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We present a phase-amplitude (PA) procedure, which emphasizes the evolution of the He
function from the origin of the hyper-radius R =

*x

wave

A/7? + rZ. This method, combined with quantum-

defect theory, produces an R-dependent phase shift w7(R) of the ionized channel, whose variation
with R illustrates explicitly its coupling with the closed resonant channels. Previous calculations
(e.g., of the R-matrix type) whose dynamical information remains hidden within a core region are
thus complemented and extended by displaying the R dependence of phase shifts for several low
doubly excited resonances of He(*S¢). The large R limit yields the familiar scattering phase shift,
in fair agreement with experimental data. The results illustrate the dominant role of short-range

channel coupling in the formation of resonances.

PACS number(s): 32.80.Dz, 31.20.Di

I. INTRODUCTION

Two-electron atoms and ions (e.g., H™, He, Li™) have
played a central role in the study of nonseparable prob-
lems in atomic and molecular dynamics. The Coulomb
interaction between electrons—comparable in He to the
nuclear field—invalidates the independent-electron quan-
tum numbers even for the lowest doubly excited states,
by generating strong correlations in the electron pair’s
motion. Correlations dominate this motion near the
“Wannier ridge,” where the electrons sit on opposite sides
of the nucleus and at similar distances from it [1]. The
pair proves metastable in this configuration, despite be-
ing on a saddle point of the Coulomb potential; however,
at energies between the single- and double-ionization
thresholds, one electron will ultimately give the other
enough energy to kick it out of the atom. This ionization
configuration tends toward a minimum of the Coulomb
potential energy, and is thus termed a “valley” configu-
ration. Detailed study of transitions between ridge and
valley states yields insights into transfers of energy and
momentum in all atomic and molecular rearrangement
processes.

Many authors have approached the problem of dou-
bly excited states from various points of view. Some,
in exploring ridge states, work in configuration space
near the ridge [1-4]. Others start from a basis of wave
functions with both electrons starting at equal princi-
pal quantum number [5,6]. Complex-coordinate rota-
tion methods [7], variational calculations [8,9], and the
finite-element method [10] produce accurate results with-
out displaying the mechanisms of excitation and decay
explicitly. Less accurate, but very instructive, studies
have utilized an adiabatic approximation in hyperspher-
ical [11-13] or moleculelike [14] coordinates. These stud-
ies, along with group-theoretical analysis [15], have pro-
vided a semiquantitative classification of doubly excited
states [12]. Adiabatic solutions have been coupled di-
abatically to yield Rydberg series converging to double
ionization [16,17], and more general information on res-
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onant states [18]. A recent “diabatic by sector” method
has achieved further computational improvement along
these lines [19]. As yet, none of these studies has shown
details of the mechanisms underlying the formation and
decay of ridge states. The present paper represents the
first step in a comprehensive plan designed to exhibit all
states of two-electron systems as arising from a common
mechanism.

Double escape of the electron pair just above thresh-
old was discussed first classically by Wannier [1], later
semiclassically by Rau [2] and Peterkop [3]. These au-
thors identified pairs of classical trajectories (or WKB
wave fronts) converging toward and diverging from the
ridge, and evaluated the probability for the pair to stay
on the ridge as it escapes to infinity. The resulting thresh-
old law for the double-ionization cross section was sub-
sequently verified by Cvejanovié and Read [20] for an
electron pair escaping from a residual He™ ion. At ener-
gies below threshold, the pair can propagate only a finite
distance up the ridge before being pulled back by the nu-
clear attraction. In this case, the pair’s motion becomes
a Rydberg-like series of quasistable resonances converg-
ing to the double escape threshold [4,21], each of them
eventually ejecting one electron and leaving the other in
a state of principal quantum number N.

Three key aspects of this phenomenon, common to all
nonseparable problems, are noted here: (1) temporary
localization on ridges, i.e., at maxima or saddle points of
the potential; (2) alternative localization in valley con-
figurations of low potential; (3) a connection that allows
transitions from one localization to the other. (Many in-
termediate configurations exist in doubly excited atoms
and ions. In this discussion we focus on valley and ridge
states for clarity.)

