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Photon-echo interferometry to measure collision-induced optical phase shifts
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We demonstrate a technique of photon-echo interferometry which provides extraordinary sensitiv-
ity for the measurement of the relative phase in the coherences for pairs of optical transitions. The
method is applied to study collision-induced optical-coherence transfer between adjacent transitions
in atomic samarium vapor.

PACS number(s): 34.40.+n, 42.50.Md

I. INTRODUCTION

We have developed a method of photon-echo interfer-
ometry which provides extraordinary sensitivity in study-
ing collision-induced optical phase shifts. This tech-
nique has been applied to measure the relative phase
shifts between two adjacent transitions due to collision-
induced optical-coherence transfer. In this type of colli-
sion, the excited- and ground-state amplitudes are col-
lisionally transferred between the adjacent transitions
without complete destruction of the coherence. The
echo-interferometry method employs backward stimu-
lated photon echoes which are excited in two adjacent
optical transitions in atomic samarium vapor. The back-
ward echo fields from each of two transitions are emitted
at the corresponding resonance frequencies, which are
controllable with an adjustable magnetic field. When
the diH'erence frequency is appropriately tuned, the echo
fields interfere destructively at the echo rephasing time,
suppressing the echo intensity by a factor of 10 . The
suppression is strongly dependent on the relative phase
of the two transitions, leading to great sensitivity in
the measurement of collisionally induced relative phase
changes between the adjacent transitions. This has en-
abled a study of very small collision-induced optical-
coherence transfer rates, nearly two orders of magni-
tude smaller than measured previously for infrared tran-
sitions [1].

In the basic collision-induced coherence-transfer pro-
cess, Fig. 1, optical coherence initially created on the
a'-6' transition is collisionally transferred to the a-b tran-
sition and vice versa. Both the excited- and ground-state
amplitudes of the active atom simultaneously change in
this process, accompanied by a velocity change Qv. For-
mally, all theories of spectral line broadening contain
contributions of collision-induced coherence transfer, the
broadening rate comprising the total rate of loss of co-
herence by inelastic processes, velocity changes, or coher-
ence transfer out of a given transition minus all rates of
coherence arrival by transfer from neighboring velocity
groups and neighboring degenerate transitions. Gener-
ally, these processes are most easily described by a quan-

turn transport equation treatment [2—4]. To understand
how collision-induced coherence transfer is related to the
usual spectral line-broadening rate, it is convenient to
consider the case where the spectral resolution is insuf-
ficient to resolve the Doppler frequency changes which
accompany collision-induced velocity changes. Then, the
evolution equations for the optical dipoles for two degen-
erate adjacent transitions of equal strength can be writ-
ten in the form of rate equations, analogous to the case
for a single two-level optical transition [5]. The equations
for the optical dipole amplitudes for transition i m j,
d,z(t), take the form

ds (t) = —pz dg (t) + p„ds (t) + &, ds (t),

ds ~i (t) = —pz dy I (t) + p„dsl ~ (t) + p, ds (t),

where pT is the total loss rate of optical coherence (op-
tical dipoles) due to inelastic and elastic collisions and
due to coherence transfer to the adjacent transition, p„
is the arrival rate of coherence due to velocity changing
collisions from adjacent velocity groups, and p, is the ar-
rival rate of coherence from the adjacent transition. For
transitions of equal strength, the evolution equation for
the total dipole moment can be found by adding the evo-
lution equations for db and db to obtain

(2)

where p~ corresponds to the usual line-broadening rate

*Permanent address: Sparta, Inc. , Huntsville, AI 35805.

FIG. 1. Collision-induced coherence-transfer process.
Excited- and ground-state amplitudes are collisionally trans-
ferred between adjacent transitions.
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in the impact approximation and is given by p~ ——pT—
—p, . Hence, collision-induced coherence transfer from

adjacent degenerate transitions reduces the effective line-
broadening rate by canceling the coherence-transfer rate
out of a given transition, which is inherent in the total
loss rate pT.

In general, coherence transfer can occur between adja-
cent transitions in radio frequency, microwave, infrared,
or optical transitions and has in principle been known
for some time. However, the conditions under which
collision-induced coherence transfer can occur are not
well established, and have been studied experimentally
in only a few instances. Processes of this type have
been analyzed theoretically in some detail with neglect
of the accompanying velocity changes [6, 7]. Previous
experiments have studied collision-induced Zeeman co-
herence and microwave coherence rotational transfer (in-
tramolecular) [8]. Studies of the Stark splitting de-
pendence of the line-broadening rates [9] also involve
collision-induced coherence transfer between transitions
differing in magnetic quantum numbers. Finally, infrared
coherence transfer in methyl fluoride has been studied
by the method of tunable energy compensation [1). This
method, which tunably compensates a selected collision-
induced Doppler shift with a Stark shift, determines
the complete distribution of velocity changes accompa-
nying collision-induced coherence transfer between adja-
cent transitions for which the magnetic quantum number
differs by one.

The experiments described here are the first, to our
knowledge, to study optical-coherence transfer [10],as op-
posed to infrared or microwave coherence transfer, which
has been studied previously by a number of groups as
described above. The samarium atomic system which
we have explored provides an ideal system with just
two adjacent optical transitions which are excited and
probed in the experiments. Collision-induced optical-
coherence transfer differs from coherence transfer be-
tween low frequency transitions in that the excited and
ground states differ by an electronic energy, causing the
ground- and excited-state collision potentials with per-
turbing gas species to be substantially different. In this
case, one expects that optical phase disruption is likely to
play an important role in the process. By contrast, the vi-
brational states excited in infrared experiments are very
similar, and one expects little phase disruption. Hence it
is not surprising that infrared experiments yield a large
cross section for collision-induced coherence transfer [1],
while it is unclear whether optical coherence survives
collision-induced transfer at all. As described below,
optical-coherence transfer does appear to make a sub-
stantial contribution to the phase shifts measured in our
experiments. The rest of this paper is organized as fol-
lows. In the first section, the basic echo-interferometry
method is described. Then a brief description of collision-
induced coherence transfer and how it affects the echo in-
tensity is given. Details of the derivations are relegated
to Appendixes A and B. Finally, data from the experi-
ments are presented and compared with calculations to
investigate the contributions of collision-induced coher-
ence transfer.

II. THEORY

A. Photon-echo interferometry

z/2 vt/2

Samarium
Vapor z/2

Echo
FIG. 2. Photon-echo interferometry. Two copropagating

pulses followed by one counterpropagating pulse induce back-
ward photon echoes radiated at the atomic resonance fre-

quency. The radiation fields from adjacent transitions inter-
fere constructively or destructively depending on the differ-
ence between the atomic resonance frequencies.

As described above, we have demonstrated a technique
for photon-echo interferometry, whereby photon echoes
generated on independent adjacent transitions in simple
atoms are made to destructively interfere, suppressing
the echo intensity by 10 . The method is a form of
polarization interference, as distinguished from quantum
beats [11]. This technique serves as a sensitive probe of
any perturbation which differentially afFects the phase
of the optical dipole moments of the adjacent transi-
tions. Therefore the method is not limited to studies of
collision-induced optical phase shifts as explored in the
present work, where the method has been applied to in-
vestigate weak collision-induced optical-coherence trans-
fer between the adjacent optical transitions.

The experiment, Fig. 2, employs two short, copropopa-
gating optical pulses, separated by a time delay T, which
excite the two adjacent transitions, a + 6 and a' ~ 6',
shown in Fig. 1. Just after the second pulse, a third
counterpropagating pulse induces backward echo rephas-
ing. For each transition, a backward echo is radiated
at the atomic resonance frequency, causing temporal in-
terference between the echo fields. By using a magnetic
field to alter the relative frequency of the transitions, the
interference can be adjusted.

