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Double-electron excitation of H by fast proton and antiproton impact
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A theoretical investigation is carried out for double-electron excitation processes of H induced

by proton and antiproton impact at the energy of 1.5 MeV. Excitation cross sections to the
2s S', 2s2p P, and 2p D' states are calculated by using the plane-wave Born approxima-
tion, the distorted-wave Born approximation, and the close-coupling method. Wave functions of
H are generated employing the hyperspherical coordinate method. It is shown that the low-lying
continuum 1skp P is identified as an important intermediate state in the double-electron excitation
process to the 2p D' state. We have also evaluated the ejected-electron spectra from the 282p P
shape-resonance state. It is found that its spectral shape is close to the observed line profile of the
photodetachment of H since the excitation mechanism to this state is mostly dominated by the
optically allowed transition at the projectile energy concerned here.

PACS number(s): 34.50.Fa, 31.50.+w, 31.20.Tz

I. INTRODUCTION

Recent advance of experimental technique has made it
possible to reveal evidences of the electron-electron corre-
lation effect in the course of ion-atom collisions. Ander-
sen et al. [1] made the first measurement of double ioniza-
tion cross sections of He by antiproton (p) impact in the
energy range 0.5—5 MeV. They found that the cross sec-
tion by the p impact dominates over that by the p impact
by a factor of nearly 2, while the associated single ioniza-
tion cross sections are almost the same. The conventional
independent particle model cannot explain this observa-
tion because the leading term of the scattering amplitude
by the Born series results in null contribution. Therefore,
the striking difference of the cross sections suggests the
importance of electron-electron correlation on the simul-
taneous two-electron ionization process.

This pioneering experiment highlights decisive roles of
electron-electron correlation in the entire course of high
energy ion-atom collisions [2]. A few years ago, Peder-
sen and Hvelplund [3] and Giese et aL [4] measured a
set of double-electron excitation cross sections of He bye, p, and C&+ (q=4—6) impact from the ground state
to the lowest-lying doubly excited states at the energies
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of 1.84 MeV/u and 1.5 MeV/u, respectively. Theoret-
ical investigations on the excitation process have been
done by Fritsch and Lin [5], Winter [6], Moribayashi et
al. [7], and Slim et al. [8] by solving the coupled state
equation of collision systems while Bachau et aL [9] and
Straton et al. [10] studied the double-electron excitation
processes of He in perturbative approaches. Their results
also indicate the important role of the electron-electron
correlation effect.

In accordance with the results by Moribayashi et al. [7],
excitations to the lowest-lying doubly excited states of
He by proton and antiproton impact at 1.5 MeV incident
energy are mainly dominated by the first- and second-
order mechanism through the optically allowed transi-
tion. Specifically, the 282p P state plays a decisive role
as an intermediate state propagating into a set of final
states 2s S', 2p S', and 2p D'. The simultaneous
excitation of two electrons to this intermediate state by
the first-order interaction with a projectile is understood
to be due to the strong correlation effects. However, there
appears only a small difference between cross sections of
the p and p impacts in contrast to the double ionization
mentioned above.

In the present article, we investigate double-electron
excitation processes:

p (p) + H (1s 'S')

—i p (p) + H (2s S', 2s2p P, 2p D')

at the projectile energy of 1.5 MeV. Our investigation on
this collision system is motivated by the following three
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reasons. (1) The first is to understand the contributions
of the electron-electron correlation of H to the collision
dynamics and to examine if the same excitation mech-
anism as in the case of He holds during the collisions
because the correlation eBect of H is stronger than that
of He. (2) The second is a comparison of the line pro-
files of ejected electron spectra decaying &om the double-
excited state 2s2p P between the charged-particle and
photon impacts. The 282p P state in H is known to
lie above the threshold energy of the manifold N=2 and
it is the shape resonance [11—14]. This situation is diff'er-