Fano and Sidky [22] have recently forged a unified
wave-mechanical picture of these aspects for a simpler
nonseparable situation, namely, that of a Rydberg atom
in a magnetic field. In this case the valley lies along
the magnetic field, the ridge across it. The wave func-
tion is expanded into spherical harmonics Y;, (6, ¢) and
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their corresponding radial Coulomb functions fi(r), all
but finitely many of which are excluded at fixed » by
centrifugal forces. Diagonalization of the interaction in a
finite basis results in alternative localizations in the val-
ley and on the ridge. However, states well localized in
angle at large r are not so localized at small r, owing to
the smaller number of contributing harmonics. Various
localizations thus have a common origin in a relatively
isotropic core region at small r. This dynamics has been
illustrated by the evolution of eigenfunctions of the in-
teraction, starting from r = 0 and progressing toward
T — 00.

This paper will take a similar view toward doubly ex-
cited states of helium, using as radial variable the hyper-
radius R = /72 + r2. In a familar set of hyperspherical
coordinates [23], the remaining five coordinates are all
angles, namely, the directions £y, f2 of the two electrons,
and a radial correlation angle « given by tana = rp /71,
to be denoted collectively as w. The finite range of these
angular variables allows for a discrete harmonic analysis,
just as in the diamagnetic problem. Spherical harmonics
are replaced here by hyperspherical harmonics, with cor-
responding radial functions subject to generalized cen-
trifugal barriers in R. The different harmonics will be
mixed by the Coulomb interaction, just as the Yi,,’s of
Ref. [22] were mixed by the diamagnetic potential. (As
an aside, note that more general problems in atomic and
molecular collision dynamics fit into the same formalism
via generalized hyperspherical coordinates and harmon-
ics [24,22].)

Calculations of He wave functions analogous to those
of Ref. [22] have been carried out [25]. However, whereas
a basis of Coulomb functions was appropriate to the per-
turbative region of Ref. [22], the analogous basis in He
has so far produced intractable results. The present pa-
per will instead take as a starting point the results of
the adiabatic approximation, which treats R as an adia-
batic parameter and solves the remaining problem in w
for each fixed R. This solution leads to potential curves
in R which converge at large R to the thresholds for sin-
gle ionization. The channels thus defined already display
R-dependent correlations in their angular functions. The
channel classification afforded by the adiabatic functions
[12] will simplify our further analysis a great deal.

The main shortcoming of the adiabatic approximation
lies in its deliberate neglect in zeroth order of hyper-
radial and hyperangular correlations generated by d/dR
terms of the Hamiltonian. In particular, it neglects
the channel couplings responsible for autoionizing transi-
tions. These couplings will now be included to all orders
by a phase-amplitude (PA) method similar to that of
Ref. [22], thus admixing the adiabatic channels progres-
sively as R increases. The correct large-R behavior of
the coupled channel functions will be enforced through
an analysis akin to multichannel quantum-defect theory
(MQDT) [26], yielding R-dependent phase shifts in all
the open channels, and thereby a picture of the evolv-
ing states. These phase shifts converge at moderate R
to their asymptotic values, whose energy dependence re-
flects the positions and widths of the autoionizing reso-
nances.

This paper deals only with low doubly excited states
of He in order to illustrate method and results. This
is the “discrete” side of the problem, where the single-
ionization thresholds N are well separated in energy. The
ideas developed here, however, should allow future work
to ascend to the double-ionization threshold, and beyond
it, making contact with the “continuum” Wannier theory.

II. THEORETICAL FRAMEWORK
A. Adiabatic approximation

We begin by reproducing the basic formulation of
the hyperspherical adiabatic treatment of two-electron
systems. In the hyperspherical coordinates introduced
above, the Schrodinger equation in atomic units reads
[11]

- 2E> $(R,w) =0. (1)

L2 A+ R Cw)
OR? R? R

Here, A is the “grand angular momentum” operator,
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and C(w) is an effective charge, depending on the angular
coordinates through
VA Z 1
C(a, 012) = + -

sina cosa

, (3)
(1 — sin2acos 012)1/2

where cosf;2 = ry -z and Z is the nuclear charge (=2
in He). In (1) we have renormalized the wave function
¥ = R™%/24), so that 1 vanishes at R = 0.