The interference can be understood in more detail as
follows. Just after the first pulse, at time t = 0, opti-
cal dipoles are excited which have a broad distibution
of velocity v along the pump laser beam. In the atom
frame, the optical dipole for the ith transition radiates
at a frequency ~0, . When the second pulse arrives at
time T, the power absorbed by the dipole depends on
the relative phase between the field of the second pulse
and that of the dipole at time T. Due to the Doppler
frequency shift, an atom moving at velocity v along the
pump laser beam of frequency u is affected by a laser fre-
quency ~—kv, where k = 2m/A is the optical wave vector.
Hence the relative phase between the dipole created by
the first pulse and the field of the second pulse is just
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(ui —&uo; —kv)T, which is velocity dependent. The power
absorbed, and hence the population inversion, then takes
the form of a grating or fringe in velocity space of the
form A(v) cos[(ar —ado; —kv)T], where A(v) is the shape
of the velocity distribution for the population inversion as
determined kom the pulse shapes, and u0i is the optical
transition frequency for each of the adjacent transitions:
i = 1,2, with 1:—ba and 2—:b'a'. The third, counter-
propagating pulse induces a macroscopic dipole moment
in the sample of amplitude

d(C ac ) f de A(m) cosNru —rao; —kv)T)
i=1,2

—i(cup; —kv) (t—T)

The part of Eq. (3) which rephases comes from the
term containing F(t —2T)—:f dv A(v) exp[ikv(t —2T)]
and leads to a backward echo of intensity

(t) i ~F(t 2T)~2 ™orat —+ —L~oqt

Defining Aa = (&uo2 —uoi), and 7—:t —2T, the time
relative to the peak in the echo intensity at t = 2T, the
echo intensity takes the simple form

Iooho (~) = ~F (~)
~

cos (2T + ~)
2

By adjusting the magnetic Geld strength so that
EodT = z'/2, the echo intensity will be proportional to
sin (Eod7/2) and is minimized at 7 = 0, i.e., at t = 2T,
when the echo normally occurs. Experimental construc-
tively and destructively interfering echoes are shown in
Fig. 3. These are compared to the shape of the echo
signals calculated in Appendix A as a function of v for
fixed 6u which is given by Eq. (5) with F(~) = 2g(w),
according to Eq. (A55) where g(~) is given by Eq. (A54).
The calculated results are in good agreement with the
measured signal shapes, including the small peaks on the
left and right in Fig. 3.
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FIG. 3. Photon-echo intensity in Sm versus time in (a)
zero magnetic field and (b) nonzero magnetic field (destruc-
tively interfered). The scale is normalized to unity for con-
structive interference. Note scale change of 10 for destruc-
tive interference. The null occurs at 50 nsec. The overshoot
on the data is due to the high bandwidth ampli6er. See Fig. 5
for level diagram.

B. Collision-induced optical-coherence transfer

~F(~) )
= Ao e (6)

where w = t —2T.
%hen collisions which destroy the optical dipoles

are included, the amplitude A0 is reduced by a factor
exp[ —4p~T], where T is the time between the first two
pump pulses. Note that the third, backward propagat-
ing pulse is assumed coincident with the second forward
propagating pump pulse. p~ is the dipole destruction
rate neglecting coherence transfer, and corresponds to
the usual Lorentzian spectral line-broadening rate when
the coherence transfer is included. In addition, Appendix
B shows that the function given in Eq. (6) is modified by
a factor exp[ —8p~r/3], which takes into account colli-
sions which destroy the optical dipole moment during the
pump pulses, and during echo emission. Physically, the
part of the echo signal appearing later in time arises from
dipoles created earlier in time. This added evolution time
leads to exponential decay which is dependent on the
time v relative to the echo peak. Hence the echo shape
is the product of a Gaussian factor and an exponential,
or equivalently, a shifted Gaussian with T —+ ~ + 2p~7„.
Since terms of order (p~7„) && 1 in the exponential have

The relative size of the two primary peaks in the
destructively interfering echo signals is altered by for-
eign gas collisions. Exponential decay of the optical
dipoles during the pump pulses and during the echo
emission leads to a suppression of the right-hand peak,
which occurs at later time than the left peak. In ad-
dition, optical phase shifts arise from two mechanisms:

(i) collision-induced dipole destruction during the pump
pulses which shortens the average evolution time for
the optical dipoles and (ii) collision-induced optical-
coherence transfer which alters the relative size of the
two peaks in the destructively interfered echo signals.

To take into account the e8'ects on the echo shape of
collisions which destroy the optical dipole, it is convenient
to use third order time-dependent perturbation theory
in the density matrix equations, as described in detail
in Appendix B. It is assumed in this part of the calcu-
lation that the Doppler shifts which accompany elastic
collision-induced velocity changes are not resolvable for
the short time scales and hence low spectral resolution
used in the experiments. The neglect of velocity changes
for e1astic collisions permits a straightforward estimate
of efFects of collisions which destroy the optical dipoles
during the pump pulses. The effects of optical-coherence
transfer, which are neglected in Appendix B, are added
in a separate calculation in Appendix A. In this case,
the efFects of large velocity changes which may accom-
pany collision-induced coherence transfer at short range
are included. Following Appendix B, it is assumed that
the three pump pulses are Gaussian in shape with inten-
sity I(t) = exp[ —2(t —t, )~/(rz)], where t, is the center
of the ith pulse, and r„is the pulse field 1/e width. The
shape of the resulting echo intensity neglecting collisions
is given by Eq (5) wh. ere F(7 ) is given by the convolution
of the three Gaussian pulses so that

2T2
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negligible pressure dependence for the short pulse dura-
tions used in the experiments, the echo shape can be
represented equally well by shifting the argument in the
cosine factor in Eq. (5) according to v ~ r —2p~r„,
and leaving the form of ~F(r)~ as given by Eq. (6). For
later data analysis, it will prove convenient to model the
echo shape as a Gaussian factor multiplied by a cosine
function with a pressure-dependent shift in the time ar-
gument. Dipole destroying collisions also contribute a
relative phase shift to the echo fields which further mod-
ifies the argument of the cosine by a term proportional
to —AupBr . Physically, this arises because the proba-
bility of a collision during a pump pulse is of order p~w„.
Hence, with a spread in dipole creation and observation
times of order wz, the effective average evolution time
of an optical dipole is shortened by Aw gBx„.Thus,
for dipoles oscillating at frequencies differing by A~, a
pressure-dependent phase shift A~A~ arises. Neglect-
ing collision-induced coherence transfer, one obtains an
echo shape of the form given by Eq. (7), with I, = 0, i.e.,
no coherence transfer.

The calculation of the modification of the interfering
echo signals due to collision-induced optical-coherence
transfer is straightforward but tedious, and is carried out
in Appendix A. Heuristically, coherence which is trans-
ferred from one transition to another adjacent transition
at time t arrives with a time-dependent relative phase
exp[+zAwt + ikAvt], where Bur is the frequency differ-
ence between the optical dipoles of the adjacent transi-
tions, created initially at t = 0, and Av is the accom-
panying velocity change. The rate for coherence transfer
with velocity change Av is just db, v W, (hv), where W, is
the coherence-transfer kernel. The net fraction of coher-
ence transferred between adjacent transitions during the
time T between the first two pump pulses and the time
T between the third pulse and the echo is determined

by the velocity change integral and the time integral of
the kernel with the time-dependent phase factor. The
net result of collisional perturbation on the echo signal is
obtained by modifying the result of the third order per-
turbation calculation, given by Eq. (B37), to include the
effects of optical-coherence transfer, which is determined
from Eq. (A55). The echo intensity then takes the form

I =—2Re e
T

dt' q. (t')

with

p, (t') = dAv W, (Av) cos(kAvt') e' (10)

W, (Av) is the one dimensional coherence-transfer ker-
nel which gives the rate of optical-coherence transfer be-
tween the adjacent transitions, accompanied by a velocity
change Av along the pump laser beam axis.

It is interesting to note that when Du = 0, and the
Doppler shifts accompanying collision-induced velocity
changes are negligible (i.e., kb, vT « 1), then I, = 2p, T,
where p, is the integral of W, over Av. Then, according
to the discussion above, the echo signal at time 2T is re-
duced by a factor [exp( —4p~T)]~1+2',T~2. Since the ne-

glect of coherence transfer in the calculation of the phase
shift due to dipole destroying collisions is equivalent to
taking pI3 = pz —p„(i.e., p, = 0), we see that the net
reduction of the echo signal is by a factor exp( —4I'T),
where I' = pz —p„—p„which is just the ordinary line-
broadening rate as it should be. In our experiments, the
product p,T in the echo intensity is negligible for Au = 0,
but as shown below, for the destructively interfering echo
signals, the contribution of coherence transfer to the ob-
served asymmetry is quite significant.

When AcuT, @ = m/2, the echo intensity given by
Eq. (7) for ~Acur~ && 1 takes the form

the exponential decay of the signal during the echo emis-
sion, and the remainder arises from the relative phase
shift of the two coherences due to dipole destroying col-
lisions during the pump pulses and echo emission which
effectively shorten the average dipole evolution time as
described above. The effects of collision-induced optical-
coherence transfer are contained in the I, term of Eq. (7).
In our experiments, the coherence-transfer rate is very
small, so that p,T « 1, and the effects of collision-
induced optical-coherence transfer need be carried out
only to first order in p,T. From Appendix A, to low-

est order in the coherence-transfer rate, I, is given by
Eq. (A45) as

I-ho(r)

=""" ' '(& &T. +-'. [& —c(p)])) +I.
(7)

where T,g is the effective time separation between the
first two pulses including effects of spontaneous emission
during the pulses, and is pressure independent. c(p) is the
net pressure-dependent shift of the time argument due to
collisions which destroy the optical dipoles as discussed
above and is given by

3)
c(p) = 13 —

I ~a~,'
2vr )

where p& is the pressure-dependent part of the dipole de-
struction rate. Note that in Eq. (8), 2p&r„arises from

—,'-,' 4(b.(u) 2

I„h(r) = Ase '
~r —co(p)~

9

where

3 I,
co(p) =—c(p) +

2
~' (12)

includes the shift of the time due to both destructive
collisions c(p) and coherence transfer I,.

