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The asymptotic theory is developed for the calculation of the charge-exchange amplitudes for
large impact parameters p. The case of the small energy defect is considered which corresponds to
the Demkov model (nonadiabatic transitions induced by the switching of the wave functions from
the atomic states to the molecular-orbital regime). The e6'ect of electron momentum transfer is

included. The initial and final states with nonzero orbital momentum are considered with a special
emphasis on the simplest case of 8 m p charge exchange. The large-p asymptote of the charge-
exchange amplitude is calculated both for the transitions induced by radial and rotational couplings.
One-center depolarization transitions (changing the projection of the angular momentum) are also
incorporated in the general theory. The orientation and alignment parameters characterizing the
asymmetry created in the s m p process are obtained in a simple analytical form for large p (or
small scattering angles). They include contributions both from the one-center depolarization and
from the competition of the charge exchange induced by radial and rotational coupling. The relative
role of both mechanisms is analyzed and a strong dependence of the asymmetry parameters on the
sign of the process energy defect is predicted. The theory is applied to the process Na(3p) + H+
Na+ + H(n = 2).
PACS number(s): 34.70.+e

I. INTRODUCTION

For the process of charge exchange with the small de-
fect of resonance the qualitative understanding and the
quantitative estimates are greatly facilitated by the well
known Demkov [I] model. It describes the nonadiabatic
transitions between the quasimolecular states due to the
rearrangement of the quasimolecule wave functions from
the separated atoms regime to the molecular orbitals as
the internuclear separation R varies. Assuming a purely
exponential R dependence of the coupling matrix ele-
ment in the diabatic basis and constant diagonal matrix
elements, Demkov [I] obtained an exact solution of the
two-state problem. The expressions for the total charge-
exchange cross sections within the Demkov model are
given in Ref. [2].

As a two-state model, the Demkov model is directly
applicable to the s ~ s' charge exchange. For the ex-
change between the states with nonzero orbital momenta
l —+ tg the resonance one-center transitions changing the
momenta projections m, mp are very efficient and inHu-

ence the charge exchange. The final mg substates are
populated coherently with various relative phases and
amplitudes. This implies creation of the orbital asym-
metry in the charge-exchange process, which is a subject
of intensive studies nowadays (for a general review of the
asymmetry eKects see Refs. [3,4]). Clearly, the two-state
model is unable to describe it.

Within the quasimolecular approach the s ~ s' charge
exchange is described as the transition induced by the
radial motion. In the general case (I m l~) the charge-
exchange transitions induced by the rotation of the inter-
nuclear axis are also operative. When the relative colli-
sion velocity v increases, the role of the rotation-induced

charge exchange becomes more important.
Even in the simplest case of the 8 m p charge exchange

the minimal basis allowing for these eH'ects includes three
states (Sec. V). An exact solution of the realistic three-
state model can hardly be achieved.

In the present paper we develop asymptotic theory for
the dynamics of the transitions in the case of large im-
pact parameters p. This approach allows us to put un-
der consideration the eKects discussed above and also the
momentum transfer by the electron. which is expressed
by the well-known electron translation factors (ETF's).
This is particularly important since the modern experi-
ments (for the references see below) are often performed
in the medium velocity region where inclusion of ETF's
in the theory is necessary.

The general mathematical &amework of the present
asymptotic approach was developed by the author [5] and
applied to the inclusion of the ETF's in the Landau-Zener
model. In particular it was employed [6] for the interpre-
tation of the orientation efFects in the charge exchange
B + + He + B +(2p) + He+ where strong circular po-
larization of the radiation emitted by B2+(2p) ion was
observed [7].

We do not try to generalize the Demkov model in its
full extent. Our treatment retains the most important
features of the Hamiltonian (as they were stated above).
We consider only the limit of large impact parameters p
where the transition probabilities are small, whereas the
exact solution of two-state problem (obtained by Demkov

[1]) is applicable both in the cases of small and large
transition probabilities. In the other terms we study the
threshold behavior of the transition probabilities as p de-
creases. Generally it is related to the small-angle scat-
tering.
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In some respects our approach is broader than the
Demkov model. We do not need assume purely exponen-
tial behavior of the coupling. It is well known [8] that
the asymptotic (large-R) behavior of the coupling (in the
diabatic basis) is represented by the exponent multiplied
by some power of R. Inclusion of the latter factor in the
conventional Demkov model requires additional efforts [9]
whereas in our approach it is done naturally.

Comparing the present approach with the previous
works, we note that Burns and Crothers [10] and Hughes
and Crothers [11) introduced ETF's in the Demkov-type
Hamiltonian but also did not pursue exact solution of the
problem. The Hamiltonian matrix elements in these pa-
pers did not satisfy the Hermiticity condition H;~ = H', ,
and the authors replaced them by the pragmatic average

2 (II;z + H', ). After that the low-velocity case was ana-
lyzed. The concept of the effective (velocity-dependent)
resonance introduced in this paper has some analogy with
our form of the Massey parameter (Sec. III).

The conceptual difBculties due to the non-Hermiticity
were met also by Pfeifer and Garcia [12], who attempted
to reiterate Demkov's exact solution with inclusion of
ETF's. Nevertheless this author demonstrated the im-
portance of the effect in the calculation of the vacancy
sharing ratio. Note that the cited authors [10—12] con-
sidered only the 8 ~ s' charge exchange.

As for the rotation-induced transitions, presently the
two-state models exist which describe their dynamics in
various situations (see, e.g., Refs. [13—15] and the bib-
liographies therein). They employ some parametriza-
tions of the two-state Hamiltonian. The large-R asymp-
totic theory for the direct calculations of the Hamilto-
nian matrix elements [8] was developed previously only
for the radial-induced transitions. It was never applied to
the transitions induced by the rotational coupling of the
quasimolecular states. The only exception seems to be
the paper by the present author [5] where the situation
corresponding to the Iandau-Zener model was consid-
ered. Below we start &om 6rst principles and do not
introduce any parametric Hamiltonian. Both radial- and
rotation-induced transitions are treated on equal footing.

Organizing the paper we separate the theoretical con-
struction of the asymptotic theory (Secs. II and IV and
the Appendix) &om the physical discussion (Secs. III, V,
and VI) and applications (Sec. VII). Section II exposes
the asymptotic theory of the s ~ 8' charge exchange with
the small defect of resonance. Its generalization to the
l —+ lg process is carried out in Sec. IV. In Sec. III the
importance of ETF's is discussed in terms of the Massey
parameter.