As mentioned in the Introduction, we want to exploit
the finite range of the angular variables to make a discrete
harmonic analysis. An appropriate set of hyperspherical
harmonics are the eigenfunctions of A2,

Aup 1yn, = XA+ Duyign,, A =1+ 13+ 2n,. (4)

These harmonics, described in detail in Ref. [27], need
not be reproduced here. The quantum numbers [; and
I, represent angular momenta of the two electrons, and
n, (the radial correlation quantum number) counts the
nodes in a. At small R, the centrifugal term of (1) domi-
nates the Coulomb term, and the problem separates into
products of R-dependent functions and of these u’s. As
R grows, off-diagonal Coulomb terms mix the harmonics
into the two-electron wave functions.

An initial procedure for mixing these harmonics mim-
ics the Born-Oppenheimer approximation of molecular
physics. Here, R is viewed as a slowly varying coordi-
nate relative to the angles w. Then the 8/9R term of (1)
is insignificant and the angular problem reduces to the
eigenvalue equation [11]
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(42 + 5 - 2ROW) ) Bu(Biw) = RV(R)3(Ri).

(5)

This equation organizes the problem into various adia-
batic channels, labeled here by u, each of whose angular
functions ®,(R;w) exhibits a characteristic correlation
pattern in w. These channels form the basis of Lin’s
classification scheme for two-electron states [12], results
of which we will reproduce as necessary in the follow-
ing. Upon expanding C and ®, into the harmonics (4),
Eq. (5) becomes a discrete eigenvalue problem at each
R, whose dimension is finite because centrifugal barriers
suppress high \’s.

Radial motion, secondary in this approximation, is
governed by the potential wells V,(R). Macek found
lower states of these wells to give a good first approxi-
mation to the energies of doubly excited resonances [11].
At sufficiently large R, each channel function ®,(R;w)
falls into a potential valley, characterized by maximum
amplitude near a ~ 0 and o ~ 7/2. Accordingly, the
potential V,,(R) associated with this channel approaches
the ionic energy —Z2/2N? appropriate to the escape of
a single electron to infinity with zero kinetic energy. The
bound states of these wells are truly bound, since their
only energetically allowed escape route lies in channels
converging to a lower N. By ignoring channel couplings,
the adiabatic approximation fails to describe autoioniza-
tion.

B. Channel mixing

To include this coupling, the adiabatic solutions them-
selves must be mixed as R increases. The wave function
thus takes the form

= Z P, (R w)Fury, (R), (6)

'

o (R, w)

whose subscript po emphasizes that the adiabatic solu-
tions are unmixed at small R, i.e., F,,,, (R)  0,,,, for suf-
ficiently small R. Substituting (6) into the Schrédinger
equation (1) and projecting onto a particular ®, pro-
duces a set of coupled equations [11]

3 (1— n p) Fytuo(R) = [2E — V()] Fuo (R),
(7)

where channel coupling originates in the operator P, de-
fined as

0d,,
Py = <‘I># 3—£> = =Py, (8)

and the brackets denote integration over w. The signifi-
cance of P is as follows: in an adiabatic bound state p,
the electron pair’s radial momentum can take it only to
the outer turning point of its potential V,,. Off-diagonal
connections boost the radial momentum of the pair to

another channel u' of greater kinetic energy, via the mo-
mentum operator d/dR.

The mixing of adiabatic functions also mixes their ra-
dial functions. In particular, since the differential re-
lations between F’s are second order in R, F,,, must
combine two linearly independent solutions f, and g,:

Fupo = fu(R)aupu, (R) + gu(R)bpuuo (R). (9)

To simplify the boundary conditions at R = 0, we choose
all f,’s to be regular there. The appropriate boundary
condition is then a,u, (0) & 8uu0,0uu,(0) = 0. The radial
adiabatic functions are conveniently represented through
their Milne phases ¢,(R) [28]:

1/2
= 0 (R)sin g (R), a,‘(R)=(ﬂ—§@) . o)

dR

These f,’s are energy-normalized solutions to the un-
coupled radial equations in the potentials V,,(R). The
phase-amplitude form (10) defines the irregular solution
as g, = a,cos¢,, a form that exhibits the mixing in
(9) as a set of R-dependent phase shifts. This emphasis
on channel mixing represented by a variable phase is the
essence of the PA method of Zemach and Calogero [29].

