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Time-independent scattering theory for time-periodic Hamiltonians:
Formulation and complex-scaling calculations of above-threshold-ionization spectra

Uri Peskin and Nimrod Moiseyev
Department of Chemistry, Technion Isra-el Institute of Technology, Haifa 32000, Israel

(Received 1 March 1993; revised manuscript received 12 October 1993}

A time-independent scattering theory is introduced for time-periodic Hamiltonians. The theory is ap-
plicable in cases where at infinite time (t =+~ } the relative motion between the colliders is free, and
therefore the asymptotic kinetic energy can be defined experimentally. This asymptotic condition and
the time periodicity of the Hamiltonian lead to time-independent expressions for the distribution of the
kinetic energy in the relative motion of the fragments for a half-collision and for a full-collision experi-
ment. These expressions are combined with the complex-coordinate method to give an eKcient numeri-

cal algorithm for the calculation of multiphoton ionization-dissociation probabilities within the frame-
work of the finite-range-potential approximations. The theory is applied to a model Hamiltonian of an

atom in a strong ac field. The obtained above-threshold-ionization spectra are in excellent agreement
with theoretical results previously obtained from time-dependent calculations.

PACS number(s): 03.65.Nk, 32.80.Rm, 33.80.Wz, 82.50.Fv

I. INTRODUCTION

Time-periodic Hamiltonians play an important role in
understanding matter-radiation interactions [1(a)]. Con-
sider, for example, a molecular (or an atomic) system,
subjected to a high-intensity laser pulse. If the pulse
duration is much longer than the optical period [1(b)], the
interaction between the system and the electromagnetic
field can be well described semiclassically as time period-
ic. This description also holds for an experiment in
which the laser induces dissociation, and the photofrag-
ments leave the focal region of the beam before the pulse
intensity vanishes.

The dynamics of systems that are described by time-
periodic Hamiltonians can be studied by the Floquet
theory [2]. By regarding the time as a dynamic variable,
Sambe [3] and Howland [4] have shown that the eigen-
vectors of the Floquet Hamiltonian matrix (the quasien-
ergy states) span a Hilbert space in analogy to the station-
ary states of a time-independent Hamiltonian. This anal-

ogy inspired the use of theoretical approaches that were
originally developed for time-independent Hamiltonians
for the study of time-periodic ones. For example, Mil-
lack [5] has shown that the language of scattering theory
can be used in order to obtain a "Lippman Schwinger"
equation for the quasienergy states. In recent years, the
combination of Floquet theory with the complex-
coordinate method has been used extensively for the
study of quasienergy resonance states and the decay rates
in photoionization and photodissociation processes [6-
24]. In these processes the bound states of the field-free
Hamiltonian become metastable resonance states due to
the interaction of the atomic (molecular) system with the
electromagnetic field. The resonance states are associat-
ed with square-integrable eigenfunctions of the complex-
scaled Floquet Hamiltonian operator. Knowledge of the
resonance quasienergies and quasienergy states gives a
sufhcient description of the dynamics as long as they are

isolated and narrow (Breit-Wigner) [25] resonances.
Indeed, recently, a full description of the above-
threshold-ionization (ATI) spectrum (ionization probabil-
ity versus kinetic energy of the photoelectron) was ob-
tained for a model system, based solely on the resonance
quasienergy state analysis [19]. The multiphoton-
ionization experiment has been associated with a single
complex-scaled resonance state which gave a maximal
overlap integral with the initial bound state of the field-

free Hamiltonian. The real part of the resonance energy
provided the location of the peaks in the ATI spectrum,
while the total width of the peaks was subtracted from
the imaginary part [19]. By carrying out an asymptotic
analysis of the complex-scaled resonance state
[17,22,26,27], the partial widths were obtained and pro-
vided the relative heights of the ATI peaks [19]. In the
general case, however, there is additional information
about the process which cannot be obtained by the reso-
nances state analysis alone (the latter is especially true for
full-collision processes). In order to obtain all the
dynamical information, a time-dependent wave-packet
simulation is usually carried out [12,28 —30]. The time-

dependent approach seems necessary for the treatment of
very short laser pulses. It has a disadvantage, however,
when the laser pulse is long and long-time propagation
calculations are required. In such cases the extraction of
time-independent dynamical quantities such as
photoionization-photodissociation probabilities from
time-dependent calculations is often a hard and nonri-
gorous task.