When EurT = 3vr/2, the cosine term in Eq. (7) changes
sign, so that Eq. (12) continues to be valid with I, ~ I, —
As shown below [see Eq. (15)], I, also changes sign in

this case, so that the form of echo intensity given for the
AuT = 7r/2 case is valid also for the 37r/2 case, except
for a change in the magnitude of Au.

Finally, it is important to note that the derivation of
the results in Appendix A assumes that the pulses ex-
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cite a broad velocity distribution of optical dipoles, such
that the width of the distribution is large compared to
the width of the collision-induced velocity changes. The
full width at half maximum of the dipole velocity dis-
tribution is A[W (Hz)], where A = 0.572 p is the opti-
cal wavelength, and W is the excitation bandwidth, full
width at half maximum. For a Gaussian pulse with a field
1/e width vz as assumed above, the corresponding band-
width (full width at half maximum) is just [W (Hz)]=
/21n2/(vrw„) = 0.37/r~. From the fits to the experimen-
tal echo shapes (see below) using Eq. (11),r„=5.5 nsec,
and W 67 MHz. Hence the corresponding full width of
the excited dipole distribution is 3800 cm/sec, large com-
pared to the magnitude of the collision-induced velocity
changes estimated &om the experiments.
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III. EXPERIMENT

In the experiments, Fig. 4, backward stimulated pho-
ton echoes are generated on the 572 nm I'q —+ I'q tran-
sition in atomic samarium vapor, Fig. 5, for which the
excited-state radiative lifetime is 152 nsec. Two coprop-
agating, right-circularly polarized pump pulses of 10
nsec duration and T = 50 nsec separation are generated
by acousto-optic modulation of stable cw dye laser light.
These excite the Fi, M = —1 ~ Fi, M = 0 transition
and the adjacent rFi, M = 0 ~ M = 1 transition which
is of equal strength. Just after the second pump pulse, a
third, counterpropagating right-circularly polarized pulse
of 10 nsec duration induces backward echo rephasing on
the same transitions. For each transition, a backward
echo is radiated at the atomic resonance frequency, caus-
ing temporal interference between the echo fields which is
adjustable using a magnetic field to alter the relative &e-
quency of the transitions. Since both the forward pulse
and backward echo are right-hand polarized with respect
to the fixed z axis, which is along the forward propagation
direction, the right-hand polarized, backward propagat-
ing echo Gelds are phase shifted in passing back through
the Soleil-Babinet compensator such that the echo is fully
transmitted out of the escape window of the first gian
prism.

Pulse generation is accomplished with a Stanford Re-
search DG535 pulse generator. The echo intensity is de-
tected with a Hamamatsu 1635 photomultiplier. This
signal is amplified by a Sonoma 500 MHz bandwidth am-
plifier and sent to a boxcar averager for signal processing.
The amplifier exhibits some overshoot, as on the right-
hand side of Fig. 3, which does not appear when the sig-
nal is directly monitored with an oscilloscope. The pulse
sequence is repeated at 17 kHz and the boxcar gate is
temporally scanned by another output of the pulse gener-
ator to determine the echo shape. The integrated boxcar
signal output is interfaced to a computer for subsequent
data handling and analysis. To avoid drift of the laser
&equency during the scan of the boxcar gate, the laser is
&equency locked to a Lamb dip obtained with a separate
reference cell containing samarium with no perturber gas.
A tunable acousto-optic modulator is used to adjust the
&equency offset to maximize the echo signals. An ex-
periment to observe the pressure shift between the Lamb

BS1~g

BS2~g

M1 ~
AO2

AO1

~ TAO
I

AO3

152

F1

m:J

FIG. 5. Energy level diagram for Sm.

FIG. 4. Experimental setup. Beam splitter BS1 picks
off a beam which is pulsed by an acousto-optic (AO) mod-
ulator (AO1) and right-circularly polarized by a gian prism
(GP1) and Soleil-Babinet compensator (SCl) to create the
two forward propagating pulses. Mirror Ml re8ects a beam
through AOl and AO2 to create the third, backward-going
pulse. (Two AO's are used to reduce the leakage light prop-
agating toward the detector. ) This beam is right-circularly
polarized by GP2 and SC2. After passing through a cell sur-
rounded by three axis magnetic coils (3-A MC), this beam is
de8ected out of the escape window of GP1 and sent through
AO4 and AO5. These AO's are timed to block the third pulse
and let through the echo. The echo signal is detected with
a photomultiplier tube. Beam splitter BS2 picks o8' a beam
that is sent by M2 to a vapor cell (not shown) on an elevated
platform. The beam is passed through the cell, attenuated,
and re8ected back to create a Lamb dip in the absorption of
the back re8ected beam. The absorption signal monitored by
a diode detector (DD) is used to lock the laser frequency. By
changing the frequency of the Lamb dip beam with a tunable
AO (TAO) the locked frequency of the laser can be adjusted
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dip obtained in the reference cell with no perturber va-

por and a Lamb dip obtained in the echo cell with 600
mTorr argon perturber, the highest pressure used in the
coherence-transfer experiments, shows that the shift is

not measurable. Hence it is not necessary to equalize the
perturber pressure in the echo and reference cells. Note
that the two transitions utilized in the experiments are
expected to have identical pressure shifts, so that the ef-

fect of any pressure shift between the reference and signal
cells is of significance only due to the asymmetry of the
echo signals induced by laser detuning. Since the excita-
tion bandwidth is large, the effect of a very small pressure
shift between the reference and signal cells is negligible.

Helmholtz coils are used to null the local magnetic
fields for the echo measurements with Au = 0, where
the echo fields from the adjacent transitions construc-
tively interfere. To set the magnetic fields for destruc-
tive interference of the echo fields, the z component of
the magnetic field is adjusted at zero perturber pressure
to achieve a symmetric two peaked signal as shown in

Fig. 3. The lowest magnetic field at which a symmetric,
two peaked destructively interfering signal is obtained
corresponds to the P = AwT = vr/2 case. Increasing
the magnetic field until destructive interference occurs
again at a higher magnetic field yields the P = 3'/2 case.
For each magnetic field setting, the perturber pressure is

gradually increased and the shapes of the echo signals are
recorded at each pressure.

Figure 6 shows typical fits of Eq. (7) with Bur = 0 and
Eq. (11) (DuT, fr = ir/2) to echo data taken at a pressure
of 300 mTorr. A small peak which occurs on the left side
of the data is ignored in the Gaussian approximation to
the echo shape. With T = 50 nsec, five curves are fit for
each pressure with P = AurT, + = x/2 to yield co(p) as
a function of pressure as shown in Fig. 7. The slope of
the curve yields co(p) = 3.23 + 0.25 nsec/Torr. Fitting
additional data, Fig. 8, which is obtained by changing
only the magnetic field so that P = AwT, s = 37r/2, yields

co(p) = 2.87 6 0.30 nsec/Torr.
Before analyzing the data in detail, we consider the

function I, of Eq. (9) in the short time or small velocity
change limit, kAvT « 1, and in the long time or large
velocity change limit, kAvT )& 1. In the short time

limit, the integrals over t' and Av are readily carried
out using f dAv W, (Av)—:p„where p, is the total rate
of collision-induced coherence transfer, which has been
assumed real. Hence, for kAvT « 1,

(13)

In the opposite limit, it is convenient to assume a
Gaussian distribution for the velocity change Av accom-
panying coherence-transfer collisions, so that the kernel
takes the form

W(hv) = '
e

bv vr
(14)

In this case, the integration over Av in Eq. (10) is readily
carried out to obtain

I, =2Re p, e
2

dt'e*~ '

In the long time, or large velocity change limit, kbvT ))
1, one can take T -+ oo in Eq. (15). For the destructively
interfering echoes of interest here, AwT = 7r/2 or 3z'/2,
so that cos(kurT) = 0. In this case, I, contains only
the integral involving sin(Burt'). This can be evaluated
in closed form if Aw « khan/2, so that the sine function
can be expanded in a Taylor series. Keeping just the first
two terms yields

3 I, 3 ( 2 l 1 /2Au)l= —sin(AcuT)p,
/ /

1 ——
2 AQJ 2 (khv) 6 ( k8v )

(16)

The experimental results show that difference in the
shifts cp(p) is Ac = cp(p)~~/2 —cp(p) ~3~/2 —0.36 6 0.39
nsec/Torr. Note that Ac is independent of the contribu-
tions due to exponential decay, c(p), to the time shift

co(p) [see Eq. (12)j, so that Ac depends only on the
coherence-transfer contribution.

