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Intense-field molecular spectroscopy:
Vibrational and rotational efFects in harmonic generation by H2+
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%le present results of a complete treatment of electronic, vibrational, and rotational motion in
numerical calculation of harmonic generation (HG) of 1064-nm laser radiation by the Hz molecular
ion for intensities 10 ( I ( 10 W/cm . We show that etricient HG can be enhanced by
suppression of photodissociation, a phenomenon which results from vibrational trapping in laser-
6eld-induced potential wells. The HG spectra exhibit peaks clustered around even and odd harmonic
orders. All peaks can be assigned to Raman-like transitions between dressed eigenstates of the field-

molecule system. Rotational excitation is shown to compete with HG. Thus harmonic generation and
photon scattering in molecules holds the promise of a potential diagnostic for molecular stabilization
by intense laser 6elds.

PACS number(s): 33.80.Gj, 33.10.—n, 33.90.+h, 42.50.Hz

I. INTRODUCTION

Recent theoretical work has shown that two-level sys-
tems can generate high harmonics of the fundamen-
tal laser frequency [1—4]. Odd-charged homonuclear di-
atomic ions have charge-resonance states [5] (e.g. , the
1sog and 2po„states of H2+), which are strongly cou-
pled by the 6eld due to asymptotically diverging transi-
tion moments [p(R) = eR/2]. If these states are isolated,
and if the laser frequency is comparable to the separation
of the charge resonance states, then a low energy plateau
(up to 10th order in 1064-nm radiation at 10is W/cm
by Hz+) of the harmonic generation (HG) spectruin ap-
pears which can be reproduced well by a two-level model
[11

Previous work has only dealt with the electronic mo-
tion, i.e., the nuclei were held 6xed in exact numeri-
cal solution of the electronic motion [1], or a two-level
analytic model was employed [1—4]. This should be a
good approximation in the case of ions of heavy diatomic
molecules such as Iz exposed to short pulses [2,3]. How-
ever, for longer pulses or lighter ions, vibrational and
rotational motion must be taken into account, and as we

will show, contribute to the structure of the HG spec-
trum. In particular, laser-induced avoided crossings con-
siderably modify the electronic potentials and as a con-
sequence also the nuclear motion. Thus new nuclear
bound states can be created by vibrational trapping in
new laser-induced adiabatic wells [6—10]. The stability of
such laser-induced nuclear states has been described ear-
lier by Bandrauk and co-workers, based on the analogy
to molecular predissociation [7—9]. The same group had
also earlier proposed the detection of such laser-induced
states in resonance Raman scattering spectra [10]. In the
present work we compare results of a purely electronic
treatment (i.e., static nuclei) with a two-electronic-state
treatment including vibrational and rotational degrees
of freedom, in calculation of the harmonic generation of

1064-nm laser radiation by H2+. We show that har-
monic generation can serve as a measure of the struc-
ture of laser-induced. nuclear states propagating on 6eld-
modi6ed electronic surfaces.

The outline of the paper is as follows: in Sec. II we

present a theoretical treatment of harmonic generation
in H2+, showing that it results from transitions between
Floquet states. In Sec. III we present results of calcu-
lations of harmonic generation by nonrotating H2+, and
show that efBcient HG is linked to supression of photodis-
sociation or equivalently, stabilization of the molecular
ion. In Sec. IV we present results of HG by H2+ which
include rotation. A concluding discussion then follows in
Sec. V.

II. THEORY

We will consider a two-electronic-state rotationless
model of a homonuclear diatomic ion, such as the Z+
and Z+ states of H2+. One must solve the two cou-
pled time-dependent Schrodinger equations for the nu-
clear states y(R, t) = (yi (R, t), gz(R, t)) (corresponding
to electronic states Z+ and Z+, respectively):

0 h2V'
ih —+

gt 2m
V (R) V„(R,t)t): V (R t) V (R) y(R t)

where Vg„(R, t) = h01t(R) f (t) cos(ut), f (t) is the laser
pulse shape, and OR the Rabi frequency

h01t(ev) = 1.45 x 10 [I (W/cm )][I (a.u. )], (2)

where I is the laser intensity and [d (a.u. )] = R/2 is the
lo.g ~ 10.„ transition moment in atomic units, which
diverges with increasing internuclear distance [5]. Ban-
drauk and co-workers first pointed out the importance of
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such large transition moments in creating nonlinear non-
perturbative efFects such as laser-induced avoided cross-
ings [7—9]. For a periodic field, i.e., f(t) = const, the
solutions of Eq. (1) are given by Floquet states:

ly, (r, R, t)) =.--"~" ) - .'"-')
n= —oo a=1

x [d, „(~&)lou(r, R)) Ix, (R))
+d',.(")I&-( R)) l~'(R))].

where for simplicity we have expanded the ground and ex-
cited nuclear wave functions into an equal number N of
basis states, eg is the kth eigenvalue (k = 0, kl, . . . , +oo),
or quasienergy, of the time-independent Floquet Hamil-
tonian H~, which has diagonal elements E] +AA4J E2 +
nhur (Ei, E2 are energies of zero-field nuclear eigenstates

I

lyi), lg2) corresponding to electronic states ps(r, R)
(2Z+) and P„(r,R) (zZ+), respectively) and off-diagonal
elements

V, „+i,2,„—(4g(r, R) lh, (R) lzl~:(R)) I&-(r R)).,R~p

= (~i(R) I(R/2) I~2 (R))~p
= PX,P,2,a~o&

where R is the internuclear distance, r is the electronic
coordinate, z is the projection of r on the internuclear
axis, and tp is the field strength. In Eq. (3), di „(eg) is
the di „(basis eleinent of H~) component of the eigen-
vector of H~ corresponding to eigenvalue eA, . Note that
since basis elements d~ „are coupled only to functions

d2 ~y by the Floquet matrix H~, one can separate two
noninteracting parts of Eq. (3):

lgz&+ (ir, R, t)) = e '"'+' ~" ) ) [e'( "+
& di 2„+i(e»+i)IPs(r, R))Iyi (R))

n= —oo a

+e d2, 2 (e»+i) I& (r R))1~2 (R))1

l&gg(r»t)) = e "*"'"). ) [e*'" 'di, 2.(&»)l&s(r R)) l&i (R))
n= —oo a

+""""''d2, 2.+1(~»)14-(r R)) IX2 (R))].