ent from that of He where the doubly excited 282p P
state is a Feshbach resonance. We investigate whether
or not the line profile of the ejected electron is similar to
that of photodetachment [15,16] at the present energy of
a projectile ion since the dipole transition mainly domi-
nates the excitation to the 282p P state at high energy
as is expected. (3) The third is to study the effect of
the continuum such as the low-lying singly ionized state
lskp P on double-electron excitation cross sections. It
has been already suggested that this state has a great
deal of contributions as an. intermediate state to double-
electron excitation processes of He [6]. Furthermore, the
energy level scheme of H is simpler than that of He
because of no singly excited states in H . Hence the
p (p)—H collision system is the best suited in which one
can study the effect of the continuum.

In order to analyze details of collision dynamics
and roles of correlations, the collision process is de-
scribed by the close-coupling (CC) method, the first-
and the second. -order plane-wave Born approximations
(PWBA1 and PWBA2), and the first- and the second-
order distorted-wave Born approximations (DWBA1 and
DWBA2) on the basis of the semiclassical impact-
parameter picture. Wave functions of H are generated
by the hyperspherical coordinate method based on the
adiabatic approximation where the hyperradius of H is
treated as an adiabatic parameter [17, 18]. This method
enables us to describe the electron correlation quite ac-
curately [19,20]. In the study of double-electron exci-
tation of He, Slim et al. [8] incorporated the continuum
state and employed pseudostates to represent both the
bound and the continuum contributions in their close-
coupling calculation while we employ the hyperspherical
wave functions for the bound and continuum states.

In the present calculations, we have made the two as-
sumptions. First, doubly excited states of 28 S' and
2p D', though they are embedded in the continuum,
are treated as discrete states. These are Feshbach res-

onances and have usually widths narrower than shape
resonances do. This assumption is justified because of
much shorter collision time (about 5 a.u. at the 1 MeV ju-
impact) in comparison with decay lifetimes (of the order
of 10 a.u. ) of the associated autoionizing states [11—13,
21]. The second assumption is to neglect contributions
from charge-transfer channels in describing a wave func-
tion of the whole collision system. This assumption is
also valid because the direct excitation is dominant at
the projectile energy studied here. For example, the
charge-transfer cross section of p—H(ls) system amounts
to 1.29xl0 cm2 at the energy of 1.0 MeV using the
continuum distorted wave approximation [22]. That of
p—H (ls2 9') system is considered much smaller in the
high energy region concerned here because of the smaller
optimized Slater exponent of its ls orbital. On the other
hand, double-electron excitation cross sections of H are
of the order of 10 —10 9cm as shown below.

The methods of calculations are given in Sec. II, where
the method of discretizing continuum states is also de-
scribed. Results and discussion are given in Sec. III, and
concluding remarks are summarized in Sec. IV. Atomic
units are used throughout unless otherwise stated.

II. METHODS OF CALCULATIONS

A. Atomic states employed

The wave function describing the whole collision sys-
tem is expanded in terms of the H wave functions gen-
erated by the hyperspherical coordinate method. The
wave functions of S', P, and D' states are generated
by expanding the associated channel wave functions in
terms of 25, 35, and 47 basis functions, respectively. Ta-
ble I lists resulting energies of 1s S', 2s S', 282p P,
and 2p D' states of H in comparison with other elab-
orate theoretical data [12,21, 23—26]. Our present results
agree with other calculations within the order of O. l%%ujj.

Figure 1 shows behaviors of the adiabatic wave func-
tions F(R) of the 2s2p P state at several energies
against the hyperradius B. Oscillations of the wave func-
tions begin at B equal to 40—90 a.u. Therefore, the elec-
tron densities are found to be localized within this inner
R region. The continuum wave function of the 282p P
state is discretized into 10 and 20 meshes for the energy
interval up to 0.0025 a.u. kom threshold with K = 2 and
included as basis functions in the expansion of the total
wave function.

TABLE I. Energies (in Ry) of H . The entries in parentheses represent the width (in Ry) of
the 282p P state.