From the form of the short time, small velocity change
limit of I, given by Eq. (13), it is evident that the quan-

tity 2 & is reduced by a factor of 9 when Bur is in-

creased from vr/2 to 37r/2. If it is assumed that the short
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FIG. 6. Echo intensity versus time 7. at
300 mTorr for (a) constructive interference

(Eu = 0) and (b) destructive interference

(b.cuT = z/2). The scale is normalized to
unity for the constructive interference peak.
Note scale change of 10
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FIG. 7. Measured shift co(p) as a function of pressure for

b,srT,» = »/2 showing linear variation. Slope: 3.23 6 0.25

nsec/Torr.

time limit is valid, then

8 Pc
3(& =, )' (17)

Using Au = vr x 10r rad/sec, one obtains p, (Hz) =21.2
kHz/Torr. At 650'C, the oven temperature used in the
experiments, the relative speed for argon perturbers is
v„=7.8x 104 cm/sec, and the density is nA, ——1.12 x 10 s

/cms. This yields a coherence-transfer cross section cr,
2f'rom p, (rad/sec) = nA, v„cr, of o, 1.5A . This is

T=3 /2

1.5
V

0 1

' 0 200 400

Pressure [mTorr]

i

600

FIG. 8. Measured shift co(p) as a function of pressure for
ACKET, » = 3»/2 showing linear variation. Slope: 2.87 + 0.30
nsec/Torr.

3 I. 3 2~, ' (...,)'.dw exp ' ~ sin&,
2 Au4, 2

(18)

where P—:A~T is»/2 or 3»/2.
The integral in Eq. (18) can be evaluated numerically

for the cases P = vr/2 and 3»/2 as a function of the kernel
width bv. For the experiments, T = 50 nsec, i.e. , Au~ =
» x 10 sec ~ for P = vr/2, and k = 2»/A, with A =
0.572 x 10 4 cm. Holding Ac = 0.36 nsec/Torr, and using
the results for the integrals appearing in Eq. (18), the
value of p can be plotted as a function of the kernel width
bv, as shown in Fig. 9. This determines the possible
choices for p, and bv which are consistent with the small
difference between the measured slopes of the time shift,
cp(p), for P = vr/2 and 3vr/2.

Using the measured depolarization cross sections for
the I"q ground state of samarium with argon per-
turbers [12), an estimate of the magnitude of the
coherence-transfer rate p and hence of the coherence-
transfer contribution to the time shifts co(p) for the
destructively interfering echo signals can be performed.
The depolarization cross sections are given as oo
16.1 A and oo = 10.3 A. . It is readily shown that

2 (2) 2

the cross section for population transfer between adjacent
magnetic sublevels is one-third of the rank two depolar-
ization cross section, so that o~M q ——3.4A. . This small
cross section is due to the shielding of the I" core elec-
trons by the 68 valence electrons in the ground state.
For the excited state, one expects a much larger depo-
larization cross section, since the valence electrons are
in a 686' configuration. The overlap of the excited-

the order of a hundred times smaller than the collision-
induced coherence-transfer cross sections measured in
Ref. [1].

The small size of the coherence-transfer cross section
determined in the short time, small velocity change ap-
proximation shows that the photon-echo interferometry
method is very sensitive. However, it is likely that such a
small cross section would lead to large velocity changes,
and hence violate the small velocity change approxima-
tion. Hence it is likely that the coherence-transfer rate is
larger, and that the measured difFerence between the vr/2
and 3»/2 co(p) slopes is reduced by two suppression ef-
fects due to large velocity changes as shown in Eq. (16).
The suppression arises in the leading term of Eq. (16)
which is smaller than that of Eq. (13) by a factor of or-
der e = (2Am/kbv)2/2, when kbv ) Au. Physically, the
suppression of the effective coherence-transfer rate is due
to the destruction of the population grating by collisional
velocity changes larger than the period of the grating in
velocity space. Such collisions cannot contribute to co-
herence transfer in atoms which contribute to the echo
signal, and the effective transfer rate is reduced. In ad-
dition, the difFerence in slopes Ac between the»/2 and
3z/2 data (Figs. 7 and 8) is in lowest order independent
of Au in this case, so that only the second order terms
in e in Eq. (16) are dependent on Au if kbv/2 )) 4(u.

To analyze the data without the long or short time
assumptions, we begin by writing the coherence-transfer
contribution to the time shift co(p) as
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and ground-state scattering amplitudes determines the
coherence-transfer cross section o, Thus we assume that
a reasonable value for the coherence-transfer cross sec-

lI 2
tion is o, 10 A . At 650 'C, the oven temperature
used in the experiments, the relative speed for argon
perturbers is v„=7.8 x 10 cm/sec, and the density is

nA, = 1.12x10 /cm, yielding a coherence-transfer rate
p, (Hz) = n~, v„o',/(2vr) = 0.15 MHz/Torr. At this value
of the coherence-transfer rate, the width of the kernel
consistent with the data must be bv = 7.6 m/sec accord-
ing to Fig. 9. Note for comparison that the dig'ractive
velocity change for a samarium atom scattering from a
cross section cr, = vrR is 2h/MR = 4.6 m/sec, which
is of comparable magnitude. Previous work on collision-
induced infrared coherence transfer suggests that the cor-
responding kernels are of approximately di8'ractive width

[1]. Using Eq. (18), one then obtains for the coherence-
transfer contributions to the time shift

3 I,
~~2

——0.73 nsec/Torr,
2 A(dy

(19)

3 I,
s gz

——0.38nsec/Torr .
2 A(dy

(20)

Subtracting these values from the corresponding mea-
sured slopes co(p) yields, according to Eq. (12), the
value of c(p), the time shift due to decay during the
pulses, which should be independent of A~. One ob-
tains 3.23 —0.73 = 2.5 nsec/Torr for the n/2 data and
2.87 —0.38 = 2.49 nsec/Torr for the 3vr/2 data which are
independent of magnetic field (b,u) as they should be for
any choices of p, and bv related by Fig. 9.

To check that the value of c(p) 2.5 nsec/Torr is
of reasonable magnitude, we calculate the approximate
value expected on the basis of the simple perturbation
calculation of Appendix 8, and given by Eq. (8) above.
By measuring the intensity decay of a two pulse echo
versus time delay, we have determined that p&

——4.3
MHz/Torr. Using Eq. (8) for c(p), and the value of

0 2 4 6 B 10
6v [m/s]

FIG. 9. Coherence transfer rate p, versus kernel width
bv when the difference Ac of the slopes of Figs. 7 and 8 is
constrained to equal 0.1 nsec/Torr, the experimental value
0.36 nsec/Torr, and to 0.8 nsec/Torr.

(r~)2 = 30 (nsec) obtained from the fits to the echo
shapes with Eq. (11), we find c(p) = 2.0 nsec/Torr, in
reasonable agreement with the value 2.5 nsec/Torr esti-
mated above. Note that larger values of p and bv can be
chosen according to Fig. 9 which increase the value of the
coherence-transfer contribution to eo(p) and hence bring
the remainder, c(p), closer to 2 nsec/Torr. However, the
small ground-state depolarization cross sections suggest
that a much larger value of p, is not likely.

At present, our data and our calculation of c(p) are too
crude to extract reliable values of the coherence-transfer
rate p, and of the kernel width bv directly from the mea-
surements. However, the slope of the time shift co(p)
for the 3vr/2 data is approximately one standard devi-
ation lower than the ~/2 data, which is consistent with
expectations that the coherence-transfer contribution de-
crease as Aa is increased based on the predictions of Ap-
pendixes A and B.

IV. CONCLUSIONS

We have demonstrated a method of photon-echo inter-
ferometry which provides a sensitive means of measuring
changes in the relative phase of adjacent independent
optical transitions in simple atomic and molecular sys-
tems. By destructively interfering the echo signals from
the adjacent transitions, suppression of the echo inten-
sity by a factor of 10 has been obtained. The sensitiv-
ity is such that small collision-induced coherence-transfer
rates, order of 10—100 kHz/Torr, can appreciably modify
the symmetry of the destructively interfering echo sig-
nals. The method has enabled the first study of collision-
induced optical-coherence transfer, as opposed to infrared
or microwave coherence transfer, which occurs with rates
more than a hundred times as large as in the present
exeriments. The present experimental results indicate
that collision-induced optical-coherence transfer proba-
bly causes approximately 25% of the total echo asyrnme-
try (when A~T = vr/2). The remaining part of the asym-
metry arises from collision-induced exponential decay of
the optical dipoles during the pump and echo pulses, in
the form of both amplitude and phase changes. Using the
echo-interferometry method to make measurements for a
transition with a longer radiative lifetime and a number
of diferent input pulse delays T should enable a deter-
mination of the corresponding optical-coherence-transfer
kernels. Finally, the echo-interferometry method should
find general applications in precision measurement of the
change in the relative phase of adjacent optical coher-
ences due to external perturbations which di8'erentially
affect the transitions.

ACKNOWLEDGMENT

This research has been supported by the National Sci-
ence Foundation through Grant No. PHY-89-22212.

APPENDIX A: BACKWARD
STIMULATED ECHOES WITH

OPTICAL-COHERENCE TRANSFER

As shown in the Introduction, backward stimulated
echo fields arising from two adjacent transitions can in-
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E = Re[ef(z, t) e '"' ' "] . (A1)

For a detector located outside the sample of length I,
the slowly varying field amplitude is given by

S(z, t) = —2~ikL P(t), (A2)

where it is assumed that the propagation delay I/c is

negligible compared to the time scales of interest. The
echo intensity is then given by

I„h= —if(z, t)i (A3)

The slowly varying envelope for the polarization, P, is
determined from

terfere constructively or destructively, depending on the
difference between the resonance frequencies of the two
transitions. In this section, the echo intensity is calcu-
lated, including the effects of collision-induced transfer of
optical coherence between the adjacent transitions.