Section IV contains a qualitative discussion and could
be read autonomously. First we reiterate a few basic con-
clusions of the asymptotic treatment in application to the
simplest case of the 8 ~ p charge exchange. They allow
us to calculate the orientation and alignment parame-
ters which characterize the orbital asymmetry created in
the charge exchange (Sec. V). The underlying physical
mechanisms are analyzed in Sec. VI.

In Sec. VII the theory is applied to the charge-exchange
process Na(3p) + H+ ~ Na+ + H(n = 2), where quite
satisfactory agreement is obtained for the orientation pa-

rameter with the experimental measurements at small
scattering angles. Section VIII summarizes the principle
conclusions.

II. CHARGE-EXCHANGE AMPLITUDE
IN THE LIMIT OF LARCE IMPACT

PARAMETERS

We assume the classical description for the colliding
atom nuclei which move along some trajectories. The
amplitude of charge transfer can be presented exactly [5,
16] as an integral over the surface S dividing the colliding
atoms and over the time t:

where v is the unit vector normal to S. The wave func-
tion @i(r",t) is the exact solution of the nonstationary
Schrodinger equation for the active electron, and 4z(r, t)
is the solution of the same equation with the Hamiltonian
inverted in time t [this is the reason why the expressions
(2.2) and (2.3) contain the same ETF exp(2v r)]. The
formula (2.1) is discussed in detail in Ref. [5]. Below we
reiterate briefly some points of the subsequent develop-
ment in order to introduce the consistent notations and
at the same time rearrange the expressions to the form
suitable for the present study. Atomic units are used
everywhere.

In the subsequent calculations we employ for the wave
functions their large-t asymptotic expressions describing
the system before and after the charge exchange, respec-
tively,

4'i(r, t) = Q (r ) exp —v r i(E + ——v t)
W

(2.2)

@2(r, t) = Ql l(rg) exp —v" r —i(Ei, + iv2t)
2 8

W

(2.3)

These expressions include explicitly the ETF exp(-'v
and gives the exact wave function for the electron bound
to the isolated atomic nucleus which moves with the con-
stant velocity 2v. The electron energy is E and Ep and
the atomic orbitals gl l,gl l can be presented in the form

yl l(r~) = Y$ ~
~

—
~

Pl l(r~) exp( —nr ),
&r J

(2.4)

(2.5)

where E = ——a; E~ ———2P; l,m and lg, mg are
the electron orbital momentum and its projection in the
initial and final states, respectively; Yi (n) are the spher-
ical harmonics; r (rg) is the electron radius vector rel-
ative to the nucleus a (b). The pre-exponential func-
tions Pl l(r),Pl~l(r) are discussed in Refs. [5, 8]. Here
we stress that for the present calculations only large-r

OO

F = — dt dS[ 4, (r, t) v—. V'C, (r, t)
—oo S

@i(—r, t) 2 7' 42(r, t) ],—(2.1)
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asymptotes of these functions are important. They are
proportional to r ~ and r '~~ respectively, where
Z (Zs) is the charge of the atomic core.

The atomic orbital form (2.4) and (2.5) employed in
our previous work [5] does not account for the one-center
transitions between the degenerate states with different
quantum numbers m (or ms). In Sec. IV we general-
ize these expressions to include such depolarization pro-
cesses.

The surface integral in (2.1) is calculated for an arbi-
trary moment of time using the two-dimensional steepest
descent (or stationary phase) method. Here we present
the results in a more appealing form than before [5]:

f dS[C, (r, t) t .—V 4, (r, &)
S

—@&(r,t) tr V' 42(r, t) ]— a v

t
= V(t) exp

~

—i [E (t') —E (e)]dt,' ~,
p

exp( —pR),

= —Q(a+p) +v .
1

V(t) = [Yt.~.Yi m, ]
Al lAl l D —R(a+ p)

( p )2/ +2/P —2

xi Ri
E 4&

(2.6)

(2.7)

(2 8)

FIG. 1. Charge-exchange collision geometry used in the
present calculations (see text).

OO t

d& V(&) exp
(

—i [E~(&') —E2(&')] &&'
[

.
—OO p

(2.10)

The angular-dependent factor in the square brackets in

(2.7) [and below in (2.16) and (4.7)] should be calculated
at the stationary phase point:

'V~
xp ——i —R, yp ——0, zp =0,

4p
(2 9)

in which

(a+ P)R
4p

(29')

The geometry of the collision is shown in Fig. 1. The
origin of the coordinate system lies at the center of the
internuclear axis. The z axis is directed along this axis,
the x axis is perpendicular to z and lies in the collision
plane, and the y axis is perpendicular to the collision
plane. v is the x component (perpendicular to the in-

ternuclear axis) of the velocity vector v.
The time-dependent exponent in (2.6) was omitted in

the related formula (3.9) of Ref. [5]; however, it was

included in all subsequent calculations. In the simplest
approximation (used later) the energies Eq(t), E2(t) co-
incide with the separated atom energies E,Eg, then the
time-dependent exponent in (2.6) follows directly from
(2.2) and (2.3). More generally, some additional net in-

teraction between the colliding particles can be incorpo-
rated in Eq(t),E (t).2We include in (2.7) the correction
factor D. Its calculation is discussed in the Appendix.

The charge-transfer amplitude (2.1) is presented now

as the integral over time:

This representation is quite appealing since it has the
form of the 6rst-order nonstationary perturbation the-
ory. From this point of view all previous development
is intended to provide a proper form of the interaction
matrix element V(t) in the case of the charge exchange
when the momentum transfer by the electron is taken
into account. Note that the well-known problem of non-

orthogonality of the electron intial and 6nal states and
the non-Hermiticity problem (see the Introduction) do
not appear in the present approach.