State
.s2

s
282@ 'P

Present work
-1.0527
-0.2976

-0.2488 (1.32 x10 )

-0.2550

Other work
-1.0555 [23]
-0.2976 [25]

-0.2487 (1.10 x10 ) [12]
-0.2485 (1.37 x10 ) [24]

-0.2559 [21]
-0.2562 [26]
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I also made 97 state CC calculations for the following two
sets: (i) 20 energy meshes for the 2s2p ~P state and 10
energy meshes for the lskp ~P continuum and (ii) 10
energy meshes for the former and 20 energy meshes for
the latter. Table II lists the sets of the atomic states em-
ployed for the close-coupling calculations, the PWBA2,
and the DWBA2 approaches.

0— B. Collision dynamics

-0.2457-0.2465
50

' ' '

i00

R(a.u.}

FIG. 1. The plots of the 282@ P shape resonance wave
function F(R) as the hyperradius R at the energies near the
resonance energy. These are normalized to a unit amplitude
at an asymptotic distance.

The low-lying singly ionized state 18k@ P just above
the threshold with N = 1 is also incorporated into our ba-
sis set in order to study the eKect on the double-electron
excitation mechanism. The lskp ~P continuum is dis-
cretized into both 10 and 20 energy meshes up to 0.25 a.u.
&om the threshold energy —1 Ry of N = 1 to test the
convergence of cross sections in the close-coupling calcu-
lation. It is assumed that the coupling of the 282p P
doubly excited states with the 1skp P continuum near
the resonance energy can be neglected. This assumption
is reasonable for these continuum states because they do
not overlap with the doubly excited states converging to
the manifolds of N = 2.

The total wave function of the collision system is ex-
panded in terms of 7, 37, 67, and 97 states of H for
the test of convergence. A set of 7 states consists of all
of the discrete states 1s S', 2s S', and 2p D'. A
set of 37 states includes the 282p P shape resonance
which is discretized into 10 energy meshes in addition to
the set of 7 states. Furthermore, the 67 state calculation
includes the 18kp P continuum discretized into 10 en-
ergy meshes in addition to the 37 state calculation. In
order to test the eKect of change of the mesh size, we have

with Z~ and ZT being the nuclear charges of a projec-
tile and H, respectively, and X being the internuclear
distance of a collision system. The total wave function
@(+)(t) describing the collision system is expanded by

(2)

It is understood that the summation over o. includes the
continuum states of H . Here the wave function Q

+

reads

g(+) = g exp( —io+ —iE t),

where sr+ is the asymptotic Coulomb phase associated
with V, and satisfying the outgoing boundary conditions
and Q is a wave function of H with an eigenenergy of
E . Substitution of Eq. (2) into the Schrodinger equation
of the whole system yields the CC equation

i = ) C + (t)Vp exp[i(Ep —E )t],
de(+)(t) .

( ) (4)

where Vp = (gp~V ~Q ). The initial condition

There is the residual long-range Coulomb interaction
between a projectile ion and a target H even at large
internuclear distance. Such a Coulomb scattering prob-
lem is properly dealt with by partitioning the asymp-
totic Coulomb tail V, as a distortion potential from the
projectile-target interaction V so that the perturbative
interaction Vp = V —V, is of short range [22, 27—29].
The asymptotic potential V, is de6ned here as

Zg (ZT —2)as—

TABLE II. Sets of atomic states included in the expansion of the total wave function for the
description of the collision system.