In the experiments, the Fq ~ Fq transition in atomic
samarium vapor is subjected to two near-resonant opti-
cal pulses of polarization e = 0+, propagating in the
+z direction, and separated by a time delay T. This
creates velocity space gratings in the population inver-
sions of the Fq, M = —1 ~ Fq, M = 0 and adjacent
M = 0 ~ M = 1 transitions. A third pulse, also of po-
larization e, propagates in the —z direction, and induces
a backward stimulated echo. The field radiated by the
sample following the third pulse can be written in the
form

The third pulse Geld takes the form

(A9)

where it is assumed that the wave vectors of all fields
are of approximately equal magnitude in determining the
Doppler frequency shifts.

The optical coherences for the adjacent transitions, pb
and pb, undergo velocity changing collisions with per-
turber vapor modeled by a one dimensional collision ker-
nel W„(u—e') and collision-induced coherence transfer,
modeled by the kernel W, (v —v'). These kernels are the
rates per unit velocity for a pure velocity change, v —v',
or for a coherence-transfer process to occur accompanied
by a velocity change of the active atom. The coherence-
transfer kernel R' is dependent on an. effective di8'erential
scattering cross section involving the overlap of the scat-
tering amplitudes for excited- and ground-state changes,
i.e. , f*,fb~b . The corresponding pure velocity chang-
ing kernel is dependent on the overlap of the elastic scat-
tering amplitudes, f ~ fb b Since .the transitions are of
equal strength, we assume for simplicity that the kernels
are real and further are symmetric functions of the ve-

locity change, Av = v —v', for the small angle collisions
of interest in this work.

Collision-integral terms for the coherences are then
given by

(dpb l' '
= —WTPb (»»t)

g dt )

P = Re[e '"' ' * 'Pe ] = Tr[pP], (A4)

P= dv 2e 'p~bpb~ v z, g 8 + +~ @;$~$

where p is the density operator and p, is the dipole mo-
ment operator. For the two adjacent transitions of in-

terest, labeled a w 6 and a' ~ b', the slowly varying
polarization envelope can be written in the form

+ 4v W~ v v pb~ v ) z )

+ dV W~ V V Pbt~l V ) Z) t )

= (a w a'; b w b', ),
(dpb

dt )

(A10)

(A5)

where the second term is similar to the first term with
the indicated substitutions.

The density matrix elements are calculated from the
evolution equations for atoms moving with velocity v

along the z axis, including a one dimensional collision-
integral term [2—4]

t'8 8 5 i (dpi' '

i

—+ v —
i p(v, z, t) = — [II +U, p] +

i

——
igz) ' ' 5 ' (dt)
(A6)

The interaction U with the laser fields takes the form

where pT is the total loss rate of coherence from a given
velocity group by elastic velocity changes, inelastic pro-
cesses, and coherence transfer to other transitions. To
simplify the calculations in this section, it is assumed
that the laser pulse durations are suKciently short that
the effects of spontaneous emission and collisions dur-
ing the pulses are negligible. This will allow an exact
treatment of the shape of the interfering echo signal in-
tensity to be given. In the next section, a perturbation
treatment of the echo signals will be used to estimate the
phase shifts caused by collisions during the pump pulses.
During the time between pump pulses, it is assumed that
the atomic density matrix evolves freely and undergoes
collisions.

U = —P E(z, t). (A7) 1. Evolution of the density matrix
during the pump pulses

f (glE (z t) e P( ) ezkz —wcz
2

(A8)

For the first two pulses, which are of equal intensity and
of frequency u, the field is given by In order to calculate the change in the density ma-

tnx due to each of the three pump pulses, Fig. 10, it is
convenient to determine the eÃect of a square pulse of
length v beginning at time to. With the neglect of spon-
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n(t) and s(t). The solutions are given in terms of the
effective pulse area P' = P'r as

u(tp + 7):u(tp) cos P + —s(to) — n(to) sin P
~l pp
Pl 2PI

p2 F12
s(to + r) = s(tp), + cos P'

T
TIIIle ~

FIG. 10. Pump pulse sequence.

taneous emission and collisions, and using the rotating
wave approximation, the evolution equations for the first
two pump pulses (forward propagating) take the form

(8 Bi
~

—+ v —
~ ps (v, z, t)

iOt Bz)

. Pba efp(t)
~bapba(v, z, t) + i e* ' ' (p« —ps~)

0
~] [pub(v, t) —p (v, t)]

P % J ikz —icut +Pb eE' ~t&

——sin/ u(to) + (1 —cosP )n(tp)
~l Ql p I

pl 2PI2

(A16)
~/2 p2

n(t. +r) =n(t, )

2P~ . , 2P„A'
sing'u(to) + ", (1 —cosP') s(to) .

The echo intensity is calculated by propagating the den-

sity matrix through each of the evolution regions shown
in Fig. 10, beginning with the first pump pulse. For the
first pump pulse, te ——0 and T = 7 i lil Eqs. (A16). Since

pb (0) = 0, u(0) = 0 and s(0) = 0. The initial population
inversion is n(0) = —p (v)—: N(v), w—here N(v) is the
population of a single ground-state M level. With the
definition P'i—:P'ri, u, s, and n are determined after the
first pulse as

u(ri) =+ ", sing', N(v),

& [ (,t)+ (,t)]=0. (A11)

These equations are readily solved with the substitutions

ps (v, z, t) = i(u —is) e'"'

&=Pbb Paa )

(A12)

s(7., ) = —,(1 —cos P, )N(v),
6'pp I

gl2 p2
,
" costi N(v) .

(A17)

p.(t) =- „4(t)
I = (d —(db~ —kv

n = 2P„(t)u,
p (t)

2
"'u —6's =—

s= —4'u .

where the functions u(t) and s(t) are real.
Eqs. (All), the substitutions (A12) yield

With

(A13)

Using Eq. (A12), Eqs. (A17) yield the coherence at the
end of the first pulse as

ps (v, z, ri) = —A, (a) N(v) e'"' *" ', (A18)

Ai(a)—: (1 —costi) —i sin/i .
/2 2PI

(A19)

where Ai(a) determines the amplitude of the coherence
created on the a ~ b transition by the first pulse, and is
dependent on 4' = 6' = ~ —kv —ub according to

u+P' u=0, (A14)

where

pI = +12+p2 (A15)

Solving the second order equation for u subject to the ini-
tial conditions u(to) and u(to) obtained from Eq. (A13)
yields the solution for u(t). The first order equa-
tions (A13) for n and s then are integrated to determine

These equations are readily solved for square pulses,
where P„is constant during each pulse, by difFerentiating
the u equation to obtain

Ai(a') will denote the corresponding amplitude for the
a m 6 transition, with ~b m ~b, etc.

2. Free and collisional evolution of the coherence

In order to determine the coherences pb and pb at
the beginning of the second pulse, it is necessary to solve
Eqs. (A6) with U = 0 and the collision-integral terms
given by Eqs. (A10). This is readily accomplished in the
approximation that the amplitude of the polarization is
a slowly varying function of velocity v compared to the
kernels which are assumed to be narrow functions of the
velocity change Av = v —v'. To proceed, the coherence
is assumed to take the form
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t) + )t[Z —tt(t T—P —T„)] —iWtk (t—Tp)

(A2o)

and similarly for pb . The dependence of pb on
z —v(t —Tp) and (t)s (t —Tp) automatically assures that
in the absence of collisions, the free evolution equation is
satis6ed for the given initial conditions at time Tp with
time-independent ds (v, t). Hence d) (v, t) will be time
dependent only due to collisional evolution. The time T„
is chosen to be the coefBcient of +kv in the phase of pb
just after the pulse that creates the coherence at time

T) ~[)t+)t T„) (A21)

With the density matrix equations (A6), and the col-
lision terms given by Eqs. (Alo), the ansatz given by
Eq. (A20) yields

T0. With the rapid velocity dependence in the phase fac-
tored out, the amplitude ds (v, t) will be a slowly varying
function of velocity. The k in the phase kz allows for for-
ward or backward propagating pump pulses. The initial
condition on the amplitude db is determined from

dk (v, t) = —pvdk (v, t) + f dv'ttt„(v —v')e+' t" "ttk v' v'
dh (v', t)

gr ~ &) +iIt'(v —v') (t—Tp —T„)i A~(t —Tp
ck J , (~ (A22)

where b,u = pcs —pcs and ds (v, t) satisifies an equa-
tion of the same form with a, b ~ a', b' and Au -+ —Du.
Assuming that the widths of the kernels are narrow in
velocity space compared to the widths of the amplitudes
db and db, the amplitudes can be factored outside the
velocity integrals and evaluated at v' = v. With the def-

inition b, v = v —v', Eq. (A22) then can be simplified to
obtain

d(t (v, t) = —p (t —Tp —T ) d)t (v, t)
+e' " p, (t —Tp —T„)db (v, t),

where

p„(t')—:pv —f dtkv W„(dkv) cos(tttkvt')

and

p, (t') = f d6v)t, (kv)cos(kAvt') e'

(A23)

(A24)

d& (v, t) obeys an equation of similar form with a, b ~
a', b', Au m —Aud, which implies p, (t') m p,'(t'). To iso-
late the effects of coherence-transfer collisions, it is con-
venient to transform away the p„(t')term in Eq. (A23),
using

= Ds~(vt t) e (A26)

and similarly for D), (v, t). With Eqs. (A21) and (A26),
the initial condition on Db is given by

D), (v, Tp) = ds (v, T()) = ps (v, z, T()) e+'["'+"" "j.