We label Floquet states in Eq. (5) as odd (with index 2k + 1) and Eq. (6) as even (with index 2k), in view of the
symmetry of the I2Z+) (even) and I2Z+) (odd) states [11].

The quasienergies ep have the property that for any integer p, op+„——eI, +p~. Therefore, solutions can be chosen
to lie between 0 and ~. We must now take into account which Floquet states are created after a pulse rise &om
f(t = 0) = 0 to f(t = tp) = 1. The even states [Eq. (6)) can be connected adiabatically to the field-free state lgs),
while the odd states [Eq. (5)] can be connected to the lg„) state. Thus, the even and odd quasienergies can be written
as

62A,
= Ey a 2n = &y a 0 + 2A~,

~zk+& = ~2,a,2n+x = ~2,a,o+ 2~~.
(7)

(8)

It can be shown that a slow (adiabatic) rise will produce one Floquet state [12]. A rapid rise, such as we use here
(linear rise over five cycles of the laser period), will produce a superposition of Floquet states:

l@(r»tp)) = ): C»+i(to)l&2i, +i(r»to))+C»(to)l@2i, (r R tp))

-(+)
C2&+i(2k) (tp) —(4'»+i(2i, ) (r) Rr tp) I

@(r)R) tp)) r, R ~

(9)

(10)

Once the superposition in Eq. (9) is created, the coefficients C&(tp) remain constant, as long as the pulse shape
remains constant. The dipole moment induced between to and t is then

~"'(t —t, ) = {0(r, R, t —t, ) Izl 4 (r, R, t —tp)). ,R

= ) C&,2+( ip)tCg 2+(ipt)(g ,2i+(ri, R, t —tp)l lgz»(+ri, R, t —tp))„,R

+) C;„,(tp) C»(tp) {@,+„,(r, R, t —t, ) lzl@,+„(r,R, t —t, ))„,R

+2Re ~ ) C;„,+,(t,)C»(t, )(@,, +,(r, R, t —t,)lzl@+„{r,R, t —t,)), R ~

Ic', k

i' ind ind= ~——+~+++~+—~

(12)
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where

ind
~++

r~ S ~(~2/ +1 &2je+1)(t to)/~ X —~2(~' —~)~(t—t )2k'+l( oj 2k+&( o)
k', k n', n

x [e
' ' "

d& 2,+&(e2k +1)CP~2 (e2k+z)pl p 2

p, cx

+e' ' "'d2, 2. (e»+i)d1*,2 +i(e2k+~)», p, ~,-l
(g g C r g ) ~(~2qt —~g g, ) (t—to)/h X —i2(n' —n) cu(t —to)

(14)

x ) [e' ' "
d1,2 '{ 2k )~2 2 +]( 2')P'1, p, 2,

P,a

+e dg g~~+](&2k')dy, g~( 2')V'2, p, l,a]i

~+— g 2k'k o) 2k+&( o)er~ Xg r~ i ~(~2'«2le+1)(t —to)/~ X —~2(~' —~)~(t—to)

k', k n'n

x ) [d~ ~„,(&2k )d2 2„(e2k+g)Pg P g ~
p, cx

pg CX+ d2 2„I+g(e2k~)dg 2„+y(e2k+1)»,p, l, cr] + C.C. (16)

The Fourier transform of Eq. (13) (p'" (~HG)) gives the
relationship between the HG spectrum and the quasiener-
gies e2k+q. The dipole component between odd states,
and between even states, give peaks at

~„~ = (e2k +1 —e2k+y)/h+ (2m + 1)cu

= e2 p o —e2 ~ p + {2m 6 1)ld,

~HG = (e2k e2k)/h —(2m + 1)cu

= ey p p
—ey p +(2m + 1)(d,

where m = 0, +1, . . . , koo. One obtains, therefore, split
Odd harmonic peaks; this would be the only result if the
pulse rise were adiabatic, creating only one Floquet state
(even or odd). If several Floquet states are excited by the
pulse rise then transitions between even and odd states
will produce additional peaks around even harmonic or-
ders

tdHG = (e2k —e2k+1)/6+ 2mur+

= ~x,p, o —~2,~,o + 2m~. (18)

If two quasienergies are degenerate, Eq. (18) shows that
harmonic generation will be produced at exactly even
harmonic orders.

The dependence of the HG spectrum on initial condi-
tions is contained in the coefficients Ck(to) in Eq. (12):
photon emission will only occur between Floquet states
which are populated by the rise of the pulse. This opens
up the possibility of controlling the HG spectrum via the
shape of the pulse rise, as has been discussed recently in
the context of the two-level model [2,3]. The effects of
pulse shape on photo44ssoclatlon of H2 have recently
been reported by Aubanel et al. [13].

The relationship between HG and electronic Geld-

molecule energy levels has been derived previously for
the two-electronic-level model [1—4]. The difference in

the case of the two-electronic-state problem with moving
nuclei, treated here, is that we have vibronic quasiener-
gies, and thus a HG spectrum with richer structure.
This structure, if observed experimentally, would give di-
rect evidence of laser-induced bound states in diatomic
molecules, which so far have only been seen in numerical
simulations [10,13—19]. Indirect evidence has appeared in
above-threshold ionization experiments [20—22] and also
in anomalous kinetic energy distributions of &agments
arising from ATD (above-threshold dissociation) [23].