Set

7 states
37 states

67 states

97 states I

97 states II

Atomic states included

1s g' 2s 'g' 2p 'D' (5)
7 states plus
2s2p P (3 x 10 meshes)
7 states plus
2s2p P (3 x 10 meshes), 1skp P (3 x 10 meshes)
7 states plus
2s2p P (3 x 20 meshes), 1skp P (3 x 10 meshes)
7 states plus
2s2p P (3 x 10 meshes), lskp P (3 x 20 meshes)
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is imposed on Eq. (4), where the subscript i means the
ground state of H

Substituting the scattering amplitude C~+ (t) with

1
q, (+) (t) (10)

Cl'l(t) = Cl+l(t)exp
~

'
lP P

Eq. (4) is recast into the equivalent form

xexp i(Ep —E )t

(Vpp —V )dr (7)

Expanding the scattering amplitude Ct,
+

(t) of Eq. (4) up
to the first and second order with respect to the perturba-
tive potential V~ leads to the PWBA1 and the PWBA2
approximations, respectively. Similarly, the DWBA1 and
the DWBA2 approximations are obtained by expanding
the scattering amplitude C~ (t) of Eq. (7) up to the first-(+)

and the second order with respect to the perturbative po-
tential V~, respectively.

The asymptotic Coulomb tail V, in Vp has signifi-
cant effects on excitation cross sections calculated by the
PWBA2. On the other hand, it should be noted that
for the direct excitation cross sections obtained by the
DWBA1, DWBA2, and CC, this potential is canceled
out exactly in the phase factor of the right-hand side of
Eq. (7).

C. Discretization of continuum states

(8)

For the present purpose, we express the integral of the
second term of Eq. (8) by a sum of integrals by introduc-
ing a sufBcient small energy interval AE„as follows:

C~~+l (t)g~~+l (t)dE = )
E +AEnn

&&n
n 2

C~+'(t) g~+'(t) dE

where we have defined a wave packet g„as-(+)

We consider how to discretize continuum states into a
scheme of finite energy meshes in our practical calcula-
tions. The total wave function of the collision system is
expanded as shown in Eq. (2) by the complete set of tar-

get wave functions including both a bound state g&+ (t)
and an energy-normalized continuum state g& (t), that(+)

is,

It should be noted that expression (10) for g„exactly(+)

satisfies the orthonormal relation

The discretized basis functions (@„+} are spatially lo-
calized because of the uncertainty principle. In addition,
this localized region should include the "reaction zone, "
within which the double-electron excitation processes are
predominantly induced and the electron-electron correla-
tion is substantial.

Here we refer to the matrix element Va@~ of Eq. (4)
between singly ionized states of ga and QE . There is
the case that the continuum-continuum matrix element
VEE is divergent when E E'. Nevertheless, the scat-
tering amplitudes CE+ is always kept finite as shown in
Appendix A. The contribution from a singly ionized state
ga to the scattering amplitude C& is given by Eqs. (A8)
and (A10) at the asymptotic electron distance. This con-
tribution may be negligible in our case since a velocity
of a projectile we are concerned is much greater than a
electron velocity of a continuum state and Eq. (A10) is
zero. Thus a singly ionized state g@ contributes only
from the inner region of the hyperradius B where the
electron-electron correlation is dominant.

The arguments given above enable us to overcome the
problems arising from the divergence of the continuum-
continuum matrix element VEE, and hence we can eval-

uate it using the spatially localized wave function Q„+ of
Eq. (10). According to the discussion given in Appendix
B, the wave packet is centered around R = k„~t~ with k„
being the electron momentum associated with its energy
E„. If ~R + k„t~ ( &&", this can be approximately ex-

pressed by the representative component Q& within the(+) ~ ~

interval as

(12)

If ~R 6 k„t~ && a&, however, the wave function g„+
declines rapidly ance has negligible effects. Thus we will
adopt the expression of Eq. (12) hereafter in place of the
exact expression of Eq. (10).

The discretization scheme given so far provides us with
a well founded theoretical ground. As discussed in Ap-
pendix B, the wave packet of Eq. (12) is spatially local-
ized mostly up to the maximum hyperradius B „, the
choice of which should be compatible with the orthonur-
mal condition of Eq. (11). For the 2s2p iP shape res-
onance, R „given by Eq. (B5) amounts to about 10
a.u. if one takes an average mesh size AE 1.25 x 10
a.u. as adopted in the 97 state I calculation. However,
inspection of the continuum wave functions of H around
the 282' 'I resonance energy in Fig. 1 may enable one
to relax the condition Eq. (B5) and to set R 100
a.u. where the continuum wave functions show asymp-
totic behaviors.