(A27)

The amplitudes Db satisfy

D) (v, t) = e' " p, (t —Tp —T„)Ds ~ (v, t),
(A28)

D ()v, t) = e *~ ~" p.'(t —Tp —T ) Dao(v, t) .

Note that Db and Db are constant in the absence of
coherence-transfer collisions, i.e., for p —+ 0.

It is expected that over the time scales T of the tran-
sient signals, the product p, T &( 1 for the present exper-
iments. In this case, it is convenient to solve Eqs. (A28)
to Brst order in p,T, yielding the result

Ds (v, t) Ds (v, Tp)+Ds (v, Tp)e'
t

x dt" q.(t" —T, —T„)
Tp

= Ds (v, T()) + Ds (v, T()) e'
t —Tp —Tv

x dt q.(t'),
—TU

where Db t(v, t) is given by an equation of similar form
with a, b ~ a', b', and Au m —A~, which implies p, —+

p,' according to Eq. (A25).
The coherence pb can be found for times between the

end the 6rst pulse, Tp = 7y, and the beginning of the
second pulse, t2 Comparing .Eqs. (A18) and (A20) shows
that T„=0. Then, Eq. (A27) yields

(A29)

Ds (v, ~r) = —Ar(a) X(v) e ' (A3o)

and similarly for Ds with Ar (a) ~ Ar (a'). Using

Eqs. (A29) and (A26) in Eq. (A20) yields the coherence
at time t2 as

t2 —T1

ps~(v z t2t) =t—N(v) A, (a) + A, (a')
0

xe f~' " "'~—.(')
xe2k [Z —V(t2 T1 )j —'t&gds (t2 —T1 ) —t4JT1e e

(A31)

where pb is given by a similar equation with a, b ~ a', b'

and p ~ 7,'. In Eq. (A31), the exponential factor con-
taining p describes the destruction of the coherence due
to inelastic processes and collision-induced Doppler de-
phasing, while the factor containing p, takes into account
the arrival of coherence from the neighboring transition.
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3. The stimulated echo polarimation

n(t2 + T2) —n(t2) 2 + g g~2 + l 4~2 u(t2)

2Pph'
+ „(1—cos(b', ) s(t, ) . (A32)

To proceed with the calculation of the stimulated echo
intensity, it is necessary to find the population inversion
just after the second pulse. The population inversion
takes the form of a velocity space grating from which the
third pulse induces a backward stimulated echo. Using
Eqs. (A16) with to ——t2, and 7- = 72, (b' = tt//2 = P/y2, and

k = kz (forward propagation) yields

tween these two pulses. When the third backward prop-
agating pulse excites the population inversion, n(ts)
n(t2 + T2), the coherence which is created will contain a
phase factor proportional to exp[+ikv(t —fs —ws)). From
Eq. (A31), the coherence pb (t2) oc exp[ —ikv(t2 —rq)].
In this case, the only terms in n(t2 + T2) which rephase
come from the pb parts of s(t2) and u(t2) which give a
net phase proportional to exp[+ikv(t —ts —r3 tz +7/)]
which rephases when t t3 + t2 + Tq —Tq. Hence the
c.c. terms in Eqs. (A33) can be ignored since they con-
tribute negligibly when the velocity integration is carried
out. Using Eqs. (A33) in Eq. (A32) yields the part of
the population inversion which contributes to stimulated
echo formation as

Equations (A12) can be inverted to determine s(t2)
and u(t2) in terms of pb (t2) as

s(t2) = -' e '"*+' "
pb (t2) + c.c. ,

(A33)

nsE(t2+7'2) = 2A2(a) e ' '+' "
pb (t2), (A34)

where the dependence of nsE on the second pulse is de-(~)

termined by A2(a), which is given by

—ikZ+i~t2u(t2) = —e '"'+' "
pb (t2) —c.c.

2t

+/
A2(a) = "(1—cos P2) —i " sin(t/z, (A35)

The term in Eq. (A32) containing n(t2) does not con-
tribute to stimulated echo formation, and will not be
needed. We will be interested in the case where the third
and second pulses are nearly coincident, so that the pop-
ulation inversion does not change in the time interval be-

I

analogous to Eq. (A19). nsE (t2 + r2) takes a similar
form to Eq. (A34) with a, b, m a', b' Wit.h Eq. (A31)
for pb (t2), the part of the population inversion which
contributes to stimulated echo formation is given as

t2 —Tl

nsE (t2 + r2) = —2%(v) A2(a) Q&(a) + p (a')
(~)

0

x e fo &t z& (t ) a((a —
wg&a —kv)(tg —7'1 )

dt'p, (t')

(A36)

with a similar equation for nsE (t2 + w2), where a, b, ~
a', b', implying p, —+ p,*.

As described above, the third and second pulses are
taken to be nearly coincident, so that n(ts) n(t2+ T2),
where n(t2 + w2) is given by Eq. (A36). In this case, the
coherence p~ just after the third pulse can be determined
from Eqs. (A12) and (A16) using k = —kz, and a = as.
The result, after retaining only the population inversion
terms which lead to stimulated echo formation, takes the
same form as Eq. (A18), with the population inversion
—X(v) replaced by nsE(t2+r2) and rz —+ ts + vs. Hence(~)

pb~(v, z, ts+~s) = As(a) nsE(t2+v2) e '"' ' '("+ ')

(A37)

with

The last step in determining the echo polarization in
the presence of coherence-transfer collisions is to find
the polarization after the third pulse. According to
Eqs. (A37) and (A36), the rephasing part of the polar-
ization just after the third pulse will have a velocity-
dependent phase factor exp[ —tkv(t2 —rq)]. Comparing
this with Eq. (A20) with To ——ts + rs for a backward
pulse (

—k) shows that T„=t2 —'7y. Equation (A20)
then yields the rephasing part of the polarization in the
form

pea(v, z~ j — ba(v~ ) e
l' th d l t —SA IZ —V(t —t3 —T3 —t2+Tl )]

Xe
—i~pa (t—t3 —T3)

with

fit t3 7 3 —t2+&1 g / (t~ )
db. (v, t) =Db-(v t)e " ""

As(a) = (1 —cos P' ) —i sin /)'/s,
As ps . ps
2P/2 2Ps

(A38) (A40)

where ps ——pb . et'3 jh. As —ll/3 Llfb + k'v ps
/As2 + Ps2, and tt/s = Ps7s.

where Db (v, t) is given according to Eq. (A29).
tions (A27) and (A37) yield
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Dk (v, Tp ——t3+ T3) = p& (v, z, ts+ Ts) e' "'+""
t2 —a1

= —2 N(v) As(a) A2(a) Ai(a) + Ai(a') dt'p, (t')
0

—fs dt' p v(t') s(as —odsa)(t 3—r2) —zoos(ts+rs) (A41)

Dk (v, T() ——ts+Ts) is given by a similar result with a, t) ~ a', b' imPlying P +P-,'. Using Eq. (A29) in Eq. (A40)
and keeping terms only to first order in p, T, where T is the time scale of the transient signals, yields with Eq. (A39)
the rephasing part of the coherence as

—2 f dt'yv(t') —2oos(ts+rs)+232(ts r2) 2k——s 2—soo(ta—ts —rs) okv(t ts ——rs —ts+r2)e e
t2-T1

X e ' '~" 'iA3a Ag a Ag a +Ay a' dt'P, t'
0

C2 —T1

+e' ~ ' '~ e ' " '~ ' '~As(a') As(a')Ar(a') dt'2, ( 2')I—
0

(A42)

pp is given by a similar equation with a, b ~ a', b',
Lcu ~ —Au, implying p ~ p,*. It is assumed in
Eq. (A42) that the time integrals involving p„and p,
do not vary significantly over a pulse duration, so that
the time t can be approximated by the echo time and we
take t —(ts + rs + t2 —7i) m 0 in the integration limits.

In Eq. (A42), the zeroth order term in p, yields the
usual stimulated echo signal. The first term containing

p, denotes coherence transfer &om the a', b' transition
to the a, b transition during the time between the 6rst
and second pulses, while the second term containing p,
denotes coherence transfer from the a', b' transition to
the a, 5 transition during the time between the third pulse
and the echo rephasing time.