The speci6cs of the Demkov model appear when the
integral over time in (2.10) is evaluated. In the Landau-
Zener model the difference Eq(t') —E2(t') is zero for some
internuclear separation (which corresponds to the cross-

ing of the diabatic potential curves). For the Demkov
model we assume that this difference is time indepen-
dent and equal to the energy defect of the process
E, (tr) —E,(tr) = aE, bE =—E. —E, = -', (p' —a');
thus

(2.11)dt V(t) exp ( ib,E t) . —
2

O(t) = —q, R(t) —ib,E t (2.12)

The important feature of the integral (2.11) is the ex-
ponential dependence of the matrix element V (2.7) on
the internuclear separation R. It is taken into account in
calculations by the conventional sationary phase method
(see, e.g. , Ref. [17]) when the exponential factor exp(4)
is singled out in the integrand:
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For the time dependence of the internuclear separa-
tion we assume the straight-line approximation R
gp + v t, where p is the impact parameter. The large-

p asymptote of the transition amplitude is defined by the
vicinity of the point of the closest approach on the tra-
jectory of the atomic nuclei (t = 0), where the projection
v [which enters p (2.8)] is close to v. Therefore for sim-

plicity we use in (2.12) po instead of p (2.8):

C
&Jscr-+s'cr )

1

(~) (~) xpv 2

f,~~,~~ = A A Dpog
2K

f( + p) ) a/~+ b/P

x
i

—p4r

x exp ——p

(3.i)

(3.2)
1
2V'( —+P)'+". (2.i3)

The stationary phase point in time tp is defined by the
equation dC /dt = 0. Its solution is

The most important part of this expression (which de-
fines the threshold behavior of the charge-exchange am-
plitude as the impact parameter p decreases) is the ex-
ponential factor exp( —pre/v) with the argument

tp ———i—,tc, = ppv +QE,
V K

(2.14) ( =—p~/v = —Q(n + p) 2v2 + v4 + 4b, E2
2v

with the phase at this point

K
4(tp) = ——p

v
(2.15)

F =i2[Y/ ~ Y$$~g] A A D 7r 7Qg
~

() (~) f2mpvi '

)

((n+ p)v p()x
i 4~ & ) v

(2.i6)

where now

and R = Ro ——prov/z. The integral (2.11) is given by

which is essentially the Massey parameter characterizing
the transition in the situation considered here. It is some-
what diferent &om the parameter found by Demkov and
Ostrovsky [16] for the extremely large impact parame-
ters. In the present formulation the latter regime appears
for the impact parameters p so large that the exponential
behavior of g(p) (2.18) becomes essential. Now we ana-
lyze the regime of small resonance defect AE and mod-
erately large p when g(p) = l. In this region the charge-
exchange amplitude F is presented in the appealing form
of the integral over time (2.10) whereas for the extremely
large p the stationary phase integration should be per-
formed simultaneousely in the coordinates and time [16).

In the adiabtic limit v ~ 0 the Massey parameter is

Ck + + K Pp.
1

(2.i7)
b,E. —

v
(3 4)

The correction factor g

g = exp [
—(p —po)povp/tc] (2.18)

III. CHARGE EXCHANGE st m s'cr
AND THE EFFECT OF ETF

Since s states are correlated only with o. molecular
states, we denote this transition as so m s'o in order
to make the notations uniform with the other cases con-
sidered in Secs. IV—VII. The one-center orbital depolar-
ization transitions are absent for s states and the factor
in the square brackets in (2.16) is simply 1/(4m). We
rewrite the formula for the charge-exchange amplitude
for this important case:

appears due to the choice of large phase in the form (2.12)
with p instead of pp. It is discussed in Sec. III.

The fact that Retp ——0 shows that the principal contri-
bution to the charge exchange comes from the vicinity of
the point of the closest approach on the trajectory. In the
next section we discuss the implications of the formula

(2.16) for the simplest case of the charge exchange be-
tween the atomic s-states, for which the Demkov model
was originally suggested.

Na(3p) + H+ -+ Na+ + H(n = 2), (3.5)

extensively studied recently both in experiment [18—21]
and theory [22—24] including the differential cross sec-
tions for small scattering angles. This process does not
belong to the so —+ s'o. type. However, as shown below
(Secs. IV and V) the exponential part of the amplitude
is the same for all types of the processes. It depends only
on the energy parameters n and P and on the collision ve-
locity v. The incident proton energy in the experiments
by Houver et al. [21] was 1 keV, which corresponds to v
= 0.2 a.u. The other parameters of the colliding atoms
are (in atomic units)

n = 0.5, P = 0.472,

b,E = E —Eg = —(P —n ) = —0.0134.
2

(3.6)

The term (n + p)2v2 under the square root in (3.3) ap-
pears due to the specifics of the charge-transfer process
described by the Demkov model: the rapid variation of
the interaction V with R. It is not related to ETF's. The
latter effect generates only the term v4 in Eq. (3.3).

As an example of the situation when v is not small as
compared with the typical electron velocity (n or P) we
consider the charge-exchange process
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The first term under the square root in (3.3) prevails and
the Massey parameter is recast conveniently as

n+p f 2 4bE2
=p 1+ +

2 I, (n+ p)'v')
n+P n+P 2

AE2

The parameter

(3.8)

essentially coincides with the similar parameter intro-
duced in Ref. [5]. It is the ratio of the collision velocity
and the (doubled) typical velocity of the electron in the
bound atomic states and characterizes the importance of
ETF's (note that in Ref. [5] the parameter ( was erro
neously named the square of the velocities' ratio). In the
present example (2 = 0.042 while the third term under
the square root in (3.7) is 0.019. For the impact param-
eter p = 20 a.u. (which is typical for the small angle
scattering observable in experiments) according to (3.7)
inclusion of ETF's reduces the charge-exchange ampli-
tude by the factor 0.82. Of course this estimate demon-
strates the overall situation and for some scattering char-
acteristics the momentum transfer effects could be more
significant. For the electron orbital asymmetry created
by the charge exchange the situation is analyzed below.

IV. CHARGE EXCHANGE INDUCED
BY RADIAL AND ROTATIONAL COUPLING IN

THE DEMKOV MODEL

In order to account for the one-center depolarization
transitions (which mix the states with various quantum
numbers m or ms) we generalize formulas (2.4) and (2.5)
in the following way:

turn numbers m o,mso in (4.1) and (4.2) coincide with
the projection A of the electron orbital momentum on
the quasimolecule axis. This implies that we are us-

ing the molecular-orbit representation because it is more
suitable for the qualitative analysis. Hence the coefIi-
cients c,(t) describe the depolarization transitions in
the molecular basis (DTMB). Note, however, that in fact
our molecular orbits are the atomic states but with the
electron orbital momentum coupled rigidly with the in-

ternuclear axis.
Consider two important extreme cases. In the adia-

batic regime (with respect to DTMB) the electron orbital
momentum follows rigidly the internuclear axis; thenc,(t) = exp[ —i:" (t)] b

c, „(t)= exp[ —i:-,(t)] b

(4.4)

for all values of time t. Here " (t) and:-, (t) are
the adiabatic phases gained on the Born-Oppenheimer
potential curves E~(R) correlated with the initial and
final states, respectively,

t

:-p(t) = bEp(t') dt', bEp(R)—:Ep(R) —Ep(oo).

(4.5)

The index A stands for the electron orbital momentum
projection on the internuclear axis.