In our actual calculation, we have carried out nu-
merical integration using the Gauss-Legendre quadrature
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III. RESULTS AND DISCUSSION

To test the convergence of the double-electron excita-
tion cross section with the number of the states included,
we have made the calculations for the set of 7 states, 37
states, 67 states, and two sets of 97 states given in Table
II. Comparison of the 67 state results with those by two
sets of the 97 states I and II shows that they agree with
one another within a few percent. One of our main con-
cerns is the line shape of the 2s2p P ejected electron
spectra. Hence, hereafter, we employ the results calcu-
lated using the 97 states I because a finer mesh scheme
has been adopted for the discretization of the 282@ P
shape resonance.

A. Total cross sections to 28 S' and 2p D' states

Table III gives the calculated excitation cross sections
to the 282 S" and 2p D' states at the energy of 1.5

TABLE III. Double-electron excitation cross section (iu
units of 10 cm ) of H to the 2s 8' and the 2p D'
states at the energy of 1.5 MeV.

Method

PWBA1
PWBA2 (97 states)
DWBA1
DWBA2 (97 states)
CC (7 states)
CC (37 states)
CC (67 states)
CC (97 states)

Proton
s2

9.589
15.521
9.509
9.593
9.483
9.394
9.842
9.691

Antiproton

9.589
14.675
9.566
9.472
9.548
9.236
9.856
9.656

PWBA1
PWBA2 (97 states)
DWBA1
DWBA2 (97 states)
CC (7 states)
CC (37 states)
CC (67 states)
CC (97 states)

0.466
1.446
0.423
1.286
0.483
0.488
1.307
1.234

0.466
1.393
0.465
1.580
0.481
0.568
1.299
1.429

with its weight coeKcients in place of AE„. Furthermore,
we have introduced the damping factor A into the wave

function of Eq. (12) as Q„exp(—AR) in order to accel--(+)

crate the calculation of matrix elements and test whether
or not the adopted R „contains the reaction zone for
the two-electron excitation processes. In order to con-
firm the insensitivity of our CC results with respect to
change of R „(equivalently, with respect to change of
A), we have made pilot calculations for A = 0, 1/100,
and 1/60 after fixing R „at 100 a.u. They are found
to agree with one another within a few percent, except
for the 2p D' excitation where the relative difference
is within some 15%. In later discussion, we employ the
cross sections calculated with R „=100 and A = 0.

MeV by using the PWBA1, PWBA2, DWBA1, DWBA2,
and CC.

First, we discuss the cross section to the 28 S' state.
Apart from the result by the PWBA2, the cross sections
obtained by the PWBA1, DWBA1, DWBA2, and CC are
nearly equal to one another as seen from Table III. The
deviation of the PWBA2 results &om other approaches
implies that the plane-wave Born expansion is not ac-
curate enough while the PWBA1 results qualitatively re-
produce the converged results by the CC. Indeed, we have
found that the diagonal parts of the matrix elements of
Vj for 182 S' and 2s S' states have much greater mag-
nitudes than the off-diagonal parts of the matrix elements
of V~. Hence, for the present case, we cannot justify the
PWBA2 expansion which treats all the matrix elements
on the equal footing, i.e., as small perturbations.

The DWBA1 and DWBA2 approximations can rem-
edy these di%culties since the dominant diagonal matrix
elements are incorporated to all orders and the remaining
small off-diagonal ones are reasonably dealt with as small
perturbations. In the present case, the distorted-wave
Born expansion is valid and the results are compatible
with the CC results.