Instead of integrating the coupled equations for a’s and
b’s directly, we will integrate equations for a short-range
reaction matrix, defined as in Ref. [22]:

mt R) Zbu#" - ,,/,,t . (11)

A similar K is familar from scattering theory, where it
is calculated at a certain appropriate radius to represent
particle interactions, or more generally channel interac-
tions, within that radius. K then serves to mix the non-
interacting independent-channel wave functions beyond
this radius. The novelty of this method is to calculate
such a K at each radius, thus charting the evolution of
wave functions as R grows. This information is best ex-
pressed by diagonalizing K,

Kuw = Z(ﬂlp) tan ‘Sp(Plﬂ’)a (12)

4

with eigenvectors |p(R)) characterized by a common
eigenphase shift é,(R).

Reference [22] applies the PA method to an R-
dependent potential in the diamagnetic problem. The
present situation differs in that the angular basis func-
tions ®, depend parametrically on R, whereby the cou-
pling operator P in Eq. (8) depends on R through the
derivative d/dR. Application of the PA procedure as in
Ref. [22] leads then to an asymmetric K matrix.

Babamov [30] has indicated how to avoid this difficulty
by defining the “adiabatic momentum operator” 9:

d
Oup = J"M'E + Py (13)

In terms of 8 and the adiabatic functions f, and g, Eq.
(7) becomes
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’f d’g
— S By, = [( dR;) .+ (—d—R;) bm] ,
'

(14)

through the definition of f, and g, as solutions to the
uncoupled equations. Splitting F' into a and b in Eq. (9)
has doubled the number of unknown functions to be de-
termined, allowing us to impose any convenient relation
between them. Following Babamov, we use this freedom
to “factor” one 0 from Eq. (14), requiring 8 to act only
on the adiabatic portion of the solution:

> Ouie = o
ot Fut o dR Qpupo +
Comparison of Eq. (15) with the explicit form of

Z Ouu' Fury, identifies the relation between a and b:

dauuo dbuy,

* dR
:_Z(P/m
Ml

A second application of 9 to (15) gives a completely anal-
ogous relation, with f and g replaced by their deriva-
tives. Combining these two relations and the normaliza-
tion condition f,dg,/dR — g,df,/dR = m/2, we extract
the system of equations for a and b:

da aa) ab
dl;go - Z ( pp o T Lftu’)b“'“‘)) ’

dgu gy

dR HHo " (15)

Ju

'fu’a;t'uo + Puu’gu’bu’no) . (16)

(17a)
by (ba (bb)
Sin = 2 (e + Ltb),
m
where
L(aa)__EP ;W( fur)
put T T g usTu') 5
ab U
LEL“) = ‘PMM’W(!]uagu’) ’
(17b)
ba
L( ) - uu’W(fwfu) ’
bb) 71'
LG = S Pus W (Fus gu),
and W(f,g) = fdg/dR — gdf /dR is the Wronskian of f

and g. The interaction matrix appears thus “dressed” by
the basis functions, as in Eq. (14) of Ref. [22], with the
concept of dressing extended to include dressing by the
derivatives of the basis functions.

The equation for the K matrix follows now just as in
Eq. (18) of Ref. [22], by differentiating (11) and substi-
tuting the derivatives (17):

dK (e (bb) (aa)
e f Z (L“u,,Ku,,“, ~ Ky L))

- Z K LED 0 K . (18)

pltptt

The initial condition for K follows from that for b,
namely, K'(0) = 0. This condition, along with the sym-
metries of the L matrices,

- I (ab) L(aa) L(bb) (19)

up? ppo

L) — () plat)

jan nwp Tupp

ensure the symmetry of K(R) for all R.

C. Elimination of closed channels

The K matrix begins the job of mixing the adiabatic
functions but cannot complete it without reference to
boundary conditions at R — oo. Specifically, contri-
butions to the wave function from energetically closed
channels must vanish at infinity, requiring a particular
superposition of the ¥, ’s of Eq. (6). To achieve this
superposition, we express the wave function in terms of
the R-dependent coefficients A, (R) of eigenchannel func-
tions ¥, (R, w),

v = Z Ay (R)Yy, (20)

bp =Y (plr)ausin (¢u + 6p) Dy (21)

"