The form of the coherence pk can be greatly simpli-
6ed in the approximation that the pulses excite a band-
width large compared to the difference between the reso-
nance frequencies of the two transitions, Au. In this case,
Ai(a') = Ai(a), etc. It is convenient to define T—:t2 Ti-
and ~ =—t —t3 73 t2 + 7g with

I, = 2Re e ' dt' p, (t')
p

(A45)

In obtaining Eq. (A45), we have used the fact that
p, (—&') = p,'(t') according to Eq. (A25) assuming that
the kernel R', is a real, symmetric function of the veloc-
ity change as described above. The echo field amplitude
is given by Eq. (A2) using Eq. (A44) in Eq. (A5) for the
polarization amplitude as

A(d = 4)~ —(dert
(A43)

(d =
2

Factoring out the phase exp[ —iuk (t2 —Ti)] in Eq. (A42),
the coherence takes the form

2 N(V) e
—2 fs dt' p„(t') —ioos(ts+rs)+iuT

pQ~ (V) Z) J

e
—iks iw(2T—+r) eikvrAS(a) A2(a) A (a)

x[e * ( +2 + e ': I,], (A44)
where

g( t) 2 kI i 4
~

)
3. —2 f dt' pv (t') i2ds(t —ts rs)+i32T ioo(2T+—r)—

(x dve'"""N(v)As(a)As(a)As(a) 2cos r2rv~ T+ —
~

+2cos~ srv —
~

I ).2) E

(A46)

In Eq. (A46), we use Ai(a') = Ai(a), etc. , since the pulse
bandwidth is assumed large compared to Afd = fdic

and note that Ace ++ —A~ when c, b++ a', b'. Since
the echo amplitude will be nonzero only for ~ comparable
to a pulse duration (we use sub-Doppler excitation), one
can take cos(b,~T/2) 1 in the I, term which is already
first order in small quantities (p,T). This is consistent
with the neglect of times of the order of pulse durations in
the limits of the integrals involving p, and p . However,
we retain the dependence on v in the leading term in the
square brackets, since it contributes to 6rst order in small
quantities, Au7.

For sub-Doppler excitation with counterpropagating
pulses of frequencies u and u3 ——cu + A, the echo sig-
nal is maximized when

4J =(d ——
2

(A47)

The initial ground-state population for one transition,
N(v), is given by

v2 2

dv N(v) = dv N() —Np
e "&& e ( 3"& ~ d(kv)
up tr ku/~2r 2r

where up ——/2k~Tp/M is the thermal speed.
We will assume that all pulses have the same amplitude

so that the Rabi frequency P„is the same for all pulses.
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Using the substitution

P„z= kv+ 6/2 (A49)

Neglecting terms of order b,a/(2P~) in the amplitudes
Ai (a), etc. and using the resonance conditions Eq. (A47),
and the definition of z, Eq. (A49), one obtains

in the velocity integral of Eq. (A46), the echo field can
be written in terms of the Doppler broadened absorp-
tion coeKcient o. for two degenerated transitions of equal
strength as used in the experiments,

(A5}.)

47rk
~ pb e~2

h(kup/~sr)
(A50)

where

Sin 2 1+&
f(x i'j = , cos

~

—/1 + x'
I + a sin

~

—Ql + z'
~1+x2 2 ] +~2 2

Using these results, the echo field, Eq. (A46), takes the form

g(z t} ~I g e
—2 jo dt' P„(t') i~a(T+7.)+i~T i~(2T+—7.) i ~

—7 (
C

where T = t2 —Ti and the echo shape as a function of the time r = t —ts —rs —t2 + ri is given by

g(r) = — dz e'~& * e & ""o & f*(z,Pi) f*(z, P2) f(z, Ps) .
7C

Note that in Eq. (A53) we have taken cos(Bur/2) ~ 1 as described above.
With Eq. (A53) for the echo field at resonance, the echo intensity is given according to Eq. (A3) as

—4 R et)' 2
2I.,h, (r) = (nI )' I~ e ' 'Io "' ~" '

~2 g(r) ~' cos Aa T + — + I.
2

(A52)

(A53)

where

(A56)

is the intensity of each of the square pump pulses which
are assumed to be of equal amplitude. Note that the peak
of the function ~2g(r)

~

is not at w = 0, but is shifted by a
&action of a pulse duration. This is due to the definition
7 —t t3 7 3 t2 + 7 i which for equal pulse durations
implies t = t3+ t2 at r = 0, which is the correct time for
the echo peak only for pulses of negligible duration.

APPENDIX B:PHASE SHIFT DUE TO
COLLISIONS DURING THE PUMP PULSES

The technique of photon-echo interferometry is sensi-
tive to the relative phase between the macroscopic po-
larizations of the two adjacent transitions, which radiate
interfering echo fields at different frequencies. As the
pressure of perturber vapor is increased, the small prob-
ability of a dephasing collision during the pump pulses
leads to a change in the relative phase of the interfering
echo fields which cannot be neglected when compared to
effects of collision-induced optical-coherence transfer. In
order to treat this phase shift approximately, a perturba-

tion theory calculation of the echo fields is carried out in
this section which takes into account the effects of colli-
sions which arise during the pump pulses. Such a calcu-
lation neglects the effects of the strong pump pulse fields
on collision-induced Doppler dephasing, but takes into
account dephasing collisions. The calculated phase shift
then can be incorporated into the general result for the
echo intensity, calculated in Appendix A. In addition, the
perturbation calculation, which assumes Gaussian laser
pulses, permits a closed form result for the echo inten-
sity to be obtained, which explicitly displays the time at
which the echo intensity peaks. By contrast, the result
obtained in the preceding section for strong pulses does
not rephase exactly at w = 0, since the time T = t2 —7i
is not the time between the pump pulse centers.

To begin, we approximate the density matrix equa-
tions (A6) in the low velocity resolution limit, where the
effect of collisions is simply to introduce exponential de-
cay rates [5]. The electric dipole interaction is assumed
to be of the form

U= —p. e + c-c-E(z, t) (Bi)
2

so that the density matrix evolution equations in the ro-
tating wave approximation are given by

/0 0't
~

—+ v —
~

pb (v, z, t)
(Ot c)z)
t'o} 0 l—+ V —

i
Pbb(V, Z,t)'

i c)t c)z )
(c) c) l

~

—+v —
~
p..(v, z, t)

i c)t c)zp

(P -.e).
Yb pbb(v, z, t) — a

2h
E'(z, t)pb + c.c.

p (v, z, t) + i E'(z, t)pb + c.c.(P b-.e).
2h

. Pba ' e—(pb +iamb )pb (v, z, t) +i E(z, t) (p —pbb),2h

(B2)
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with a similar equation for pb, etc .In Eq. (82), the field amplitude takes the form

E(z, t) = t(z, t) e ' ',
with

(83)

(86)

g(z —z', t —t') = e(t —t') e ~ ' {' ' b(z —z' —v(t —t')), (88)
where e(t —t') is the Heaviside step function.

With Eqs. (87), (84), and (88), the ob is obtained to first order in 8 for atoms initially in the ground state a,
paa

(o)

E'(z, t) = [f,(t) +F,(t)] e'"'+f, (t) e '"' . (84)
For simplicity, it is assumed that all pulses are of equal frequency, ~ T.he fields E;(t) represent the three pulses of
Fig. 10, in the limit of small area pulses. It is convenient to make the substitution

pb (v, z, t) = ob (v, z, t) e * '. (85)
The density matrix equations then take the form

(8 8 ') . .Pb
~

—+ v —
~

ob(.v, z, t) + (Pb —iAb )ob (v, z, t) = i Z(z, t) (P —Pbb)(c}t Oz)
' ' ' '

2n

(c} c) ) (P 'e)—+ v —
~

pbb(v, z, t) + pb pbb(v, z) t) = t — 8 (z, t)o'ba + c c.
I, c}t Oz) 2h

~

—+ v —
~ p (vz t) + p p (vz t) =+i 8'(z t)trb + c c

( c} c} l . (Pb e)*
{o}t Bz) ' ' ' ' '

2h

where the detuning A~ ——~ —up . These equations are easily solved in perturbation theory using the Green s
function, g(z —z', t —t'), which satisfies

ia ai
~

—+ v —
~
+ (p —iE) g(z —z', t —t') = b(z —z')b(t —t') . (87)(c}t Bz)

The Green's function is readily found by Fourier transformation where p & 0 ensures that the solution is causal. The
result is given by

A t
(&)/ tx .I & (o)f 4 '& gtl g ftl 5 —( —'&b +'A: )(t—t')

2h
(89)

(tI ) gz(tl ) + gz(tt )
2ik[z —v(t —tz)]

The third order coherence due to the interaction of the last two pulses with the population inversion of Eq. (810)
is then obtained using Eqs. (87) and (88) as

(810)

where the z' integration has been carried out in the Green's function solution, setting z' = z —v(t —ti). Using
Eq. (89) in Eqs. (87) yields the population difFerence due to the interaction of the second and third pulses with the
coherence created by the first pulse. The efFect of the first pulse in second order does not contribute to the backward
stimulated echo of interest here. With Eq. (88) for the Green s function, one obtains

p{ )(v, z, t) —p (v, z, t) =i' ' dt' e ~'(' '2) +

X 2( 2)~rtl i —A:[ — (t—t')] + g*rtI x It[ — (t—t'))

x o.
b [v, z —v(t —t2), t2]+ c.c.