The inclusion of rotation in Eq. (13) is not compli-
cated, as it simply requires summation over appropriate
angular momenta and the inclusion of Clebsch-Gordan
coeKcients in the expression for the transition moment

[Eq. (2)] [24].
One can calculate the quasienergies that appear in

Eqs. (3)—(18) using either time-independent [6,7] or time-
dependent methods. This latter approach has only ap-
peared recently in the literature [25,26]. The idea is

based on the spectral method for Gnding eigenvalues of
time-independent Hamiltonians [27]. Here we have a pe-
riodically driven Hamiltonian, so the eigenvalues we ob-
tain will be quasienergies of the Floquet Hamiltonian.
One proceeds by evaluating an autocorrelation function
of the total solution of the Schrodinger equation, Eq. {1),
(~(t)l~(t )) or

where we have used the initial condition g2(tp) = 0.
Clearly for the two-electronic-state model, the autocor-
relation function reduces to autocorrelation of nuclear
states only. We will take as initial wave function the
nuclear eigenstate lyz) of the Z+ electronic potential:

Using expression (9) one obtains for the autocorrelation
function
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G'(t) = (y, (r, R)](~', (B)]op(r, B, t —t, ))
—iegg+1 (t—tP)/h~7 (g q + i(2n+1)u(t —to) dP2k+14 Oj / y, 2n+~ (62k+1)

ie2g—(t to)—/h~w (t ) & i2n~(t —tp)dp y y t

n
(21)

where C&~(tp) = (Qi, ~y~i) ~Ps). Spectral analysis of the
Fourier transform G(ur) of Eq. (21) will yield peaks at
E2g+i/5 —(2n+ 1)u and e2g/5 —2nld [OI' E2 ~ p/ti —(2n+
1)~ and ei p/h —2n~]. Note that if the initial (t =
tp) wave function had been chosen to be a combination
of both electronic states, then one would have obtained
overlapping peaks for ~E2 ~ p el, n, p] ~ (&2,n, p/ti+n~~

p/5+ n~) In .order to apply this analysis (which
applies to a periodic field) to the autocorrelation function
obtained f'rom the time-dependent calculation, Eq. (19),
the calculation must be done using a periodic Geld, i.e.,
E'p sin(~t), with ~gi(t = 0)) = ~yi) (an eigenfunction of
the 2Z+ potential).

The above discussion has ignored the fact that, because
of the presence of the nuclear continuum, the quasiener-
gies (eg) are complex. The imaginary part gives the
linewidth of the spectral feature centered on the real part
[8,9,14]. Thus the above autocorrelation function analy-
sis can yield energies and lifetimes of Floquet states.

In this section we have presented a Floquet analysis of
harmonic generation by H2+. A dressed state analysis
will be given in the next section. In the latter case, the
Fourier index n and basis functions di „]Pg),d2 „~P„) of
Floquet theory are associated with the photon number
and with diabatic (field-free) states, respectively, and the
quasienergies ep are associated with nuclear eigenvalues
of adiabatic Geld-molecule states.

III. RESULTS: NONROTATING Hg+,
FIXED AND MOVING NUCLEI

The results of two types of calculations are presented in
this section, both for a 1064-nm laser. First, we present
results of exact electronic calculations for nonrotating
H2+ at a fixed internuclear distance of Ry = 3 A. (right
turning point of v = 13). The same method as previ-
ously published was used, namely a Bessel-Fourier ex-
pansion coupled with a split-operator fast Fourier trans-
form (FFT) method [1,28], and with a five cycle linear
turn-on of the laser to a constant Geld, yielding the Gxed
nuclei electronic function ~g(Ry, r, t)). Harmonic gen-
eration spectra were calculated by Fourier transform-
ing the time-dependent dipole moment, p' (By, t)
(Q(Rg, r, t)~z~g(Ry, r, t)), sampled between 6 and 60 cy-
cles (21—213 fs) to reduce the background of the spectra
due to transient states induced by the turn on of the
pulse. A Hanning window function [sin(ter/T)2, where
T is the length of the sample] was used before Fourier
transformation to reduce leakage due to spurious side-
bands and to reduce the background.

Second, we present results of typo-electronic-state (~Z+
and 2Z+) calculations for nonrotating H2+ (see Sec. IV
for treatment of rotation), starting from diabatic (field-
free) vibrational levels v = 13 and v = 5, using the same
split-operator-FFT method as in previous publications
[13,15,16,28]. The pulse shape is the same as above (un-
less specified otherwise), and the dipole moment is now

/'"'(t) = h. (B t)& ( R)+~-(»t)&-(, R)l I& ( R)x (B,t)+4-(, B)x.(R, t))
= Re(y, (B, t) ~B~y„(B,t)), {22)

where r is the electronic coordinate and Re denotes the
real part. We note that all laser-induced or stimulated
processes are included in the time-dependent functions,
whereas the dipole operator z corresponds to coherent
spontaneous radiation emitted by the molecular ion (see
discussion below).

Numerical calculations have shown that molecular
photodissociation can be suppressed in the presence of
strong laser Gelds, leading to molecular stabilization by
a laser-induced avoided crossing mechanism [13,15—17].
Photodissociation probability Pg as a function of peak
intensity is shown in Fig. 1 (circles) for H2+ in initial
(rotationless) diabatic vibrational levels v = 5 or v = 13,
with a 30 cycle Hat pulse of a 1064-nm laser including a
five cycle linear rise. Photodissociation is seen to rise (lin-
early initially, in accordance with the Fermi golden rule)
to a maximum of 100%%up, followed by one or more min-

ima. For the case of v = 13 there is a broad minimum
between about 0.7 x 10 W/cm and 1.3 x 10i4 W/cm
at about 70%% dissociation, while for v = 5 there is a
minimum of 85% dissociation at 1.2 x 10i W/cm . It
has been shown that such stabilization is due to trapping
in laser-induced bound states [6,7,13,15—17] for which a
semiclassical theory, analogous to the theory of molecu-
lar predissociation [29], has been developed. In Fig. 2 we
show the diabatic potentials (solid lines) corresponding to
states Vs+2pRu, 2p = n+2, n, n 2, and V„+(2p——1)Ru,
2p = n, n 2, n 4, n 6(n is th—e pho—ton n—umber), and the
adiabatic potentials (dashed and dotted lines) obtained
by diagonalizing the dressed state matrix containing the
above diabatic potentials coupled by

( Z+, n = 2m 6 1]d . Ep/2] Z+, n = 2m) = hA~/2. (23)
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ca cu ation (with fixed nuclei) as shown in Fig. 3(b).