We now treat each R separately as a matching radius
for the MQDT procedure [26,31]. (A similar application
of MQDT to mixing adiabatic functions was performed
recently by Sadeghpour [32], with a fired matching ra-
dius.) For a given radius, (p|u(R)) and 6,(R) repre-
sent the channel coupling at smaller radii. Thereafter,
MQDT considers the channels as independent, evolv-
ing only through their Milne phases ¢,(R). Within
this framework, the condition for a closed channel u to
vanish at infinity involves the asymptotic Milne phase
¢u = limp_,o ¢, (R) through the condition

ZA

This elimination of closed channels rearranges the open
ones into new eigenchannels p, each with a common
eigenphase shift 77,. These 7’s are defined for open p
by

R)|wsin(d, + 5,(R) =0.  (22)

Z Ap (plu) cos by = Tpup cos(n7y)
P

: . (23)
Z Ap(plu) sind, = T, sin(mr,).
I3

The quantities A, and 7 then follow from a generalized
eigenvalue problem [31]

I'A = tan (n7) AA, (24a)
where
_ [ (plp)sind, if 4 open
Dup = { (p|p) sin(@y + 6p) if p closed , (24b)
(p|p) cos &, if p open
Aup = { 0 if u closed. (24c)
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We normalize the eigenvectors Ty, to 3, T, = 1,
with the sum over open channels only, to preserve the
energy normalization in the limit of large R.

The procedure outlined above amounts, at each R, to
a full integration of the wave function up to R, then an
adiabatic integration beyond R. Accordingly, the eigen-
quantum defects 7,(R) vary most rapidly with R in re-
gions of strongest channel coupling. By the same token,
as R grows beyond the range of channel coupling, each 7,
settles into its asymptotic value 7, = limg_, o 7,(R). For
open channels p, ¢, at large R represents the adiabatic
phase of the escaping electron, and 77, is the phase shift
contributed by interactions at short range. The asymp-
totic eigenquantum defect 7, is a sensitive function of the
total energy FE, rising by unity when F passes through a
resonance.

Mixing of the hyperspherical harmonics uy,;,,, thus
proceeds in three steps, each with its own notation: (1)
The u’s are combined into adiabatic functions ®,; (2)
diabatic corrections produce an evolving reaction matrix
K,,', whose eigenvalues are indexed by p; (3) finally,
MQDT mixes the different p’s into the eigenchannels p,
characterized by eigenquantum defects 7,.

ITI. RESULTS

We proceed now to illustrate the behavior of eigenchan-
nel functions through their R-dependent parameters 7,
and T,,. In this pilot study we restrict our attention to
the 1.5¢ symmetry of He, and to resonances loosely classi-
fied by their independent-electron quantum numbers as
2sms, in the energy range 57 eV < E < 65 eV above
the ground state. More precisely, the resonances consid-
ered correspond in the Herrick-Lin classification scheme
[12] to levels indexed by ,(K,T)4 = (+1,0)F. In this
scheme, K > 0 (K < 0) denotes localization near ;5 = 7
(612 = 0), while A = + (—) indicates positive (negative)
reflection symmetry of the functions ®, across a = 7 /4.
N indexes the ionization limit of the channel, and n a
level within that channel. Wave functions in this chan-
nel have predominantly an s? character, but allow an
admixture of p? as well. The other adiabatic channel
converging to the N = 2 threshold, namely, »(—1,0)],
will be ignored in this work.

A. The adiabatic channels

Figure 1 shows, for purposes of orientation, the
three lowest adiabatic potential curves as calculated
from Eq. (5). The channels, labeled in ascend-
ing order as p = 1,2,3, correspond to (K,T)4 =
(0,0)F,(+1,0)F,(—1,0)7, respectively. The dotted line
in Fig. 1 represents E = 57.8 eV, roughly the energy of
the 2(+1, 0);‘ resonance. As the figure shows, the u =1
channel is energetically open at this energy, while the
p# = 2 channel is energetically closed. The u = 3 chan-
nel is “strongly closed,” i.e., the channel’s kinetic energy
E — V,=3(R) never becomes positive. For the remainder
of this work, we will ignore this and all other strongly

Vu(R) (a.u.)

0 4 8 12
R (a.u.)

FIG. 1. The three lowest adiabatic potential curves V,(R).
The dashed line indicates the energy of the double-ionization
threshold, while the dotted line denotes 57.8 eV above the
ground state, the approximate peak energy of the 2(+1,0)F
resonance.

closed channels.