The static potential V~~ in Eq. (6) gives the energy shift
from the eigenenergy E~ of the state p. The energy shift
arises &om the polarization effect induced by an electric
field of a projectile. Such an effect of the static potential
on H may be ascribable to the fact that its electron
density extends up to the relatively distant region and the
two electrons are weakly bound on a proton. Hence the
present situation is much different from that of He where
the collision dynamics is reasonably interpreted by the
PWBA2 approach consistent with the CC calculation [7].

As a result, we obtain the cross section to the 2s S'
state by the PWBA1 method close to those by the
DWBA1, DWBA2, and CC methods even if the diagonal
matrix elements themselves are relatively large. Then we
consider that most effects from the non-negligible diago-
nal matrix elements are canceled out by the introduction
of the phase factor in Eq. (6) resulting in quite small over-
all contributions to the cross sections obtained. Accord-
ing to this argument, the doubly excited state 28 S' is
mainly produced by the first-order interaction with a pro-
jectile, namely, the monopole transition. Consequently,
there is merely a small difference between the cross sec-
tions by the p and p impacts.

Next, we discuss the results for the 2p D' state exci-
tation. Large difference between the results obtained by
the PWBA2, DWBA2, and CC and those by the PWBA1
and DWBA1 shown in Table III clearly suggests that the
2p D' state is produced by the two-step mechanism
through intermediate states of H . Let us shed light
on the roles played by the intermediate 18kp P and
2s2p P continuum states to analyze the details of the
collision dynamics. We consider the results of calcula-
tions by the CC method with a set of 7, 37, 67, and 97
states. (See Sec. II A for more details on the atomic
states included in the expansion and see also Table II.)

The 37 state CC calculation that includes the 2s2p P
shape resonance gives the 2p D excitation cross sec-
tion almost equal to those for the 7 state CC calculation,
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while the 67 state CC calculation yields the 2p D exci-
tation cross section two to three times larger than the 37
state CC calculation. A comparison of the results by the
67 state with the 97 state confirms that our calculated
cross sections converge reasonably within a few percent.
This means that at the incident energy of 1 ~ 5 MeV, the
18kp P state has dominant contribution as an inter-
mediate state to the double-electron excitation while the
282p P state has little efkct.

In the double-electron excitation of He to the 2p D'
state, it was seen that the 2s2p P state as well as the
182p P singly excited state plays a key role as an in-
termediate state [7]. Here it is found that the low-energy
continuum of the 1skp P state plays the most impor-
tant role as intermediate states, which is an equivalent
role by the singly excited lsd P state of He, while
the 282@ P shape resonance does not. This is probably
because the overlap matrix element between the 1s S'
state and the low-energy 18k@ P state is fairly large.

B. Spectral line pro6le of an ejected electron
from the 282p~P state

6-

)
Ol
I
E
O

I

C)

Q3 2—

LIJ
LLI

10.96 10.98
i I

11.00 11.02

FIG. 2. Spectral line profile of the electron-emission cross
section (EECS) from the 2s2p P state by proton impact
at the incident energy of 1.5 MeV. This 6gure also includes
a comparison of the calculated spectra of an electron by pro-
ton impact with the experimental line profile by photodetach-
ment: open circles, Haika et aL [30]; crosses, Bntterfield [31].
The photodetachment data are normalized at the peak posi-
tion of our results. The excitation energy E is gauged from
the ground state of H and is calculated based on the ground
state energy by Pekeris [23] and the Rydberg constant for the
hydrogen atom BH = R /(1+ rn, /M„) = 13.59827 eV.

We have calculated the spectral line profiles of an
ejected electron from the 2s2p P shape resonance state
caused by the p and p impacts using the 97 state CC
expansion. At the energy of 1.5 MeV, the line profiles
are quite similar to those obtained by the PWBA1 and
DWBA1, so that there is only a small difference between
the cases of the p and p impacts. Hence the double-
electron excitation to this state is induced by the first-
order interaction with a projectile, namely, the optically
allowed transition. Therefore we show only the spectral
line profile of the 282p P shape resonance state by the

p impact in Fig. 2.