2
is is because in this

~ ~

E+ and E+ st

*

case, the transition between th

g
states (the charge resonance transition)

ominates the whole process. In fact af
c e s interaction with the laser pul l 1use, ony 1 0

o 2 is ionized ((@(tt)~i/t(tt)) = exp( —I'tt) = 0.99
for =. & 128 a.u. , the component of the electronic coor-

inate along the internuclear axis). The correspondin
ionization rate is I' = 2.3 x 10 s '-. t i

ot er 1% is excited to the upper excited states and 98%
still remains in the lowest charge resonant states (lcil +

of Fig. 3(b) is now well understood in a two-level, strong
coupling (Rabi frequency AR = 0.081 &) cu = 0.0

rgy separation) analysis [1—3]. In particular, the
split ting 0' at the frequencies 2na 6 O' F . 3

between Floquet states of the two-level model [Fig. 3 b

V +(n-V}-,
19

v +(n+2)

The Rab'abi frequency On is defined in Eq. (2),
and adiabatic potentials at 7.4 x 10 W/cm and

1.2 x 10i4 W&~cmx /cm, where Pd, (Fig. 1) has minima, are
shown in Fig. 2. The adiabatic potentials all have min-

ima which can support at least one vibrational state, thus
eading to stable states in intense fields. We note that

(see Sec. II). The potentials Vg+ (n 1)Ru, V„—+ (n 2)hu-
corresponding to the Floquet states of the other parity,

teract, see Sec. II) and are, therefore, not shown.
Next in Fi . 3~a~ we'g. ~ ~ show the harmonic generation

spectrum at I = 2.59 x 10' W' f&'cm rom our exact,
purely electronic, calculation with th l

'
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sociation (see Fig. 1). This spectrum is well reproduced
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FIG. 4. Same as Fig. 3, except for I = 7.4 x 10 W/cm .
This intensity corresponds to atabilization of v = 13 (see
Fig. 1), or minimum dissociation.

given by a Bessel function: 0' = uo Jo(20+/u) [2]. Peaks
beyond the 9th order in Fig. 3(a) are attributed to the
upper level and continuum excitations. Figure 3(c) is
the spectrum from a two-electronic-state (lag and lo'„)
moving nuclei calculation. The spectrum is seen to have
lower efBciency and shows richer structure. These are
explained next.

From Fig. 1 one can see why the HG spectrum in
Fig. 3(c), which includes nuclear motion, is weaker than
those in Figs. 3(a) and 3(b), which are purely electronic.
Since dissociation is at its maximum and occurs rapidly
at this intensity (reaching 99% by 70 fs), and since, fur-
thermore, HG only occurs between nondegenerate elec-
tronic levels [1] (the 2Z+ and 2Z+ levels become degen-

erate for R ) 5 A. , for which HG efficiency is zero), HG
only occurs for a short time, resulting in weak and broad
peaks in the spectrum. One predicts, therefore, that HG
should be more eKcient Rom v = 13 at a higher inten-
sity where a minimum in Pp occurs, i.e., the stabilization
regime. Figure 4 shows analogous results to Fig. 3, but
for I = 7.4 x 10~s W/cm, where the minimum in Pg
occurs. In this case, it is seen that the two-level 6xed nu-

clei calculation [Fig. 4(b)] agrees reasonably well with the
all-electronic fixed-nuclei calculation [Fig. 4(a)] up to the
11th harmonic. Higher-order peaks are more prominent
in the latter due to upper level excitations and greater
ionization: 26% of H2+ is ionized after a 60 cycle interac-
tion with the laser pulse (ionization rate of 1.5 x 10 s ).
However the remaining (74%) nonionized part is mostly
found in the Z+ (95%) and Z+ (4%) levels. The two-
level moving-nuclei calculation is presented by Fig. 4(c).
It is clear when compared to Fig. 3(c) that stabilization
has increased HG eKciency about four orders of magni-
tude. Furthermore, there are more peaks in the results
for moving nuclei [Fig. 4(c)] than in those for fixed nuclei
Fig. 4(a) and 4(b), as would be expected since in the for-
mer case HG results &om vibronic transitions, whereas in
the latter case HG results Rom purely electronic transi-
tions. Finally, we note that peaks around even harmonics
are more closely spaced at this higher intensity.

As discussed in Sec. II, the peaks in Figs. 3 and 4 can
be assigned to differences between eigenvalues (quasiener-
gies) eg of the Floquet Hamiltonian H~ [see Eqs. (17)—
(18)]. We now analyze the HG spectra using the dressed
state photon-molecule picture of quantum 6eld theory.
The two Hamiltonians (dressed and Floquet) can be
shown to be equivalent in the limit of large photon num-
ber [30]. In the Floquet analysis of Sec. II, harmonic gen-
eration is obtained &om the induced dipole moment given
by a matrix element between levels of Floquet states of
the same (odd harmonics) and of different (even harmon-
ics) parity [Eq. (12)]. In the dressed analysis harmonic
generation is obtained &om an induced dipole moment
given by a matrix element of an operator for coherent
spontaneous emission between adiabatic states correlat-
ing asymptotically (large R) to dressed states differing
in photon number n equal to the order of the harmonic
[see Fig. 5 and Eq. (24) below]. In Fig. 5(a) we show
the dressed adiabatic potentials &om even and odd Flo-
quet states at I = 7.4 x 10~s W/cm, whereas in Fig. 2
only Floquet states of one parity are shown. Also shown
in Fig. 5(a) are bound states calculated using the auto-
correlation method discussed in Sec. II. In Fig. 5(b) we
show an enlargement of of the spectrum in Fig. 4(c), i.e. ,
&om a two-electronic-state moving-nuclei calculation at
7.4 x 10~s W/cm, v = 13, but now for a longer (200
cycle) pulse to allow better resolution of the peaks. We
assign all peaks in the spectrum to transitions between
these dressed levels of different parity [indicated by solid
(even) and dashed (odd) lines in Fig. 5, for n even].