In the opposite regime the electron orbital momentum
is completely decoupled from the internuclear axis and re-
tains its orientation in space. This implies that the tran-
sitions between the quasimolecule states are operative;
they are of purely geometrical origin. The coefIicientsc,(t),c, „(t)coincide with the matrix elements
of the space rotation operator in the basis of the spheri-
cal harmonics, i.e., with the well-known Wigner functions
(see, e.g. , the book by Edmonds [25]);

XP (p ) exp( —nr ), (4.1)

c,(t) = d~'l, (P+ vr/2),

{4.6)

gl'&(r„t)= ) c. ..(t) Y„,i —
iE"s)

xpl l(rs) exp( —pry). (4 2)

Here the information about the one-center transitions is
contained in the matrix of time-dependent coefIicients
c(t). The initial conditions aree, (t) mb „c,„(t)mb

for t m —oo. (4.3)

Thus m o and mbo are the electron azimuthal quantum
numbers in the initial and final states, respectively. It
is convenient to assume that on the right-hand side of
expressions (4.1) and (4.2) the spherical functions are
quantized along the internuclear axis. Then the quan-

We choose the zero of the internuclear axis rotation angle

P corresponding to the position of the closest approach
in course of the collision (t = 0); then sing = vt/R (note
that in Fig. 1 one has P ( 0). In terms of the locking
radius Rl. (see, e.g. , the review by Hertel et al. [26]) the
first case considered above corresponds to the relation

p &( RI„whereas in the second limit p )) RL, .
Now the functions (4.1) and (4.2) should be used in-

stead of (2.4) and (2.5) in the calculation of the sur-
face integral in Eq. (2.1) and the integral over time [see
(2.11)].Clearly this substitution does not change the po-
sition of the stationary phase point (2.9) and (2.14) and
influences o .ly the p-dependent pre-exponential factor
which should be calculated at this point. Only this factor
incorporates the orbital quantum numbers l, m, lb, mb.
Both the exponential factor and the power of p in the pre-
exponential are universal and hence coincide with these
obtained above for the case L = m = lb ——mb = 0
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(so -+ s'o transitions). This is an important property
of the asymptotic regime in the large impact parameter
p. Note, however, that the pre-exponential factors have
different v dependence for various types of transition and
difFer in magnitude substantially (see below).

Formally it is convenient to express the charge-
exchange amplitude in terms of the standard expression
(3.2) for the amplitude of the so -+ s'o transition, which
incorporates the exponential and power p dependence.
The factor before this amplitude contains the coefBcientsc,(t), c, „(t)calculated at the stationary phase
point tp (2.14):

Fj ~
—i 47r ) [Yj Yj ] cp (tp)

A, A'

xcp, (—tp) (—1)" f,
(4.7)

For the s ~ s' charge exchange the formula (4.7) reduces
to (3.1). Both on the left- and right-hand sides of (4.7)
the quantum numbers in the initial (l, m ) and final

(ls, ms) atomic states correspond to the quantization in
the space-fixed &arne along the initial position of the in-
ternuclear axis which coincides with the collision veloc-
ity vector v. The final position of the internuclear axis
is antiparallel to the vector v, which in the straight-line
approximation does not change its direction. Transitions
to the v axis in the final state lead to the appearance
of the phase factor (—1)" and the subscript —m~ on the
right-hand side of Eq. (4.7).

The expression (4.7) describes the amplitude of the
charge exchange between the atomic states l,m
lg, mg in the space-fixed &arne as a sum of the contri-
butions related with various molecular quantum numbers
A, A'. Here A (A') refers to the projection of the elec-
tron orbital momentum on the internuclear axis. The
molecular orbitals are correlated in the separated atom
limit with various substates of the atoms a (b). In other
words, the same 6nal atomic state can be populated via
various paths corresponding to the transitions between
the quasimolecular states.

The terms in (4.7) with A = A' correspond to the
charge-exchange transitions induced by the radial cou-
pling which do not alter the electron orbital momen-
tum projection on the internuclear axis. It should be
noted, however, that below we account only for o ~ u'
transitions of this type (A = A' = 0). The analysis of
m ~ m' transitions (and more generally, the transitions
with A = A' g 0) in the framework of the present theory
contains some peculiarities which need a separate study.

The terms with A g A' represent the transitions in-
duced by the rotational (or Coriolis) coupling between
the quasimolecular states. Note that the matrix ele-
ments of direct rotational coupling do not vanish only
for

~

A —A [= 1. However, indirectly (i.e. , via the in-
termediate states) the rotation-induced transitions occur
also for all

~

A —A' [) l. It can be shown that the
related contributions to the total charge-exchange am-
plitude (4.7) decrease for the higher EA—:

[ A —A'
~

as
rl ", where g = K(a+ p)/pp is small: rl v/(a+ p) for
v ) 2AE/(a + P). The account for the transitions with

AA ) 1 clearly demonstrates that the present approach
is broader than the 6rst-order perturbation theory in the
molecular basis.

As an independent variable it is convenient to use in-

stead of time t the angle, P which has the simple ge-

ometrical meaning (see Fig. 1). Then the value of Pp
corresponding to the stationary phase point in time tp is
defined by the relations

. AE
sinPp —— i— , cosPp ——gl+ [6E/(ppv)]2.

fpv
(4.8)

q AE
@p ——Imgp ———sinh

fpv
(4.9)

Qualitatively this "quasiangle" characterizes the impor-
tance of the DTMB for the charge exchange.

The angular factor in the square brackets in (4.7)
should be evaluated at the stationary phase point in apace
(2.9). In practical calculations it is convenient to intro-
duce the other quasiangle Op by the relations

Q(a+ P)'+ ~2/pp2

Vp(a+I)' ' a+/3
(4.10)

The charge-exchange process can be interpreted in terms
of the electron fiux from the atom a to the atom b. Quali-
tatively it is important to trace how the electron current
crosses the surface S dividing the colliding atoms (for
the precise definition of S see Ref. [5]). In the case of
large R (or p) the electron fiux crossing S is concentrated
at the vicinity of the stationary phase point xp (2.9).
The geometrical meaning of Op is clear &om the relation
tan(iOp) = —xp/(R/2): this (quasi)angle shows how the
line of the electron 6ux deviates &om the straight line
which joins a and b (for the latter xp ——0). Thus in con-
tradistinction to 4p the quasiangle Op characterizes the
dynamics of the electron in the course of charge exchange.