The purpose of this article is to derive rigorous expres-
sions for time-independent state-to-state transition proba-
bilities for time-periodic Hamiltonians. The key point in

our derivation is the analytical evaluation of the time
evolution of the system up to infinite times (t=+ co

and/or t = —~) based on Shirley's formalism [31],com-
bined with analytical continuation of the photofragment
energy into the lower half of the complex energy plane.
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Like any other time-independent scattering theory, our
theory is limited in its application to potentials for which
a free particle is obtained as t~ ~. To satisfy this condi-
tion, the following two limitations should be imposed on
the field-free ("bare") potential and on the atom-field in-
teraction potential.

(1) The atomic or molecular potential should be a non-
Coulombic type (as in any other scattering theory which
is based on the asymptotic condition). It can be a finite-,
short-, or long-range potential. For example, due to the
screening effect of the inner-shell electrons, the interac-
tion of an ionizing electron with the ion is often described
by an effective short-range potential. (See, for example,
[13,21,24].) For hydrogenichke atoms, our approach can
be used only within the framework of the cutoff Coulomb
potentials where we assume that V(r ) ro }=0.

(2) The atom-field interaction potential should vanish
as x ~ o. This is not the case when the length gauge is
used and the atom-field interaction potential is often tak-
en as eox cos(wt). However, the time-dependent Hamil-
tonian can be transformed from the length gauge to the
acceleration gauge [24] for which

V(x, t) = V(x+(eolw )cos(wt)),

and V~O as x —+ oc at any given time and for any value
of the field intensity. Therefore, our time-independent
scattering theory is applicable when the acceleration
gauge is used to describe the multiphoton ionization-
dissociation process.

For the sake of clarity, in Sec. II we present an over-
view of the Floquet theory for time-periodic Hamiltoni-
ans. The Floquet Hamiltonian and the time-evolution
operator are presented in the generalized Hilbert space
introduced by Sambe [3]. The time-independent expres-
sion for the state-to-state ionization (dissociation) proba-
bilities is derived in Sec. III. The half-collision formula-
tion is extended to account for full-collision experiments
with a finite-range time-periodic interaction. In Sec. IV
the complex-coordinate method is introduced into the
theory and the computational procedure for calculating
multiphoton-ionization (dissociation) probabilities is
given. An application of the theory to the calculation of
the ATI spectrum for a one-dimensional time-periodic
model Hamiltonian is given in Sec. V and the results are
compared to time-dependent calculations [29]. An alter-
native derivation of the theoretical time-independent
probabilities expressions in the generalized Hilbert space
is given in the Appendix.

II. A BRIEF REVIEW
OF THE FLOQUET THEORY

A. The Floquet Hamiltonian

where

8(x,t)=8(x, t+T) . (2.2)

T is the time period, and the corresponding angular fre-
quency is m=2m. /T. According to the Floquet theory
[2], a solution to the time-dependent Schrodinger equa-
tion is given by

Pi(x, t )=e ' '~"Pi(x, t ),
where P„(x,t) is time periodic with the period T:

Pi(x, t+T)=Pi(x, t)= g e'""'Pi(x),

(2.3)

(2.4)

A, is a quasienergy of the system, and fi„(x,t) is the corre-
sponding quasienergy state. Substitution of the solution
[Eq. (2.3)] into the Schrodinger equation [Eq. (2.1)] leads
to a time-dependent eigenvalue equation:

fff (x, t )Pi (x, t ) =APi (x, t ), (2.5)

where the Floquet Hamiltonian %f(x, t) is defined as

%f(x,t )=P(x, t ) ifi—

Substituting this function in Eq. (2.5},we obtain

graf(x, t)P& «(x, t)=(A, +fiwq)P& «(x, t) . (2.8)

Therefore, Pi (x, t) is an eigenfunction of the Floquet
Hamiltonian with the eigenvalue A, +fiwq. From the
comparison of Eq. (2.5) with Eq. (2.8), one obtains

(x, t)=P (x, t)=e' «'P (x, t) . (2.9)

A useful relation between the Fourier components of
Pi(x, t) and Pi+& (x, t) is derived from Eqs. (2.4) and
(2.9):

(2.10)

[Note that although P&(x, t) and P&+&„(x,t) are difFerent,
the corresponding solutions to the Schrodinger equation,
gi, (x, t) and gi+s «(x, t), are identical, and describe the
same physical situation. This can be confirmed by substi-
tuting the two solutions into Eq. (2.3).]