In particular, one observes from Fig. 5(a) that the
transitions in the first harmonic region (a, b, c) occur be-
tween bound states in the shallow well created by the
one-photon avoided crossings around R = 3 A between
potentials Vg+nRu and V„+(n—1)Ru [middle solid line in
Fig. 5(a)], and between Vg+ (n —1)fao and V„+(n —2)her
[upper dashed line in Fig. 5(a)]. The first adiabatic po-
tential correlates to V~ + nRu, whereas the second cor-
relates to Vg + (n —1)ku. Thus, transitions a, b, c are
determined by the coherent spontaneous electronic ma-
trix element

(P, n —1, 0I, !zfy!gg, n —1, lg) = pg (R)(0g!ZI,!11,),
(24)
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FIG. 5. (a) adiabatic field-electronic potentials correspond-
ing to even (solid lines) and odd (dashed lines) Floquet states,
for n even. One-photon avoided crossings occur at R = 3.5
A, three-photon avoided crossings at R = 2.5 A. Transitions
between corresponding bound states of adiabatic wells cor-
relate with peaks in spectrum of (b); (b) enlargement of HG
spectrum in Fig. 4(c) (I = 7.4 x 10 W/cm ), except for 200
cycle pulse including five cycle linear rise.

i.e., between the electronic g and u diabatic components
of the adiabatic electronic states around R = 3 A. tk
is the electric field operator giving rise to emission from
the field vaccum ]OI„.) to the final one-photon state ~1I,)
of wave vector k. We note that the laser photon number,
n —1, in the transition does not change, i.e., these photons
give rise to dressing and hence creation of adiabatic states
by continuous stimulated emissions and absorptions. It
is the emitted photon number which changes by unity.

We clarify now the difFerence between Floquet har-
monics as predicted by Eq. (12) and the dressed state
harmonics as illustrated in Fig. 5. Equation (12) is ob-
tained by evaluating the field-induced dipole moment
p'" (t), Eq. (11), as the average value of z over Floquet
states. Even harmonics are produced &om transitions
between Floquet states of difFerent parity. The equiv-
alent dressed state picture, involves spontaneous emis-
sion through the quantum matrix element [Eq. (24)] be-
tween diabatic states of the same laser photon number
n [Fig. 5, or n —1, Eq. (24)]. These diabatic states are
components of adiabatic states which correlate asymp-
totically to dressed states difFering in photon number n
corresponding to the order of the harmonic. As a result
the dressed state representation shows the dhrect even

harmonic photon transitions, i.e. , eI, —ek ——nba.
We note further that the spontaneous electronic tran-

sition moment alone, Eq. (24), is next to be multiplied by

the Franck-Condon factor (e„]e„&)of the laser-induced
adiabatic levels. Clearly, the overlap between these levels
is excellent, as seen from Fig. 5(a), since the levels are
trapped in similar wells, giving thus intense transitions in
the first harmonic region. The d, e lines observed around
the 2k' [even harmonic region, Fig. 5(b)] are illustrated
also in Fig. 5(a). These are caused by transitions be-
tween nuclear states with turning points on the repulsive
V„+ (n —1)bur part of the adiabatic potential correlat-
ing to Vs + nkvd (middle solid line potential) and nuclear

states on the inner shallow well around 2.3 A. correlating
to V„+(n —2) Ru (lowest dashed line potential). We note
that these lower bound nuclear states are trapped in the
upper adiabatic well formed by a three-photon avoided
crossing between V„+(n 4)~ a—nd V~j(n 1)Ru p—oten-

tials around R = 2.3 A. The transition moment leading
to emission in the even harmonic region in Fig. 5 would
be Eq. (24) again. We note however that now the Franck-

Condon factor is (e„+I~e„z), where e„+I is the adiabatic

nuclear level in the well in the R, 3.5 A. adiabatic po-

tential correlating to V~ + nLu. e„~ is the adiabatic
nuclear level in the R, = 2.3 A. adiabatic well correlating
to V„+ (n —2) Ru. Clearly the overlap between these nu-

clear states is very poor as their wells have considerably
different equilibrium positions (R, 3.5 vs R, = 2.3 A).
This explains the much weaker intensities of lines e,f,g, h

in the 2hur region in Fig. 5. Transitions f,g behave in

a similar fashion, i.e., they are now due to transitions
between the V„+ (n —l)ku part of the highest adia-
batic potential in Fig. 5 [correlating to V„+ (n + l)hey]
with a minimum due to a three-photon avoided crossing
between V„+ (n —1)Ru and Vs + (n —2) Aced, and the adi-
abatic well correlating to V~ + (n —l)M. In conclusion,
Fig. 5 illustrates that the structure in the first harmonic
region is due to transitions between quasistable (due to
nonadiabatic coupling with nuclear continuum states (9])
nuclear adiabatic levels trapped in the adiabatic wells

created by one-photon avoided crossings around It 3.5
A. The structure evident in the second harmonic region
is due to transitions between adiabatic levels from the
one-photon avoided crossings at R 3.5 A. and adia-
batic levels trapped in adiabatic wells arising from three-
photon avoided crossings at the shorter internuclear dis-
tance R = 2.3 A. The overlap between these last states is

small and hence unfavorable for second harmonic emis-
sion. This explains the weakness of the peaks in this
region. Nevertheless, it is clear that the multiple photon
avoided crossings illustrated in Figs. 2 and 5 can create
stable adiabatic nuclear states which will enhance even
harmonic generation [compare Figs. 3(c) and 4(c)].

Figure 6 shows the spectra from the same set of cal-
culations as Flg. 4 (U = 13 OI Rf —3 A) but at. In-

tensity I = 1.2 x 10 W/cm, i.e. , on the rising disso-
ciation curve for v =- 13, but at a minimum of Pd for
Ij = 5 (Fig. 1). It is seen that the spectrum of Fig. 6(b)
(the two-electronic-level fixed-nuclei calculation) differs
from that of Fig. 6(a) (the all-electronic fixed-nuclei i-.al-
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culation) quantitatively, even for low-order harmonics.
The strengths of high-order harmonics in Fig. 6(a) ap-
proach those of the lower-order harmonics, when com-
pared with the lower intensity cases (Figs. 3 and 4). At
intensity I = 1.2 x 10i4 W/cm, a large amount of ion-
ization occurs after a 60 cycle interaction with the laser
pulse (97% of H2+ is ionized, corresponding to a rate of
1.7 x 10is s i). It is recently understood that the ionized
electrons contribute to high-order harmonic generation
via reinteraction with the parent ion en route to ioniza-
tion [3]. We therefore conclude that for intensities beyond
10i4 W/cm, the two-level model is no longer valid. The
spectrum &om the two-electronic-level moving-nuclei cal-
culation is shown in Fig. 6(c). As in Fig. 5, the peaks
in the HG spectrum of Fig. 6(c) can be assigned to tran-
sitions between dressed energy levels. Notice that here
pure even harmonics are produced, as there are dressed
states which are separated by exactly twice the photon
energy.