In the subsequent discussion we use the spectroscopic
notations as the indices of the spherical harmonics quan-
tized on the internuclear axis that cannot lead to con-

Physically tp (or Pp) specifies the moment of time (or
the point on the trajectory) when (where) the charge ex-
change primarily occurs and the related 6nal molecular
states are populated. Generally the contributions which
come &om various moments of time t should be summed
coherently as the formula (2.10) [or (2.11)] implies. In
the asymptotic region considered here this coherent sum-
mation is equivalent to calculating the contribution &om
the single point of stationary phase tp (or Pp). Since

Pp g 0, this point is somewhat shifted from the point
of the closest approach P = 0 and the value of Pp can
be considered as a "geometrical" measure of this "re-
tardation" effect. For subsequent analysis it is essential
that the sign of Pp depends on the sign of the charge-
exchange energy defect AE and thus bears information
on the charge-transfer dynamics. The direct geometrical
interpretation is somewhat obscured by the fact that Pp
is imaginary. For the simplification of the formulas below
it is convenient to introduce its real counterpart
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fusions. Note that the pm+ quasimolecular state is sym-
metric under the reflection in the collision plane.

The following simple arguments applied to the sim-
plest case of the s + p charge transfer show the relation
between the magnitude of the quasiangle 00 and the
rotation-induced charge exchange. In the case 00 ——0
(or zp = 0) the spherical functions [Y, ] and [Y„]are
nonzero, whereas [Yz ] is zero ([Yz ] is always zero
due to the symmetry reasons). Thus, due to the factor
in the square brackets in (4.7), only so -+ po charge-
exchange transitions (A = A' = 0) are operative in this
case and the rotation-induced so. ~ per transitions are
absent. This limit corresponds to the low collision ve-
locity regime (Sec. VI). As Op increases (which occurs
for the higher collision velocities), the value of the spher-
ical function [Y„+]at the point of stationary phase is
enhanced and the rotation-induced charge exchange be-
comes more important. Quantitatively the situation can
be interpreted in terms of the Coriolis forces which deflect
the electron Hux in the charge-transfer process from the
straight line, thus enhancing the A-changing transitions.

In the adiabatic regime with respect to the DTMB the
surnrnation in formula (4.7) is lifted due to (4.4). This
makes the expression for the charge-exchange amplitudes
particularly simple. Note that in this case m = A and
mi, ———A', but the amplitude (4.7) is nonzero for all
A, A' including A g A'. Thus the rotation-induced charge
exchange is operative in this limit also. Below we con-
centrate primarily on the opposite case which seems to
be most likely for the distant collisions.

V. CHARGE EXCHANGE s ~ p
AND THE ORBITAL ASYMMETRY EFFECTS

Applying the general theory of the preceding section to
the most simple case of the s m p charge exchange, we
see that three quasimolecular states should be considered:
sa, pa' and pir+ (the subscript indicates that the pvr state
is symmetric under the reHection in the collision plane).
For the subsequent discussion we need two corrolaries of
the preceding asymptotic analysis.

The first corollary is the relation between the am-
plitudes of the charge exchange induced by the radial
(so ~ pa) and rotational (scr m per+) coupling. Accord-
ing to Sec. V the amplitudes for the transitions between
the quasimolecular states are

for the distant collisions is that the electron orbital Ino-
mentum in the p state is completely decoupled from the
internuclear axis. Hence there is no transition between
the atomic p substates in the space-fixed kame. In this
frame as an axis of quantization we choose the vector of
the initial collision velocity v (axis X in Fig. 1). Then
we denote as

~
10) the atomic p state with zero projec-

tion mb of the orbital momentum on this axis, and as
~
ll+} the superposition of the states with m~ = 1 and

mb ———1 symmetrical under the reHection in the collision
plane. The definition of the states

~

10 ) and
~

ll+) is
elucidated by Fig. 1.

The connection between the space-fixed and the quasi-
molecular states is given by an obvious relation

~

10) = cos(P)
~
per+} —sin(P)

~
prr},

~

11+) = cos(P)
~
po} + sin(P)

~
p7r+},

(5.3)

(5 4)

Fop~ ip = (
—sinh Op cos Pp

+i cosh Op sinPp ) ~3 f, ~, (5.6).
The amplitudes (5.5) and (5.6) are written in the particu-
lar concise form if the real quasiangle 4'p (4.9) is employed
instead of imaginary Pp.

Fpp~ii+ — i cosh(Op —+ 4'p) v 3 fsoms'cr& (5 7)

where P = tan (vt/p) (see Fig. 1). Equations (5.3)
and (5.4) show in particular that the time (or P) inde-
pendence of the wave function in the space-fixed basis
implies strong depolarizing transitions in the quasimolec-
ular basis.

Now we use the second corollary of the asymptotic
analysis: for large p the charge exchange is effectively
concentrated at one moment of time t = tp [or P = Pp,
see Eq. (4.9)], which is, however, complex valued. Com-
bining these results with formulas (5.1)—(5.4) we obtain
straightforwardly the final expression for the amplitudes
of the charge exchange into the space-fixed p states [this
formula is a particular case of the general expression
(4 7)]:

Fpp~ii+ = (
—i coshOp cosfp

—sinhOp sinPp) ~3 f, ~, , (5.5)

F, „=i cosh Op ~3 f. — (5.1) Fpp ip ———sinh(Op + 4p) v 3 f (5.8)

F, ~~ = —sinhOp +3 f, (5.2)

where the definitions (3.2) and (4.10) should be em-
ployed. The quasiangle 00 characterizes the relative
importance of the two types of transitions. For the
small collision velocities the quasiangle Op is small (see
Sec. VI) and the radial-induced charge exchange pre-
vails. However, for the medium velocities both types of
transition should be taken into account. Note also that
the phases of the amplitudes (5.1) and (5.2) differ by zm.

The third type of transition is the one-center depolar-
ization mixing pu ~ per+. The most natural assumption

Thus the substates of the final atomic p states are pop-
ulated coherently with various amplitudes and phases
which generally implies the presence of the orbital asym-
metry effects.

The alignment is characterized by the parameter A:

~
Foo~io ~' —

~
Foo~ii, ['

) Foo-+io ( + [ Foo ii+ [

(5.9)

This definition coincides with that used, for instance, in
the experimental papers [20]: the amplitude Fpp~ip de-
fines population of the p states with the electron orbital
parallel to the collision velocity vector n, and Eoo~qq
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corresponds to the p orbital perpendicular to v (Fig. 1).
The circular orbital polarization of p state is charac-

terized by the orientation parameter

cy — c

I ci I'+
I
c-i I" (5.10)

where cq and c q are the population amplitudes of the
Hnal p substates with the angular momentum projection
m' = 1 and m' = —1 on the axis perpendicular to the
collision plane. The signs are chosen so that the relative
motion of the colliding particles proceeds in the positive
direction. Thus in the states with m' = 1 (shown in Fig. l
as

~ +)) the electron rotates around its nucleus in the
same direction as the colliding particles. The population
of such states is conventionally referred to as being in
agreement with the velocity matching picture.