Figure 2 compares the shapes of the line profile caused
by the p impact at 1.5 MeV with the line profile by the
photodetachment of H for decay into the H(N = 2)
channel observed by Halka et al. [30] and Butterfield [31],
where the experimental data are normalized at the peak
position of our theoretical results. Photodetachment
spectra of H in this energy region are in good agreement
with theoretical studies [15,24, 32]. The calculated profile
is in good agreement with the improved data by Halka
et at. [30]. This good agreement confirms the dominance
of the dipole allowed transition to the double-electron
excitation to the 282p P state at high energy.

IV. CONCLUDINC REMARKS

We have calculated the excitation cross sections to
the doubly excited states of H at the incident energy
of 1.5 MeV using the plane-wave Born expansion, the
distorted-wave Born expansion, and the close-coupling
method. The wave functions of H for expanding the to-
tal wave function of the collision system are generated by
the hyperspherical coordinate method. The continuum
wave functions are included in basis sets with energy dis-
cretization. Excitation to the 2s 8' state proceeds by
the first-order interaction with a projectile through the
monopole transition. However, it should be noted that
the plane-wave Born expansion is not justified here since
the diagonal parts of the potential matrix elements are
much larger than the ofF-diagonal parts. Hence the diago-
nal and o8'-diagonal matrix elements should not be dealt
with on the equal footing. Excitation to the 2p D'
state is understood as the two-step mechanism via the
dipole transition. Particularly, the 1skp P states are
important as an intermediate state. We have evaluated
spectral line profiles of an ejected electron decaying from
the 2s2p P shape resonance state. The first-order inter-
action via the dipole transition is found to predominate
over the collision dynamics in the excitation process to
this state. The spectral shapes of the line profile obtained
by the p and p impacts are in reasonable agreement with
the observation of the associated photodetachment spec-
tra.
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APPENDIX A

In this appendix, we assess the contribution of the po-
tential matrix element V@@~ bracketed by singly ionized
states Q@ and Q@ to the scattering amplitude in Eq. (4).
The continuum-continuum matrix element is not always
finite, that is, there is the case that this gives a divergent
contribution since the electron density of a continuum
electron extends over the whole positional space unless
the appropriate wave packet is adopted. We show below
that the scattering amplitude is always defined finite even
if the matrix element is divergent. Although this prob-
lem was analyzed three decades ago by Seaton [33] in
the study of the electron-atom collision, we shall brieBy
describe an outline of the method mentioned in the text.

Here it is understood that the eigenenergies of the
singly ionized states are expressed as E = ~ —2&, and
E' = e' —2~,» respectively, at the asymptotic distance
of two electrons, with ~ and e' being the energies of con-
tinuum electrons and N and N' being the manifolds of
the residual hydrogen atom. We concern ourselves only
with the asymptotic r region where the present divergent
problem becomes serious. Let wave functions of contin-
uum electrons be represented by P, (r) and P, (r), re-
spectively. These wave functions are energy normalized
as defined by

~

~

P;(r)P, (r)dr = b(e —e'). (.A1)

The continuum-continuum matrix element V@@ is con-
sidered to be not divergent as long as e is much different
&om e', the manifolds of the residual hydrogen atom are
not the same, namely, iV g N', or the angular momen-
tum for expanding the projectile-electron potential V~
by partial waves is not zero. Otherwise the matrix ele-
ment will be divergent. Therefore, our consideration is
limited to the monopole transition, i.e., to the case that
the matrix element is expressed by

2ZJ f„(X)
(A2)

where

f„(X)=
~

——1
~ P;(r)P, (r)dr

" (x
)

(A3)

and t E . Here V„has been replaced for V@@ since
we consider the case of N = N'.

