.)(24„+4„,+4„+,)

+g rj„j(q(q)@j4'(4q,
jlq

(26)

where ~= v 'z defines the effective time variable,
v =fiK0, /m is the group velocity of the atomic beam in
the z direction, co„=(n +02n) (u„ is the de Broglie fre-

quency for nth difFraction mode with (u(t =Tiki /2m
defining the single-photon recoil frequency, and
u„=(n0+2n)u„ is the group velocity of the nth
difFracted atomic beam in the y direction with

u(( =A'kL /m defining the single-photon recoil velocity.
We have noted n0 J(.0~/kL and generally, n0 need not
be an integer. The linear coupling coefficient between
different diffracted beams has the definition

g (r)=
~Q0~ /16bexp( r lq0) with —q0= WL /v defining

the Aight time of atoms through the laser beam. The
linear coupling coefficient is a time-dependent function
due to the transverse Gaussian profile of the laser beam.
The nonlinear coupling coefficients have the definitions

rj„j((q. ) = ——expx
0

X (5j~(+q n+(+5j~(+q n (+25j (+q n ) .

(27)

Equations (26) are a set of nonlinear coupled wave
equations. For a single-atom beam or a low-density
atomic beam, Eqs. (26) have identical forms to those in
the single-atom diffraction theory [16] with the nonlinear
terms negligible. Equations (26) can be further simplified
by choosing appropriate resonance conditions. In this
paper, we consider the diffraction of atoms in the Bragg
resonance regime [16]. The diffraction of a single-atom
beam in the Bragg resonance regime has been experimen-
tally demonstrated [16]. To satisfy the Bragg resonance
condition, the momentum component of the incident
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VI. NUMERICAL SIMULATION
FOR NONLINEAR BRAGG SCATTERING

I ~

In this section, we give the numerical analysis for the
di8'raction of an incident ultracold atomic beam in the
Bragg resonance regime. The incident atomic beam is as-
sumed to have a Gaussian density profile with wave vec-
tor in the y direction matching the single-photon recoil
momentum

~ ~ ~ P.

tip', ~a/

FIG. 6. The global density distribution of the atomic beam

for linear Bragg scattering with the parameters chosen as g p 7T

and Ppo =0.001.

cross-phase modulation are well-known nonlinear phe-
nomena in nonlinear optics. To study the atomic version
of these nonlinear phenomena in atom optics, we numeri-
cally simulate the propagation of an incident atomic
beam it the Bragg resonance regime. The results are dis-
cussed below.

4o(y, —~ ) =Qp, exp
Wy

(31a)

2
y . iRp z —iEt/A

4;„(y,—~ }=Qpoexp — ik—Ly e
Wy

(30)

where w„ is the beam width in the y direction and

po= Jo/Ug is the density of the atomic beam which is pro-
vided by an ultracold atomic source localized at z = —~.
Figure 1 is a schematic diagram for the Bragg scattering
of atoms. The atomic source continuously releases the
ultracold atomic flow with the rate J0 which has the
equivalent meaning to the light intensity in conventional
optics. In terms of Eqs. (29} and (30), we have the initial
conditions for Eqs. (28),
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FIG. 7. The density distribution of the
atomic beam for nonlinear Bragg scattering.
The parameters chosen are gp =~/4 and
Ppo=0. 3. (a) The global density distribution
of the atomic beam in propagation, (b) the
near-field density distribution with ~=27 p and
the oscillation is due to the near-field interfer-
ence of the diffracted atomic beams, (c) the
near-field density distribution with ~=30'Tp,
and (d) the far-field density distribution with
~=60~p.
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4i(y, —co )=O . (31b)

Under conditions ~31,'~31,', we numerically simulate the spa-
tial propagation of the incident atomic b
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(32b)

one of ththe split components exhibits tw-
in the far-field region. T

1c o' tl lt' 1

1 i h P g

in the form,
e d the approxima qs.pp ate solutions of Eqs. (28)

~e,(y, z) ~'= ~e;„(y,—ao ) i cos [8(~)+b,8(y, r) ], (32a)

(yz)~2)q)22;„y,—ao)~ sin [8(r)+b, 8(y, w s

y, ao ) i

=
i @,„(y,—oo ) i

cos [58 ao (33a)

shift b,8(y, oo is still a function of the s

y and depends on the t
ic beam. Hence th

e ransverse distrib
'

ution of the atom-
e nonlinear hase

h d t' S h
1 t th t' 1 d' 'b

'
n. uc a nonuniform

istri utions of the s 1'
p it atomic beam

p st uctures in th d

ig. 8 where 8( ao ) =
i er t e case shown in

sities of the diffracted b
~ ~

=g0 =~, and the far--field atomic den-
rac e earns have the form

where ~@)(y, ao) z= 4 — 2 ' 2
y, ao—4;„(y,—~ )~ sin [b,8(y, ~ )] . (33b)

8(r)= J g(r)dr= f—
70

is the phase shift due to the linear cou
h 't i d dd''n a itsonal phase shift

~8(y r)= P8(r—)[I@;.(y, —~

+ —,
' [40(y,z)4, (y, z)

+4,(y, z)40(y, z)]] .