Formulas (5.7) and (5.8) lead to the compact analytical
expressions for A and II:

A = —sech(28p + 24p),

II = tanh(28p + 24p).

(5.11)

(5.12)

Note that the p dependence is canceled in this expression,
i.e., A and II are approximately constant for large impact
parameters. We discuss the physical implications of this
result in more detail in Sec. VI.

We cite also the expressions for A and II in the situa-
tion adiabatic with respect to the DTMB:

A = sech(28p), (5.13)

VI. MECHANISMS FOR CREATION
OF THE ELECTRON ORBITAL ASYMMETRY
IN THE CHARGE-EXCHANGE PROCESSES

In. this section we analyze the physical implications of
the results obtained above.

(i) The inHuence of the electron momentum transfer is
of the order of the square of the parameter ( (3.8) for
various l m ~ lyme charge-exchange processes. Since
the inHuence is small in the conditions of the existing ex-
periments [18—21], it does not appear as an independent
source of the asymmetry eKects, although it somewhat
modifies the manifestation of the eKects generated by the
other mechanisms. Therefore we neglect it in the discus-
sion of points (ii) and (iii) below, which correspond to the
replacement of p and pp by (a+P)/2 in the calculation of
the asymmetry parameters A and II. Note that the elec-
tron momentum transfer efr'ect on the exponential part
of the charge-exchange amplitude (discussed in Sec. III)
is the same for all l m —+ lyme charge-exchange tran-
sitions. Therefore it does not inHuence the asymmetry
parameters.

II = —tanh(20p + 24p) cos 6, b, =:-p(tp) —:-i(tp).
(5.14)

Here the adiabatic phases =p(tp) and i(tp) are calcu-
lated respectively for cr and x quasimolecular potential
curves correlated with the p state of the atom b.

The definition of the electron momentum transfer ef-
fects deserves some clarification. The present calcula-
tions employ the electronic wave functions in the form
(2.2) or (2.3), which can be considered as the atomic
orbitals multiplied by ETF's (the deviation from this
form appears in the calculations of the correction fac-
tor D) Ca. lculation of the stationary phase point shows
that xp (or Op) is nonzero only in the presence of ETF's.
Then the discussion in Sec. IV implies that the rotation-
induced transitions would not appear in the present for-
malism if ETF's would be omitted.

However, it is well known that the rotation-induced
transitions alternatively can be described in the quasi-
molecular theory without ETF's. Therefore we do not
consider the rotation-induced o ~ m charge-exchange
transition as due to the physical efFect of the electron
momentum transfer defining as the electron momentum
transfer sects only those which cannot be described
in the ferro state q-uasimolecular calculations ipithout the
ETF's. Thus in the definition adopted here the physi-
cal electron momentum transfer efI'ects do not coincide
with the results of ETF inclusion in the formal scheme
of the calculations in the atomic basis. With such (actu-
ally conventional) definition the eKect of the momentum
transfer by electron plays a minor role in the medium
collision velocity region discussed in Sec. III.

(ii) Coherent population of various p substates results
in the orbital asymmetry in the final state. The substates
are populated due to the radial- and rotation-induced
charge exchange. The relative importance of this transi-
tion is governed by the quasiangle Op. Equation (4.10)
shows that for very small velocities the quasiangle 00 has
a constant value 2AE/(a+ P)2. However, if

v )& vp =—2b, E/(a+P), (6 1)

then the quasiangle Op becomes a linear function of (:
Op ——t,". This important domain can be named the
medium velocity region. Its upper boundary is defined
by the condition ( && 1. For the parameters (3.6) one has
vp ——0.0276 a.u. and the condition (6.1) is well satisfied
in the current experiments [21] where v = 0.2 a.u. and (
= 0.2.

The velocity dependence of the quasiangles 00,@0 for
these values of parameters is shown in Fig. 2. The elec-
tron momentum transfer effects are responsible for the
deviation of p and pp from their limiting value 2 (a+ P).
The inHuence of these eEects on the quasiangles 00 and
4p is very small in the medium velocity range (v & 0.6)
and cannot be distinguished in the present scale.

(iii) The other mechanism creating the orbital polar-
ization is connected with the inHuence of the DTMB on
the charge exchange. In the case of the Demkov model
this effect is represented by the quasiangle 4p (4.9). More
generally, 40 can be considered as an e6'ective parameter
which expresses the degree of the adiabaticity in the de-
polarization process. If the relation (6.1) is satisfied, then
4p (4.9) is small: 4'p ———2AE/[v(a + p)]. In the oppo-
site case 4p becomes large: 4p ——ln[(2(a+P)v/

~

4AE ~]

(AE & 0). Note, however, that for small collision ve-
locity the assumption of the orbital momentum decou-
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FIG. 2. The collision-velocity dependence of the quasian-
gles Op (solid line) and 4p (dashed line) characterizing two
principle mechanisms of the orbital asymmetry creation in
the s ~ p charge exchange. The system parameters are cho-
sen according to (3.6). The characteristic velocity vp (6.1) is
indicated.

pling from the internuclear axis holds only for very large
impact parameters p. In this situation the expressions
(5.13) and (5.14) for the asymmetry parameters could be
more appropriate than (5.11) and (5.12).

Now we turn to the discussion of the orientation pa-
rameter II. Formula (5.12) shows that nonzero circular
orbital polarization in the final p state generally appears
provided at least one of the effects (ii) or (iii) is present.
In the asymptotic region the contributions of these ef-
fects are separated since they are additive under the sign
of hyperbolic functions. The important feature of the ex-
pression (4.9) is that the quasiangle Cip is an odd function
of the energy defect b,E. If b,E ( 0 (i.e. the binding en-

ergy of the s electron exceeds that of the p electron), then
C Q & 0 and the contributions of two effects are summed
constructively in (5.11) and (5.12) (note that the quasian-
gle ep is always positive). The velocity dependence of the
orientation parameter is shown in Fig. 3. In the opposite
case AE & 0 the contributions are summed destructively
(4'p ( 0), which implies a much smaller value of the ori-
entation parameter in the medium velocity region. This
effect has phase origin; it is not related to the classi-
cal velocity matching arguments. Its counterpart in the
Landau-Zener model [6] is the dependence of the Stueck-
elberg phase 4 on the sign of the energy difference. For
&E =- 0 one has 4p ——0. This situation corresponds
to the accidental degeneracy between s and p levels of
different atoms.