The wave function P, (r) at the asymptotic distance is
expressed as

2
P, (r) = —sin[kr + bi(e)], (A4)

where k is the momentum of an electron with e
A; Here the phase shift bi(e) is expressed by bi(e)
bi(0) + e«(e) with «(e) being the time duration defined

by «(e) =
&

' . Inserting Eq. (A4) into the expression
Eq. (A3), we obtain

1 CXf- (X) =
~v'kk' x

x (cos[(k —k')(r + k«)]
—cos[(k + k')r + 2bi(e)])dr

Equation (A6) shows that the matrix element V„ is di-

vergent.
We pay attention to the term including the divergent

matrix element in the right-hand side of the CC equation,
Eq. (4), that is,

R(t) = f de't, ,
+

( )Vt„exp)i( —e e')t]. (A7)

Employing Eqs. (A2) and (A6), Eq. (A7) is cast into the
form

(A8)

where X, 1 sin[(k —k')(r + k«)]
x r2 o v'kk' &(k —k')

x exp[i(e —e') t] —1. (A9)

The e' integration of Eq. (A9) is easily carried out to get
8(r —k(~t~ —«)) . Consequently, we have obtained

(,(t) =
I

( X
gk((t) —«)

—1
i tI)(k(gati —«) —X) (A10)

and shown that F,(t), related to the continuum-
continuum interaction, is always kept finite. According
to Eq. (A10), (,(t) has a physical meaning associated
with the screening effect due to an projectile ion against
a continuum electron if the electron momentum is larger
than the velocity of the projectile in the case of ~~ 0.
If «)) 1, the expression Eq. (A10) may be related with
the effect of the postcollision interaction [34, 35].

APPENDIX B

Herein we will make further discussion on the wave
packet of Eq. (10) and derive the expressions of Eq. (12).
At the asymptotic distance, the continuum wave function

~E reads-(+)

/ —eie(kR+ 6), (B1)

where a bound-state wave function of a residual hydro-
genic atom and the residual Coulomb phase sr+ are omit-
ted for simplicity and E = —". Inserting Eq. (Bl) into
Eq. (10), we obtain

Contributions &om cos[(k + k')r + 2b&(e)] may be ne-

glected because the rapid oscillation cancels out the inte-
grand. Performing the integration by parts with respect
to r leads Eq. (A5) to

X 1 sin[(k —k') (r + k«)]
r2 vr(k —k')

—b(e —e'). (A6)
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i(k R+b )
ark„

(—x(knR+b ) Sing+ —iE„t
(+

(82)

Here (~ =
z& "p~ and py = R+k„t. In the region where

the condition (~ )) 1, namely, p~ )) &&" is satisfied, the

wave packet g„declines rapidly and then this effect
is negligible here. Therefore, the wave packet has an
effective contribution only in the localized region where

(y ( 1. We may approximate g„ in this region as the
representative component @&,that is,

-(+)

g(+) QQE g(+)

where use has been made of the approximation "" 1 ~

This expression is identical to Eq. (12).
We can consider that the wave packet is spatially lo-

calized at most up to the maximum hyperradius R
owing to the discussion given above. R „may be deter-
mined so that the approximated wave packet of Eq. (83)
retrieves the orthonormal condition of Eq. (11). Using
Eqs. (81) and (83), we obtain

sin (K R „+E ) —sinD

K

sin(K+R~ „+6+) —sinA+ l
K+

(84)

Here Ky and A~ are de6ned as k„k k„and b„k b„,
respectively. In general, the second term in the paren-
theses of Eq. (84) may be neglected under the condition
K+ )& 1. Thus we will consider only the 6rst term here-
after. The left-hand side of Eq. (84) must be unity when
n = n', namely, K = 6 = 0. This leads to the relation

R (85)

Next we consider the case that K =—n —n' g 0. Using
approximations

&
" —

&

"' and K = % " withn nI n

Eq. (85), Eq. (84) becomes of the form

sinA
(86)

This shows that the approximated wave function of
Eq. (83) almost satisfies the orthogonal condition when
taking reasonably fine mesh points for the energy dis-
cretization, specie. cally, at the vicinity of a resonance.
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