The relevant structure of the adiabatic functions
fu(R)®,.(R;w) is displayed in Fig. 2 at an energy E =
57.8 eV. As we are interested primarily in radial corre-
lations, we plot these functions in the 7;-r2 plane, fixing
612 = 7. The p = 1 channel, shown in Fig. 2(a), strad-
dles the ridge at small R, owing to the dominance of
centrifugal forces there. Beyond about R ~ 2 a.u. the
ridge lies at such a high potential that the system instead
seeks out the valleys. In this case one electron remains
near the nucleus while the other escapes with a radial
coordinate ~ R. The nodal pattern beyond R ~ 3 a.u.
represents the escape of one or the other electron to in-
finity. (As an aside, we note that the valley localization
described here requires an increasingly large number of

r, (a.u.)

r; (a.u.)

FIG. 2. Contour plots of adiabatic channel functions in the
r1-r2 plane: (a) p = 1, showing the escape of this channel
into potential valleys at large R; (b) 4 = 2, showing ridge
localization near R ~ 3-4 a.u. The behavior of this function
at larger R, where it also falls into the potential valleys, is
not shown here.
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hyperspherical harmonics with increasing values of n,.
The adiabatic approximation accounts instead for the lo-
calization through a single channel.)

The p = 2 adiabatic channel shown in Fig. 2(b) dis-
plays a different correlation pattern in the same radial
range. This channel, constrained at each R to be orthog-
onal to p = 1, remains on the ridge up to a larger R. It
begins to localize in the valley at R ~ 8 a.u., behavior
excluded from the figure. The channel function’s main
feature consists of a single radial antinode between the
classical turning points, 2 a.u. < R < 6 a.u. Beyond
this radius f, diverges unless the total energy belongs
to a discrete set of eigenvalues. This is the basis of the
zeroth-order adiabatic approximation to the doubly ex-
cited states [11]. Coupling to g = 1 allows instead the
total wave function to be finite at large R for any value of
E. In addition to the large ridge localization, this chan-
nel exhibits a small amplitude in the valley near R ~ 3—4
a.u.

Putting these two pictures together, we see that the
channels interact mainly in two regions of configuration
space: (1) R ~ 2—3 a.u., where the channels meet on the
ridge; and (2) R >3-4 a.u.,, a ~ 0 (or a ~ 7/2), where
the closed channel interferes with the escaping open chan-
nel. We expect the importance of the second region to
be secondary in determining the resonance, because the
1 = 2 channel has much lower amplitude there than on
the ridge.

B. The z(+1,0);‘ resonance

The first step in studying the 2(+1,0)7 resonance is to
identify it. Only one eigenquantum defect 7, correspond-
ing to the single open channel, exists near the resonance
energy. The variation of 7 with R is shown in Fig. 3(a)
for several, equally spaced, energies. As anticipated, T
varies within an “interaction region,” 3 au. < R < 8
a.u., then settles into its asymptotic value 7. The sud-
den change in the profile of 7 as the energy varies signals
the resonance near these energies. Figure 3(b) shows the
energy derivative of the long-range eigenquantum defect,
d7 /dE, which represents the “time delay” in the scatter-
ing of electrons by ground state He ions [33]. That is,
d7 /dFE represents the amount of time an incident wave
packet is delayed at short range by its interaction with
the closed channel. The peak position and full width
at half maximum FWHM of the resonance, determined
from d7/dE, are Eg = 57.8 eV and I = 0.10 eV, in good
agreement with typical measured values of Ey = 57.8 eV
and I’ = 0.14 eV [34].

The negative value of 7(R) below resonance can be un-
derstood as follows: The 2(+1, 0);" resonance arises from
the coupling of the open g = 1 channel to the lowest
bound state of the potential V,(R). However, due to the
repulsion of levels between p = 1 and p = 2, the actual
resonance energy is greater than the bound state energy.
The p = 2 component of the resonant wave function
is thus represented by an adiabatic function fo®, con-
taining a radial node, although the resonance itself has
no such node. Accordingly, the eigenphase shift 77 (R)
evolves toward a value near —m, removing the artificial
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FIG. 3. (a) Eigenquantum defect 7(R) near the »(+1,0)7
resonance, showing the general profile of 7 and its sudden rise
at resonance. The energies shown are Eq — 2I', Eo — I, Ey,
Eo+T, Eq+2T; (b) energy derivative d7 /dE of the asymptotic
eigenquantum defect ¥, which determines the peak position
and width of the resonance as £ =57.8 eV and I' =0.10 eV.

node. As the energy rises through the resonance, the
resonant wave function acquires a real radial node, as
evidenced by the rise of 7. Above resonance, f,®; repre-
sents the state adequately; thus 7(R) remains near zero.