In Fig. 3 we show also the results obtained from (5.12)
by setting Op = 0 ol @p = 0. The contributions of two
effects are comparable for v = 0.2, although the role of
the rotation-induced charge exchange is somewhat larger:
Op ——0.206 and 4Q ——0.135. Curiously, the value v = 0.2
used in the experiments [21] corresponds to the minimum
in the II(v) dependence, which is, however, very shallow.

We show also in Fig. 3 the orientation parameter II(v),
which is obtained if one changes the sign of the energy

FIG. 3. The orientation parameter II(v) (5.6) (bold solid
line) for the final p state calculated according to the formula
(5.8) using the quasiangles Op and 4p shown in Fig. 2. The
fine line shows II(v) which is obtained when the sign of @p
is changed, which corresponds to the change of the sign of
the process energy defect KE (see text). Also shown is the
orientation parameter in the absence of the rotation-induced
charge exchange (Op = 0, dashed line) and in the case 4'p ——0
(dash-dot ted line) .

defect AE, retaining the absolute values of the parame-
ters according to (3.6). In agreement with the discussion
above in this case II(v) turns zero near the value v = 0.23
and is negative for the smaller velocities where the con-
tribution of the DTMB prevails. In this region the sign
of the parameter II(v) is opposite that predicted by the
conventional velocity matching arguments. The experi-
mental observation of this effect would be particularly
interesting.

The alignment parameter A(v) is equal to —1 in the
case Op = Cp = 0. This refIects the fact that in the
absence of the rotation-induced charge exchange (Op ——

0) only the po' molecular orbital is populated. If 4p ——0
this occurs exactly at the moment of the closest approach
when the electron wave function is

~
11+). After that the

electron cloud retains its orientation in space. If Op+ 4 p

is nonzero, then the alignment parameter is smaller in the
absolute value but always negative: 0 ) A ) —1 (Fig.
4). It is closer to its limiting value —1 when AE ) 0 and
4p & 0. Note that in a situation diabatic with respect to
the DTMB the sign of A is positive as follows from the
formula (5.13).

VII. ASYMMETRY IN THE
Na(8p)+H+ ~ Na+ + H(n = 2) PROCESS

As indicated above, the process (3.5) could be con-
sidered as one of the benchmarks for the study of the
asymmetry effects in the charge exchange. It was ex-
tensively explored in the experiments [18—21] and the
coupled-states calculations in the molecular [22, 23] and
atomic [24] bases generally demonstrate agreement with
the measurements. The object of the present section is
colnplementary to the cited large-scale computer calcula-
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FIG. 4. The same as in Fig. 3 but for the alignment pa-
rameter A(v) defined by the expression (5.5) and calculated
according to the formula (5.7).

(7.1)

This expression shows that in the asymptotic region the
asymmetry characteristic A or II calculated for one of the
partners (e.g., 5) does not depend on the depolarization
(ms-changing) processes in the other partner (a). This
property is generalized straightforwardly to the case of
the hydrogen-type degeneracy of the energy levels when
Lg-changing transitions between the degenerate levels also
should be included.

In the experiments [18, 20, 21] the Na(3p) states with
various orbital polarization were prepared and the mea-
sured cross sections of the charge-exchange process (3.5)
do not distinguish the final H(n = 2) states. In the

tions. The present asymptotic theory has a more narrow
applicability domain and gives less precise numerical re-
sults. However, its expressions for the asymmetry param-
eters are extremely simple and allow a detailed physical
interpretation as shown in the preceding sections.

The process (3.5) does not belong to the pure p ~ s
type (which is a simple inverse of the s ~ p process).
The reason lies in the speci6c hydrogenic degeneracy of
the energy levels which generally lead to the strong one-
center 28 ~ 2p transitions between the 6nal states of
H*. However, the present results can be easily general-
ized to this case. This possibility stems &om the general
property of the expression (4.7) for the charge-exchange
amplitude in the asymptotic theory: it is factorized in
the indices (quantuxn numbers) of the initial and final
states:

asymptotic region the charge-exchange cross sections can
be characterized by the asymmetry parameters calcu-
lated according to the formulas &om Sec. V; now these
parameters refer to the asymmetry of the initial Na(3p)
state. The same expressions characterize the asymmetry
effects for the experiments [19]where the charge exchange
into the final H(2p) states is detected.

The results of the asymptotic theory should be com-
pared with the measurements resolved in the scattering
angle since the domain of large impact parameters gen-
erally corresponds to the small scattering angles.

For the collision velocity v = 0.2 employed in the ex-
periments [20, 21] one obtains with the help of the ex-
pressions (5.11) and (5.12), II = 0.592 and A = —0.806.

The sign of II is in agreement with the velocity match-
ing picture. Houver et al. [21] report the sign of the
orientation eÃect opposite to that expected &om the ve-

locity matching picture assuming a repulsive interaction
between the colliding particles (note that this conditional
statement does not imply that the authors really make
an assertion about the interaction sign).

However, the asymptotic approach leads to the con-
clusion about the attractive character of the net interac-
tion between the colliding particles in the process (3.5).
Indeed, in the asymptotic theory the probabilty of the
charge exchange is generally proportional to the electron
density in the initial and 6nal state at the midpoint be-
tween the nuclei in the moment of the closest approach.
In the case of hydrogen-type degeneracy the Stark states
of H* are formed in the 6eld of the other collision part-
ner (ion). The charge exchange proceeds primarily into
one of the Stark states [27], namely, to that which cor-
responds to the enhancement of the electron density be-
tween the nuclei. The interaction between the atom in
this Stark state and the incident ion corresponds to the
attraction [28].

The absolute value of II in the experiments by Houver
et al. [21] varies between 0.4 and 0.3 (with the experi-
mental error bars 6 0.1) when the scattering angle varies
in the interval 0.015' ( 6 ( 0.045 . Our value of II is
somewhat higher (Fig. 5), which is natural if one bears
in mind that the quasiangle 40 can be considered as an
effective parameter; then formula (4.9) gives its upper
limit. Bearing in mind the extreme simplicity of expres-
sion (5.12), the relation between theory and experiment
could be considered as quite satisfactory.