Consider now what happens when H2+ is initially in
the v = 5 vibrational state. This vibrational level is at
the three-photon crossing point (Fig. 2), and thus disso-

ciates rapidly with very little trapping. This contrasts
with the cases above with v = 13, which is above the
one-photon crossing, and thus can become trapped in
the adiabatic potential which converges to V~+ nba, and
can also transit nonadiabatically to other adiabatic wells.
Photodissociation from v = 5 can be trapped to a small
extent, for I ) 10i4 W/cm, in an adiabatic well (cor-
relating to Vg + nba) created at small R by the three-
and five-photon crossings (R & 2 A. , Fig. 2). This results
in a minimum in P~ at I = 1.2 x 10 4 W/cm in Fig. 1,
and Pg ( 1.0 at higher intensities. The HG spectrum
at the same conditions as Fig. 6(c), but now for v = 5,
is shown in Fig. 7, i.e., at I = 1.2 x 10 W/cm, which
corresponds to the minimum in Pd. There are two dif-
ferences between the two 6gures. First, the intensities of
the odd harmonics are lowered by on average one order
of magnitude in Fig. 7, but the relative intensities of the
odd harmonics is about the same. This happens because
the v = 5 case has a higher-order coupling (third order)
between the electronic states than the v = 13 case (one-
photon coupling), but nevertheless a higher photodissoci-
ation rate (see Fig. 1). Second, the even harmonics have
almost completely disappeared in Fig. 7. This can be
understood from Eq. (12), or more particularly the over-
lap integral, Eq. (10). Since the pulse rise is short (five
cycles) we can assume that 'k(tp) (tp = 5 cycles) is very
similar to the initial v = 5 wave function at t = 0. One
can see from Fig. 2 that one of the pair of adiabatic po-
tentials at 1.2 x 10i4 W/cm [dashed lines; e.g. , extend-
ing assymptotically to V„+(n —1)fur] has a shallow well
between 3 and 4 A, which does not overlap with the ini-
tial v = 5 wave function [and therefore with @(tp)] which
has its right turning point at about 2 A. Therefore, from
Eq. (12) and Fig. 2, only transitions between vibrational
levels of the other adiabatic potential (with a minimum
between 1 and 3 A) are permitted, yielding only odd
harmonics, as seen in Fig. 7. The efFect of rapid dissocia-
tion or conversely trapping on harmonic generation is the
same here as for the case with v = 13. A harmonic gener-
ation spectrum, not shown here, at I = 9 x 10is W/cm
corresponding to a maximum in Pd (=0.99), yields a very
weak spectrum, as was the case in Fig. 3(c) for maximum
dissociation, Pd, for v = 13.
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FIG. 6. Same as Fig. 3, except for I = 1.2 x 10 W/em,
corresponding to another intensity where v = 13 is stabilized
(see Fig. 1).

FIG. 7. Same as Fig. 6(c), except for initial vibrational
state v = 5. This intensity corresponds to stabilization of
v = 5 (see Fig. 1).
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IV. RESULTS: ROTATING Hg+

We wish next to examine the effect of rotational ex-
citation on harmonic generation. The effect of rota-
tional excitation on stabilization and angular distribu-
tion in the photodissociation of H2+ has been addressed
by us recently [15,16], for other wavelengths (213 and
769 nm). Here we use the same approach in treating
rotations: we take as initial state the rotational level
J = N + 0.5 = 5.5, mg = 0.5 (this state is parallel
to the field and undergoes maximum radiative coupling)
and expand the total two-electronic-state wave function
[Eq. (22)] into rotational states:

Nmax

0 (r, R, 8, t) = ) q&, (R, t)P, (r, R)
N=O

(2J+ 1) ' '
x

47r
D', i/2(& ~ 0) (25)

V, (R, N) = h N(N + 1)/(2pR ). (26)

Up to 40 rotational states were required in the expansion
to obtain converged results for intensities 10 & I &
101 W/cm .

Consider 6rst the effect of rotational excitation on
stabilization of photodissociation by a 1064-nm laser
(Fig. 1). One can see that rotation either stabilizes or
destabilizes photodissociation, as has been seen and ex-
plained before [10,15,16]. The 2Z+ and Z+ potentials
are modified by the centrifugal energy, Eq. (26). This
modi6cation creates multiple N-dependent laser-induced
avoided crossings, which can lead to increased stabiliza-
tion compared with the rotationless case [10], but it
can also destabilize the rotationless laser-induced. bound
states, by destroying potential wells.

In Fig. 1, one notices the same relative effect of ro-
tations on three-photon and one-photon resonant pho-
todissociation as was seen recently by us in calculations
on H2+ with A = 769 nm [16]: three-photon resonant dis-
sociation is completely destabilized, whereas one-photon
resonant stabilization is enhanced or reduced by rota-
tional excitation. The three-photon case was explained
previously by us as resulting &om initial quick rotational
pumping as the system achieves resonance, thus creating
a superposition of many rotational states each with a dif-
ferent hfetime. What is different in the present A = 1064
nm excitation, is that the laser-induced potential well
in the vicinity of the Vs + nba —V„+ (n —1)ku one-

photon crossing (R = 3 A) persists beyond 10 W/cm
(dashed line, Fig. 2), unlike the case with A = 769 nm,
where the analogous well disapears by 5 x 10 W/cm;2.

this explains why the one-photon stabilization persists

where D 1/2 (P, 0, 0) is the rotation matrix [24],
Pg(r, R) =

~

Z+) for odd rotational quantum number
N, P~(r, R) = ~2E+) for even N, and yg, , (R, t) is
the nuclear function which propagates on the potential
V~(R) + V„(R,N) for odd N and on V„(R)+ V„(R,N) for
even N; V„(R,N) is the rotational centrifugal potential:

past 10 W/cm for A = 1064 nm (v, = 13, Fig. 1), and
not for A = 769 nm [16].