The profile of 7(R) serves as a record of the channel
interactions. In accordance with the remarks of Sec. IT A,
we consider two regions of interaction: (1) R < 4 a.u. on
the ridge, (2) R > 4 a.u. in the valley.

(1) First, for R < 2 a.u., p = 2 remains suppressed by
its generalized centrifugal barrier, so that the channel in-
teraction is minimal, and 7 = 0. Next, 7 falls steeply with
increasing R, indicating strong channel interactions. Fig-
ure 4 illustrates the effect of these interactions by showing
the eigenchannel function ¥ on the ridge as a function of
R alone. The dashed and dotted lines indicate the indi-
vidual amplitudes in the p = 1 and g = 2 channels, re-
spectively. At R ~ 2 a.u. the amplitude shifts smoothly,

0.5

0.0 / Ve -

¥ (arb. units)
S
wu
sl
\\

8 12
R (a.u.)

FIG. 4. Solid curve: the 2(+1, O)'Z" resonant wave function
as a function of R for a = 7/4, 8,2 = w. Dashed curve: Con-
tribution by the p = 1 channel. Dotted curve: Contribution
by the p = 2 channel.
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and in phase, from one channel to the other. The com-
bined result, shown as a solid line, represents a standing
wave extending from R = 0 to the outer turning point.

This connection of channels at short range is the mech-
anism whereby 1 = 2 gains or sheds the amplitude nec-
essary to remain convergent at large R. The resonance
occurs when amplitude entering p = 2 meets reflected
amplitude leaving p = 2 with the correct relative phase.
As the total energy increases, the wavelength in u = 1
decreases, while the range of R accessible to u = 2 in-
creases. Roughly speaking, resonance occurs when these
two lengths coincide.

The dominant role of short-range interactions in de-
termining the resonance is apparent in the profile of 7
[Fig. 3(a)]. The PA method calculates, at each R, the
eigenquantum defect pertaining to channel interactions
at smaller R, regarding the channels as independent be-
yond that R. Even at R ~ 4 a.u. 7 climbs by nearly
unity as the energy passes through resonance. Thus,
while large-R interactions determine some details, they
do not account for the resonance itself.

(2) For R > 4 a.u. the small valley portion of u = 2
interferes with p = 1, alternatively helping or hindering
its motion. In particular, in the range R ~ 5-6 a.u., u = 2
meets its outer turning point and reflects from it. Total
reflection occurs only on the ridge, whereas amplitude in
the valley leaks out, giving an additional outward boost
to 4 = 1. This boost manifests itself as an effective
repulsive potential, or equivalently a rising 7, whose effect
is most prominent at the resonant energy. Other, less
significant, features of 7 arise from interferences of p = 1
with the long decaying tail of u = 2.

C. The ,(+1,0)7 resonances

The 2(+1,0); resonance represents the coupling with
the continuum of the lowest adiabatic bound state in the
p# = 2 channel. Higher bound states in this channel also
correspond to higher resonances, of the type ,(+1,0)F.
In the relevant energy range, 58 eV < E < 65 eV, the
p# = 3 channel referred to above becomes weakly closed,
as opposed to strongly closed. However, as this channel
contributes mostly to resonances with K = —1, localized
in a different region of configuration space, we continue
to neglect its influence.

The eigenquantum defect 7 is pictured in Fig. 5 for
several energies near the 3(+1,0)7 resonance. These en-
ergies lie above the second bound state of V2(R). As was
the case near the 2(+1,0)F resonance, the adiabatic func-
tion f,®; contains an additional, unphysical radial node,
requiring that 7(R) be “reset” to negative values. The
profile of 7 is qualitatively the same as for the 2(+1,0)F
resonance, but extends to the larger R appropriate to
the higher energy. In particular, the negative slope of
7 in the region 2 a.u. < R < 4 a.u. indicates the same
short-range channel coupling as above. The peak position
and width of the 3(+1,0)] resonance, determined from
d7/dE, are Eq = 63.5 eV and " = 0.071 eV, as compared
to measured values of Eg = 62.9 eV and T' = 0.045 eV
[34].