As for the sign of the alignment parameter A, in
the asymptotic theory it corresponds to the more efFec-
tive charge exchange when initially the electron cloud in
Na(3p) is oriented perpendicularly to the collision veloc-
ity vector v (see Fig. 1). In the present picture it retains
orientation in space in the course of the collision and in
the moment of the closest approach it corresponds to the
zero projection of the electron orbital momentum on the
internuclear axis. The charge exchange occurs primarily
close to this moment of time; for the state under con-
sideration it is induced by the radial coupling, which is
more eKcient than the rotation-induced charge exchange.
Namely, this mechanism is reQected in the sign of A ob-
tained in the present approach.

The measurements [20] give the sign of A opposite
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FIG. 5. The orientation parameter II for the process (3.5)
as a function of the scattering angle 8 for the collision velocity
v = 0.2 a.u. Closed circles, the experimental data [21]; solid

line, large-scale numerical calculations in the atomic basis by
Nielsen et at. as reported in Ref. [24]. The horizontal dashed
line shows the estimate within the present asymptotic theory
which is 8 independent.

VIII. CONCLUSION

The asymptotic approach developed in the present pa-
per combines some features of the calculations in atomic
and molecular bases. The introduction of ETF's is most
straightforward in the atomic kame. As a result, the ap-
plicability region is extended to the higher velocity do-

this. In contrast to the measurements of II for the fixed
scattering angle [21], these experiments give the integral
value of A summed over all scattering angles. The con-
tribution of comparatively small impact parameters in-

corporated in the experimental value of A could be the
tentative reason for the disagreement in sign. Note that
for the close collisions the situation adiabatic in the one-
center depolarization transitions is more likely. Here the
sign of A is positive, as follows from (5.13).

A comparison can also be made with the extensive
close coulping calculations in the molecular basis [23].
The charge-exchange probability in this paper is pre-
sented as a function of the impact parameter p for v =
0.14 (Fig. 5 of [23]) and v = 0.283 (Fig. 6 of [23]). The
Na(3p) II initial state in the notations of this paper cor-
responds to the state

] ll+), which is more effective in
the charge exchange in our picture as described above. A
comparison between Figs. 5(b) and 5(d) (v = 0.14) from
Ref. [23] shows that this state is more effective indeed
for p ) 19. For v = 0.283 [Figs. 6(b) and 6(d) of [23]]
the same conclusion is inferred for p & 15. Thus the sign
of A obtained in the numerical calculations [23] for the
large impact parameters p is the same as in the present
approach. The same sign of A was obtained in the recent
integral measurements [29] for the charge exchange with
the other collision partners: He + + Na(3p) ~ He+(n =
4) + Na+.

main as compared with the simple few-state molecular
basis treatment. The theory is developed in terms of the
molecular orbital picture, which is more convenient for
the qualitative interpretation.

The principal results of the present paper are given
by formulas (3.2), (5.7), and (5.8). They give simple
and general analytic expressions of the asymptotes of the
charge-exchange amplitudes. The expressions (5.11) and
(5.12) for the asymmetry parameters follow directly from
them. Since they are applicable to the large impact pa-
rameters (or small scattering angles) they include only
characteristics of the separated colliding atoms. The
analysis of these formulas allows us to elucidate man-
ifestation of various basic physical efFects: momentum
transfer by electron, competition between the charge ex-
change induced by the radial and rotational coupling, and
the influence of the DTMB on the charge exchange.

The current understanding of the mechanisms of the
asymmetry creation in the charge-exchange process suf-
fers &om the absence of the simple physical models. Such
models remain important in the age of computers because
they contribute much to the understanding of the phys-
ical nature of the efFects which are sometimes hidden in
the large-scale computer calculations. They allow one to
trace the role of various parameters of the collision part-
ners. This analysis is difFicult in the numerical studies
where the parameters are restricted usually to the values
specific to the atoms under consideration.

The well known and useful models (Landau-Zener and
Demkov models) are the two-state models and apply di-
rectly to the 8 ~ 8' transitions. When the 8 ~ p
charge exchange is considered, the description of the di-
rect 8o. ~ po transitions proves to be quite similar to
s m 8' process. However, two additional types of transi-
tions appear in the system: the So ~ per charge exchange
induced by the rotational coupling and the one-center
po m p~ depolarizing transitions. For the qualitative
analysis of the processes involving p states, the concept
of the locking radius Bl, is often employed. However, it
is not useful for the distant collisions (p RL, or larger)
[26], which are known to play an important role in the
charge exchange.

The present paper suggests the simple models, al-
though they are limited to the distant collisions. This
is the price which should be paid since the system under
consideration is more complicated and actually contains
three states: the initial s state and the final po and pm

states. The basic results of our analysis are as follows.

(i) The impact-parameter dependence of the charge-
exchange amplitudes is factored, which means that the
final-state asymmetry characteristics are p independent
for large p.

(ii) For the medium collision velocity (collision velocity
is about half of the typical electron velocity) the effects
of the momentum transfer by an electron do not play a
qualitatively important role.

(iii) Two mechanisms are of comparable importance
when the asymmetry is analyzed: the competition be-
tween the charge transfer induced by the radial and ro-
tational coupling and the role of the DTMB. These effects
can be characterized by the quasiangles Oo, @0 which are
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defined by the simple analytic expressions. The first be-
comes predominating for the higher collision velocities
whereas the second is more important for slow collisions.

(iv) The sign of the process energy defect EE plays an
important role: in the medium velocity region the asym-
metry is significantly enhanced if the s level lies lower
than the p level; it is suppressed in the opposite case.
The experimental verification of this effect is highly de-
sirable.

(v) For the charge-exchange process (3.5) the esti-
mated orientation parameter is in satisfactory agreement
with the experimental measurements at small scattering
angles.
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APPENDIX

Here we list the alterations necessary when the Demkov
model is considered.

The correction function D is presented as D
exp( —S& & —S(s)), where the functions S( &,S(s& are given

by formulas (A. l)—(A.3) from Ref. [5]. They express the
correction factor as a functiuon of the coordinates $ and

g, which are introduced as

(A1)

and contain also the components of the unit vector r /r:
Azz pA+y pA+z

In the factor D the correction functions S~ ~,S~ ~

should be calculated at the stationary point. As dis-

cussed in Sec. II, at this point r = r p = (cr+P) Rp/4p,
Rp = pppv/K, and t = tp (2.14). The components
7lux~Aay~Aaz ar

n =i sinhOO, n „=icosh00, n, = 0. (A2)

The final expression for D is not presented here explicitly
since it appears to be somewhat cumbersome. It seems
that in many cases the adiabatic approximation for D is
sufhcient where

The calculation of the correction factor D was dis-
cussed previously for the case of the Landau-Zener model. (A3)
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