A 2 t t2P (0)
( ) tttI tttl —

A (t—tz) + —~~(t tz)—
Paa " 2 l—OO —OO

—(7g —ZAg +CATV) (t2 ty )

(3)( t)
IJba ' &

dt's
—{pz iibz~){t—tz) g (tr )

ik[z——v{t—tz)] + g (tI )
—ik[z —v(t —tz)]

26

x p{'.) (v, z —v(t —t', ), t', ) —p,",'(v, z —v(t —t', ), t', ) (811)

In Eq. (Bll), using Eq. (810), there are two possible terms which radiate a backward propagating field. These are
proportional to exp( —ikz), and arise from the Es(ts)E'i(ti)fz(tz) term and from the E2(ts)Zi (ti)fs(tz) term which
comes &om the complex conjugate part of Eq. (810). The latter does not rephase, as is shown from the net velocity-
dependent phase for that term which is given by exp (ikv[(t —ts) + (t2 —ti) + 2(ts —tz)]). Since ts & t2 & ti, and
t & t3, it is not possible for the velocity-dependent phase to vanish. For the former, the velocity-dependent phase is
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proportional to exp(kv[t —t3 —(t2 —ti))) which rephases as a backward stimulated echo when t ts + (t2 —ti).
Hence the third order coherence which rephases as a backward stimulated echo is given by

A 2 t2

e »(' ' + e1
OO

The slowly varying polarization envelope 'P is determined from Eq. (A5) with ws ——w and Eq. (85) as

(812)

dv 2e* P~srTb~(v, z, t) e' ' + (a i-+ a;b m b) . (813)

The velocity integral in Eq. (813) can be carried out using Eq. (A48) for p (v) = X(v) in Eq. (812). For simplicity,
we assume that the pulse bandwidth is small compared to the Doppler width so that

dv p~'.)(v) = (814)
kuo ~ vr

According to Eq. (812), the required velocity integral takes the form
OO

%p
v p( )(v) ei~v[t t (t t )) ~ 2 $(t tt (tt tt ))

kup/~sr

t'34
Np ps~ e „(

2 kuo/~sr h

(»a tuba)(t —t3) e
—(&ho ~&b )(t2 1 }

x b(t —t' —(t' —t')) F (t') f*(t') E (t') + (a, b M a', b') .

t2

e
—»(t3 —2) + —&o { 3

—2)
1dt2

With Eqs. (812) and (815), Eq. (813) yields the polarization envelope as

(815)

(816)

To evaluate Eq. (816), we assume for simplicity that three Gaussian pulses of equal amplitude and duration are
applied and that second and third pulses are nearly coincident. In this case,

t, (t', ) = E, g(t', ),
Ei(t2) = E„g(tz—T21.),
Fi(t', ) = f„g(t'—s T2&),

where T2q is the time delay between the centers of the first and second pulses and

(817)

g(t'):—e (818)

With identical Rabi frequencies for the two transitions defined by P„=Pb eF&/5 the echo field radiated by the
sample of length L is given by Eq. (A2) using Eq (816) .as

E(t) =—
2 t2

«s
) —oo —oo —oo

t3

(»a &&ba ) (t—t3 ) (&ha &&ba ) (t2 —t1 }

e
—»( 3 —2) + e

—&a( 3
—2)

1

x &(t —t' —(t' —t'
) ) g(t' ) g(t' —T2i) g(t' —T2i)

+ (a, b m a', b'), (819)

where the Doppler broadened absorption coefficient a. is given by Eq. (A50).
The form of this result can be simplified by means of the fallowing substitutions:

7y = t& —tz —T2&, t2 const, dt's
———d7y

(820)

E'(t) =—

t3 t2 t3 const, dt2 ———d7 2

The delta function appearing in Eq. (819) then takes the form b(t —ts —T2i —7i), where T2i + 7i = t2 —ti + 0.
In this case, the integral over t3 is readily carried out yielding the echo fieM as

2

e ~~" Ie ' ' "I~ (w) + (abaca', b')] (821)

where w = t —2T2y pg = pg = p~ is the coherence destruction rate which is taken to be real, with any pressure

shift (identical for both transitions) being incorporated into As . The integral Is (7) is given by
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e 2( YB t Zhba)T17yeIs(r)= dr2(e ~''+e ~ ')
0 T21

xg(r 2ri r2) g(r —ri —r2) g(r —ri). (822)

Is (r) =

(823)

In Eq. (822), the time delay T2i can be taken large
compared to the pulse duration wp. In this case, since
the last g function limits v —wq w„, then the second
and first g functions require r2 ~p and 'T& —'Tp so that
one can put T2q -+ oo &) ~p in the ~q integral. The
7q integral is readily carried out using the substitution
vz

——~ —~q with d7q ———dr& and completing the square
in the exponent which arises from the product of the
Gaussian factors to obtain

T2 r 4 —t
2

—~ (&b~+t&B)'
wp e 6 e ~ Io,

y = arctan
1+ B&p

a,.r„+
I

1 ——
~
q&as.r„+O(. ) .t 2l 2 s

")
(828)

Is (r) = r„' 1+
4
g 'YBT

PB7p e

With Eqs. (827) and (828), Eq. (823) takes the form

where tabb~ —T—g —T —
(

——— fB T(3 wj J
) (829)

= v~~r, 1— (b,s +igni)rpy 2

OO T
+(~z in& )—rz

(e 75&2—+ e 'Ya&2
) e 2~p

0

(824)
Since our goal is to find the phase shift due to colli-

sions during the pump pulses, a small change in the am-
plitude of the signal can be neglected by assuming that

7 p Q( 1 and pbTp &( 1 for the real population loss rates.
In this case, the exponentials involving the population
decay rates in Eq. (824) can be set equal to 1. With the
definition P = (As +ip~)r„~2,the factor Ip then takes
the simple form

Ip = 2V2r„dze '~ e (825)
0

We are interested in the limit P &( 1, in Eq. (825). In
this case, up to order P2, the integral Ip is given by

O' . P
Ip +2vrrp 1 ———i

where real terms in the exponents of Eq. (823) which are
of second order in small quantities are neglected.

Note that in Eq. (829) any pressure shift of the res-
onance frequency can be incorporated into Ab as de-
scribed above, and is the same for both transitions. With
Eqs. (829) and (821) for the echo field, the echo intensity
is given by Eq. (A3) as

—
3~~

—~Vs& 2 Ald ( 4I,ch~(r) = Ap e "~ ' cos
~
2T2i+ —r —rp

2 ( 3

(83O)

where we have used the definitions As ——ur —u —Du/2,
and Ds ——ur —g + Au&/2 with ur = (~s + ~b ')/2 and
441 = (db~ —4)b~~~.

The amplitude Ao is given by

4f
Ao ——I„—I 1+ 2

4&BT21
)

f nI ) ' fPpr„~x)t

j
(831)

with I„the pump pulse intensity given by Eq. (A56), and
(Aso + iP~)

4 p (4r, +
/

———
I
war'. (832)

= V'a~r„1+ QBTp L +ba &p &PBAha
2

(826)

Ip ——~2' rp A e (827)

where A = 1+ J2/7c Qyr& is the magnitude of Ip, which
is weakly pressure dependent through pB+p (( 1, and the
phase p is given by

In Eq. (826), we retain terms of first and second order in
small quantities in the imaginary part which contributes
to the phase, while retaining only terms up to first order
in the real part. The result for Io can be written in the
form

Fquation (83O) can be simplified by noting that the

peak echo signal is shifted from v = 0 due to the expo-
nential decay. With the definition 7 = 7 —2pBTp and

neglecting terms of order (pIir„) in the exponent, the
echo intensity is given by

l2

I.,„.(r') = A, e

x cos
2

4, 8
~

2T2i + r' — par„—rp ~— —
)

(833)

Using Eq. (832) for rp, the time argument of the cosine
function is proportional to 2T2i + 4r'/3 —rp, where
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2)
ro ——14 ——)»rp +

7r)
7p 0 (B34)

The time argument of the cosine in Eq. (B33) then can
be written as 2T,tr + -[~' —c(p)] where c(p) is pressure
dependent and given by

It is useful to define the line-broadening rate as p~ ——

+ p, /2 where p, is the spontaneous decay rate of the
excited state and p& is the pressure broadening rate. In
this case, the pressure-independent part of the time ar-

gument in the cosine of Eq. (B33) can be written

( 3l
c(p) =

~
3 ——[~ad,'~~)

(B36)

where we have factored out 4j3 from the pressure-
dependent part of Eq. (B34).

The echo intensity is finally given by
l2

( 2)p,
2T,rr = 2T2g —

~

4 ——
~

—
&px) 2

(B35)
I„g(r') = Ape '~ cos (b,ur(T, rr+ 2[v' —c(p)]3) .

(B37)
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