In the far-ar-field region z —+ ~, the phase shift
1 i o t t8( )=n oo =go and the nonlinear phase

(a)

For a negligible nonlinearit, the

1 t th H
ence the inciden

gse. owever, it is eviden

68 ) h' h 1'tt' f
s in a nonzero nonlinear h

tt f e incident beam andsp ittin of th
nonuni orm spatial modula

'

b i of Eq (3
od 1 t'o

s. 3). Hence the n

t tol' th
e o atomic nonlinearit 1

propagation of ultracold
F 9

' f th-.1. '. -n h =
ur er simulation f

g 0
=2n.. We see that

toth o 1' h

'
rac e earns are furth

p ase modulation.

)@I 2

1.5-

0.5-

-5 0

y/w

(b)

1.5

0.5—

0
-10

y /w„

(c)

FIG.
atomic be

G. . The densit di
'

y istribution of the
mic earn for nonlinear Bra sc

The paramet hme ers chosen are
Ppo=0. 3. (a) Th

gp =2~ and
e global densit d'

pg

near-yeld density dissi y istribution with ~= 307 p

~= 6&x

- e ensity distribution with

pe

0.8—

0.6—

0.4—

0.2-

0
-10

(d)

10



3812 WEIPING ZHANG AND D. F. WALLS 49

TABLE I. The atomic parameters for the observation of nonlinear effects in atom optics. The criti-
cal density po- A,L

' and the critical temperature T-2M /mk&A, I .

Atom

'H

' Rb
133C
55

Mass
(a.m.u. )

1.0078
22.990
84.912

132.91

Selected
transition

2S&/&-3P] /2

3S1/2-3P3/2
5S1/2 5P3/2
6S I /2-6P3/2

Transition
wavelength (A)

6562.74
5889.95
7800.27
8521.12

Critical
density (cm ')

3.54X10"
4.89X10"
2.1X10"
1.6X10"

Critical
temperature (pK)

7.0
0.38
0.059
0.03

VII. CONCLUSIONS

In this paper, we develop a systematic theory for the
interaction of ultracold atoms with a laser field in the
framework of vector quantum field theory. Both the
atoms and the laser field are treated as a quantum field.
A vector stochastic nonlinear Schrodinger equation for
ultracold atoms and a quantum propagation equation for
laser photons are derived. These equations form the basis
to study many-body quantum statistics and atomic non-
linearity in atom optics. As a straightforward application
of the theory, we construct a formalism of nonlinear
atomic optics for an ultracold atomic beam. Applying
the formalism to the diffraction of an ultracold atomic
beam by a standing-wave laser, we find that the photon
exchanges between ultracold atoms in the beam induces
an effective atomic nonlinearity for the atomic waves
which is analogous to an optical Kerr-type nonlinearity
for coherent light waves. Such an atomic nonlinearity
can result in self-phase modulation and cross-phase
modulation of atomic waves. In the Bragg resonance re-
gime, we simulate the propagation of an ultracold atomic
beam. The atomic nonlinearity results in spatial modula-
tion of atomic density profiles for the Bragg scattering
waves.

In addition, we wish to emphasize that the observation
of the nonlinear diffraction of atomic beams requires that
the incident atomic beams be provided by an ultracold
atomic source which is prepared in the ultracold state.
In the languages of quantum statistical theory, the condi-
tion for an ultracold atomic beam is that the single-mode
degeneracy of bosonic atoms in the beam or the "bright-
ness" of the atomic beam N =ppkdB must be larger
than one. Here po=Jo/v is the peak density of the

atomic beam and A,zB=+2M /mks T is its thermal de

Broglie wavelength which determines the spatial coher-
ence of the atomic beam. Under this condition, the
thermal de Broglie wavelength A,dB must be comparable
with the average interatom distance po

' . For photon-
exchange interaction which has a characteristic intera-
tom distance close to the atomic resonance wavelength,
the thermal de Broglie wavelength must achieve the or-
der of the atomic resonance wavelength, i.e., A,dB

-A,L . In
this case, the density of the atomic beam must meet the

criterion pokL & 1. As some numerical examples, we give
the critical temperatures and densities of atoms in Table I
which are required to observe the atomic nonlinearity in-
duced by photon-exchange interaction. In terms of Table
I, an ultracold atomic source is necessary to study non-
linear phenomena in atom optics. This case is just similar
to that in nonlinear optics where a high-intensity
coherent laser source is required. Techniques are now be-
ing developed towards generating ultracold atomic
sources with high bosonic degeneracy. Some principles
have also been suggested to generate a highly bright
coherent atomic beam [12,13].

Finally we point out that although we only discuss the
nonlinear diffraction in this paper, the quantum field
theory developed here provides a general method which
could be applied for wide problems in atom optics, quan-
tum optics, and interaction of light waves with condensed
matter. For example, the atomic nonlinearity could re-
sult in generation of atomic soliton [26] and self-trapping
of atomic beams [34] in laser beams. It is not an exag-
geration that almost all nonlinear optical phenomena
could find their versions in nonlinear atom optics in
terms of the general formalism constructed in this paper.
Particularly, the absorption and dispersion of laser pho-
tons lead to a complicated form of atomic nonlinearity
which would induce new nonlinear phenomena in atom
optics when absorption and dispersion are not negligible.
In addition, the quantum field theory and the stochastic
nonlinear Schrodinger equations present a simple way to
study the ultracold collisions of atoms in a laser field,
quantum statistics in the ultracold regime, and the criti-
cal condition for Bose-Einstein condensation in laser-
cooled neutral atomic gases. These open a new window
onto future research in laser cooling and atom optics.
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