At higher excitations, u = 2 lies further in the valley,

0.0

-0.4

1(R) (rad/m)

0 4 8 12 16 20
R (a.u.)

FIG. 5. Eigenquantum defect 7(R) near the 3(+1,0)7 res-
onance. Note its similarity to Fig. 3(a).

but not so far as 4 = 1, implying minimal interaction at
large R. We thus anticipate that the entire ,,(+1,0)5 se-
ries is excited in the same way, by the exchange of channel
amplitude near R ~ 2 a.u. This view emerges only when
we consider the evolution of the doubly excited state from
the origin outward. To calculate the higher ,(+1,0);
resonances, we exploit the slow variation of the short-
range K matrix with energy within a core radius R < 10
a.u. Then, standard MQDT, using independent-electron
Coulomb wave functions outside the core, identifies the
resonances. Results for some of these resonances are pre-
sented in Table I.

IV. DISCUSSION

In this work, we have focused on a particular series
of doubly excited resonances in He('S¢), to show how
the PA method, combined with MQDT, opens a window
into the dynamics, previously hidden within calculations.
Extension of the results reported here will require the
following improvements.

Numerical accuracy. All adiabatic potentials and cou-
pling matrices have been calculated without regard to op-
timum accuracy, but adequately for our illustrative pur-
poses. However, as we proceed to higher energies, we will
require greater accuracy, both to ensure convergence at
large R and to deal adequately with the increasing num-
ber of channels. Recent work [32,36,37] has significantly
improved the ability to calculate accurate adiabatic func-
tions.

Additional resonances and symmetries. Each bound
state of each adiabatic potential (above p = 1) pro-

TABLE I. Comparison of this work’s approximate reso-
nance peaks with the accurate results of Ref. [35], referred to
the ground state 79.0 eV below the double-ionization thresh-
old.

Resonance »(+1,0)7 This work Ref. [35]
E, (eV) Ey (eV)

n=2 57.8 57.8

n=3 63.5 62.9

n=4 64.4 64.2

n=>=5 64.7 64.7

n==6 65.1 64.9
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FIG. 6. One of the three eigenquantum defects near
the 3(+2,0)f resonance, showing the connection between
2(+1,0)F and 5(+2,0)7 states. See text for details.

duces an autoionizing resonance like the ones reported
here. Even off resonance, the channels interfere with
each other, in ways that remain to be explored by the
PA method. In addition, future applications will extend
to values of the total angular momentum beyond L = 0.
Influence of strongly closed channels. We have ignored
strongly closed channels here without hurting our general
conclusions. However, in calculating cross sections at
energies below the N = 2 threshold, Sadeghpour [32]
needed to include all the adiabatic channels converging
to the N = 3 threshold. To do the same, we must fit the
strongly closed channels into the PA formalism.
Multiple open channels. Above the N = 2 threshold,
the number of open channels increases, diverging at the
double-ionization threshold. In this case, multiple eigen-

quantum defects 7, will emerge, complicating the inter-
pretation of the dynamics. The closed channels produce
resonances, identified by a rise in the sum ) 7, by unity.
In Fig. 6 we show a single 7, for the “3s®” resonance,
near its resonance energy, Fo = 69.5 eV. Near R ~ 3
a.u., 7, exhibits a negative slope, a remnant of the
coupling between p = 1 and p = 2 discussed above.
Near R ~ 7 a. u. 7, again has a negative slope, this
time signifying the coupling between the p = 2 channel
(now open) and the resonant ridge channel, classified as
(K,T)4 = (2,0)5. This 7, thus establishes a connection
between successive ridge resonances, absent in the adia-
batic approximation. As the energy rises to the double-
ionization threshold, 7, connects each “N s2” state to the
next, “(N + 1)s2” state, uniting the entire double Ryd-
berg series.

Note added. J. Light has brought to my attention
similar work by M. H. Alexander [38], who studies the
evolution of flux transfer between adiabatic channels in
molecular physics. I am indebted to Dr. Light for this
information.
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