Before examining the effect of rotations on HG, we
will examine the distribution over rotational states at
the end of the 60 cycle laser pulse, for v = 13 and I =
2.59 x 101 W/cm [Fig. 8(a), no trapping in rotationless
results] and 7.4 x 10 W/cm [Fig. 8(b), some trapping
in rotationless results]. Also shown in bold in Fig. 8
is the rotational state distribution of the undissociated
part of the wave function, i.e. , the total wave function
[Eq. (25)] integrated between R = 0 and 5 A. The fi-

nal rotational populations are distributed over odd and
even values of N (recall that initially, N = 5), reflecting
the fact that dissociation occurs into the V„+ (n —l)ku
and Vg + (n —2)Ru channels. The first corresponds
to direct one-photon dissociation induced by the non-
diabatic coupling at the one-photon avoided crossing at
R = 3 A. The second corresponds to ATD, i.e. , v = 13
transits to V„+ (n —3)hu after a three-photon absorp-
tion; the nuclear wave packet thus created encounters
the one-photon avoided crossing between Vg + (n —2) Ku
and V„+ (n —3)ku, thus leading to final photodissoci-
ation fragments in high energy continuum states of the
ground state, i.e. , the Vg + (n —2)Ru potential. This
phenomenon was confirmed experimentally by Bucks-
baum et al. [31] and then numerically by Bandrauk et
al. [18] and He et til. [19]. Notice that in Fig. 8(b), for
the higher intensity stabilization region, the distribution
is more concentrated at smaller values of N. In fact,
Fig. 8(a) seems to exhibit a bimodal distribution with

0.14

0.12—
0.10

0.08
05

0.060
0.04

0.02

0.00

/
/

I

I=9.59x10 W/cm (Q )
v=13
N, =5

1

/
/

I

ES3 R(5A only

total

I'

' ']IIILIlclalcLHc a c R 9 3

0.14

0.12 1=7.4x10 W/cm ( b )

0.10

0.08

0.06

0.04

0.02

0.00

/

(

t

1
t

I

ting
t

I
:::II~:sII.ss@&IIIIII.II ~ . [I

0 5 10 152025303540
N

FIG. 8. Final distribution over rotational states, from
two-electronic-state calculation, starting from v = 13, N,. = 5,
and for intensities (a) 2.59 x 10 W/cm (maximum disso-
ciation) and (b) 7.4 x 10 W/cm (minimum dissociation).
Also shown in bold is final distribution for total wave func-
tion integrated between 0 and 5 A.
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maxima at N 4 and 12 for I = 2.59 x 10i W/cm .
The reason can be found in the accommodation of ro-
tational states in adiabatic wells. At the lower intensity
(2.59 x 10 W/cm ) there are no stable adiabatic wells
present, so dissociation into the one- and two-photon
channels occurs, after multiple stimulated absorption and
emission steps which leads to climbing of the rotational
ladder. At the higher intensity (7.4 x 10 s W/cm ) sta-
ble adiabatic wells exist (Figs. 2 and 5), which support
only a small number of rotational states. Using the cen-
trifugal potential, Eq. (26), evaluated at the equilibrium
position of the adiabatic well (R,) one can estimate the
number of rotational states N, which can be accommo-
dated by the ground vibrational state (Es ) of the adi-
abatic well [depth E~ = E(R = oo) —Eg ], i.e., solving
ED = V„(R „N,) for N, : N, = 13 for the well correlat-
ing to V~+ nhcu (R, = 3.2 A. , E~ = 17.99 eV, ED = 0.07
eV), and N, = 7 for the well correlating to V„+(n 1)~—
(R, = 2.3 A. , Eg = 16.91 eV, ED ——0.03 eV). Disso-
ciation can still occur into high rotational states, as in
Fig. 8(a), but the states which remain trapped must have
low N; this is shown in Fig. 8(b) (bold), where the undis-
sociated (R ( 5 A.) part of the wave function is confined
to N ( 10. Similar occupation of low N values was seen
in all other cases at high () 5 x 10i W/cm ) intensity.
The net result is trapping in rotational states N lower
than about 10 at high intensity. Thus one can see that
nuclear trapping not only reduces photodissociation, but
can also reduce rotational excitation when the field-&ee
potential wells only support a small number of rotational
states.

Consider now the HG spectrum for H2+ with rotation
in v = 13, J = 5.5, m~ = 0.5 at 2.59 x 10 W/cm,
Fig. 9(a), where maximuin dissociation occurs for the
rotationless case (Fig. 1). The first and second har-
monic peaks are enhanced while the higher-order peaks
are the same or reduced in intensity, compared to the
rotationless spectrum [Fig. 3(c)]. Higher intensity is ex-
pected for the rotational results at this lower Geld in-
tensity, because of the lower dissociation rate when ro-
tation is present (Fig. 1). However, rotational excita-
tion can also compete with HG, decreasing the intensity
of the HG spectrum. To expand on this latter point,
the maximum energy acquired by an electron on mov-
ing kom proton A to B in H2+ has been recently shown
to be twice the Rabi frequency [Eq. (2)] 25OR = eRE,
where E is the field strength [1], i.e., this is the po-
tential energy difference between the two nuclei in a
laser field E. Taking rotation into account, in the limit
of large J, this maximum energy becomes reduced to
2'~[(1+I+m,)(1+I—m, )]"/2(1+ I) - an„.
For H2+ fixed at the turning point of v = 13 (R = 3.2
A), and using the rigid rotor expression for the rota-
tional energy [Eq. (26) at R = R = 1.06 A.], we plot the
maximal value of the rotational quantum number (N )
pumped by the expected maximum Rabi energy hOR, as
a function of intensity in Fig. 10, along with the num-
ber of rotational states (N, t) populated (to 90% of the
total probability) by the end of the pulse in the calcu-
lations corresponding to the dashed curve for v = 13 in
Fig. 1. At 2.59 x 10is W/cm, where maximum dissoci-
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FIG. 9. HG spectrum for same conditions as (a) Fig. 3(c)
(2.59 x 10 W/cm, maximum dissociation), (b) Fig. 4(c)
(7.4 x 10 W/cm, minimum dissociation), (c) Fig. 6(c)
(1.2 x 10 W/cm, another dissociation minimum); except
now with full rotational treatment, starting from v = 13,
J = 5.5, and for mg ——0.5.

ation occurs, N, t ——20 and N ~ = 25. Therefore, most
of the available energy is taken up by rotational excita-
tion. This result was predicted earlier by Bandrauk and
Claveau using a diffusion model [32]. For higher intensity
N, t has a cutoff around N 10, because of the effect of
stabilization by trapping in laser-induced wells. There-
fore the excess energy can be taken up by the electrons to
generate HG. Thus one expects that when stabilization
reduces the extent of rotational excitation, the competi-
tion of the latter with HG will be minimized.

The HG spectrum for H2+ in v = 13, J = 5.5, mJ ——

0.5 at 7.4 x 10is W/cm, where now minimum dissoci-
ation occurs without rotation, is shown in Fig. 9(b) in-
cluding rotation. The intensity of the odd harmonies is
reduced by less than an order of magnitude, compared to
the rotationless case [Fig. 4(c)], because of the increase
in the photodissociation probability induced by rotations
(see Fig. 1). The even harmonics, which we have shown
above to occur when there exist adiabatic field-induced
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FIG. 10. Maximum rotational quantum number, N „,de-
termined from Rabi energy AQR (solid line) at R = 3.2 A, and
number of rotational states excited to 90/0 of total probabil-

ity, N, t, (symbols), obtained from rotational calculation at
v = 13 and initial N, = 5 (see Fig. 1 for parameters).

bound states separated by twice the photon energy, are
reduced by more than an order of magnitude. Recall our
discussion above of the number of rotational states ac-
commodated by the adiabatic potentials: one of the pair
[correlating to V„+ (n —1)hu] can only contain rota-
tional states up to N = 7, whereas the other (correlating
to Vg + nkvd) can contain up to N = 13. Recall also
that our initial condition is X = 5. Therefore, very lit-
tle trapping will occur in the adiabatic well correlating
to V„+ (n —1)hu compared to the amount trapped in
the other well, and the condition of two populated wells

differing by twice the photon energy will not be fulfilled.
Similar results are seen in Fig. 9(c), at 1.2 x 10i4 W/cm,
when compared with the rotationless case, Fig. 6(c). The
detailed structure around each harmonic order is similar
to the rotationless case, but now broadened because of
the presence of rotational branches in the spontaneous
emission. We were not able to resolve these branches,
because of the prohibitive computational resources re-
quired. In general with rotation, lower efIiencies in pho-
ton emission are observed, due to the destabilizing efI'ect

introduced by the laser pumping of angular momentum.

V. CONCLUSION

We have shown in this paper that it is essential to in-

clude nuclear degrees of freedom in analysis of harmonic
generation by the H2+ molecule. Such degrees of keedom
give rise to structure in the harmonic generation (HG)
spectra at even and odd harmonic orders, which can be
assigned to photon emission between dressed states of
the field-molecule system. Previous work on HG of H2+
with fixed nuclei showed that even-order HG is possible
at strong fields which break the symmetry of the molecule

by appropriate linear combination of the two charge reso-
nance states, 2Z+ and 2Z+ [1—4]. This prediction is con-
firmed here when nuclear motion is taken into account,
and enhanced by the presence of new laser-induced adia-
batic bound states. The assignment of low-order harmon-

ics (less than 10th order) to these two charge resonance
states, in the case where the nuclei are stretched to 3 A,
is confirmed here for intensities less than 10i W/cm .

At intensities higher than 10 W/cm, higher electronic
excitation and ionization dominate.

In order for a purely electronic analysis to be valid,
the nuclei must remain fixed during the duration of the
pulse. This can be accomplished in the case of a light
molecule such as H2+ by trapping the nuclei in field-
induced potential wells. Such trapping can be achieved
at intensities lower than 10i4 W/cm (at higher intensi-
ties a two-electronic-state description is no longer valid),
by the one- and three-photon avoided crossings for v = 13
(Figs. 2 and 5). The HG spectra of stabilized H2+ have a
close resemblance to the fixed nuclei spectra: the relative
intensities of even and odd harmonics is the same. But it
is what is difI'erent that is interesting: rich structure that
is direct evidence for the presence of laser-induced bound
states. Rotational motion can spoil spectra by destabi-
lizing nuclear trapping, and thus increasing photodisso-
ciation at the expense of HG. In particular, we have seen
here that rotational excitation reduces even harmonics,
because of preferential population of one laser-induced.
potential and less of the other between which emission
occurs. It is the presence of bound states of these wells
separated by twice the photon frequency that gives rise
to even harmonics. Rotational motion also broadens the
structure of the HG peaks.

Fixed nuclei calculations, e.g. , Figs. 6(a) and 6(b),
show even harmonics which are split, 2~ + 0, where 0
is a high-order Rabi frequency shift. Introducing nuclear
motion, one has now the possibility of creating adiabatic
states as a result of laser-induced crossings. These new
states now allow the possibility of photon emission at
exactly the even harmonic &equency 2~. Such even har-
monics should be detectable since, in general, they will

enhance their intensity by coherent cooperative effects.
We must emphasize that all our calculations are single-
molecule calculations, therefore, we have neglected phase
matching which will enhance even and odd harmonics but
not the Raman-like side bands [33]. Clearly, the presence
of significant even harmonics in molecular HG would be
a signature of molecular stabilization by laser-induced
avoided crossings.

Diatomic molecular ions are a good potential source for
high harmonic generation (up to 100th order) [1]. The
high energy portion is attributable to reinteraction of the
ionizing electron with the remaining core [3]. The low

energy portion, which has higher efIiciency, results from
the strongly coupled change-resonance states (1crg-lo„),
which for H2+ nuclei stretched to 3 A, are well isolated.
To observe the lower harmonics the nuclei must be &ozen,
either inertially, in the case of heavy nuclei, or by nuclear
stabilization, as we have presented here. Harmonic gen-
eration from stabilized nuclei exhibit structure, which,
if observed experimentally, would provide the first di-

rect evidence of nuclear stabilization due to laser-induced
bound states; in eR'ect one would be doing intense-field
molecular spectroscopy, where what is being observed. is
the bound states of potentials modified by the field, as
first predicted by Bandrauk and Tiircotte [10], and not
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the field-&ee potentials. Finally, we have examined only
one type of pulse, a linear rise to constant field. It should
be possible to control the harmonic generation by stabi-
lized molecular ions, by varying the shape of the pulse
rise, as has been shown recently in the context of two-
level systems [2,3].
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