Each Fourier component of Pi (x, t) for any n can be ex-
panded in a complete set of orthonormal square-
integrable basis functions (using "box normalization" ):

[y (x)], a=1,2, . . . , 00 .

Therefore,

The quasienergy spectrum is uniquely defined modulo
fiw. That is, if A, is a quasienergy, so is A, +fiwq, for any
integer q. This fact can be proved by defining a function

(2.7)

We shall discuss the case of a one-dimensional time-
periodic Hamiltonian. The generalization for higher di-
mensions is straightforward. The time-dependent
Schrodinger equation is

Pi(», t)= g Cii"'y (x)e'" ',
n, a

where

(2.11)

(2.1) Cii"' =—f dt f dx e '" 'y'(x)Pi(x, t) . (2.12)



3714 URI PESKIN AND NIMROD MOISEYEV

As was shown by Sambe [3], the function Pi.(x, t) is a
representation of a state vector in a generalized Hilbert
space which consists of all possible time-periodic square-
integrable functions. The inner product between two
functions f(x, t) and g(x, t) in this linear space is defined
as

Hf A, =A, A. (2.20)

where Hf is the matrix representation of &f in the basis
set I la, n )) ] defined in Eq. (2.15) and A, is the vector rep-
resentation of IA. )) in this basis, whose components are
c',"' = « a, n IX)).

(f,g)= f dx —f dt f*(x,t)g(x, t),
or in Dirac notation,

« fig)&= f dx
' f—'dt& f(t)lx)(xlg(t)& .

(2.13)

(2.14) 0(t, t, )lp(to)) = p(t)), (2.21)

B. The time-evolution operator

The time-evolution operator 0(t, to) is defined by the
equation

«x, tla, n)&=y (x)e'" ' (2.15)

An orthonormal basis in the generalized space is given by where lil(t)) is the time-dependent state vector of the
system. A Schrodinger equation for 0(t, to) is obtained
by substituting Eq. (2.21) into Eq. (2.1):

for n = —(x&, . . . , (x) and a= 1,2, . . . , ~. In Dirac nota-
tion, Eq. (2.11) can be rewritten iR—0(t, t, )=P(t)0(t, t, ) .

8
(2.22)

I=+ la, n »«a, nl .
n, a

(2.17)

The Schrodinger equation (Eq. 2.5) can be rewritten in
the generalized Hilbert space:

fff Ik)& =CIA, » . (2.1 8)

Inserting the unity operator I into Eq. (2.18) and multi-

plying from the left by ((P,ml, for m = —~, . . . , oo,
p=1,2, . . . , ~, we obtain a time-independent equation
for the quasienergy state components, ((p, rn IA, )):

y„(x,t)—= (&x, tlat)) = g (&x, tla, n ))&(a,n I&&)
n, a

= g ((x, tla, n ))C'"' . (2.16)
n, a

The unity operator can be identified as

= ge'" 'e ' ' '
((p nlrb&)(()t. la, o)&, (2.23)

where Ia) and Ip) are two time-independent basis vec-
tors and the inner product ( I ) is defined as usual:

&Pla&= f dx&Plx&&xla&= f" dxx,'(x)x.(x) .

In the general case of a time-dependent Hamiltonian, the
formal solution for 0(t, to) is given by an infinite Dyson
series [32]. Therefore, time integration is carried out nu-
merically for consistent (small-) time intervals [33]~ In
the case of a time-periodic Hamiltonian, however,
0(t, to) is given by an exact and simple expression, de-
rived by Shirley [31]:

(pl0(t, t }Ia)

y «p, m Iwfla, n )&«a, nlrb, )&=A, ((p, m A, &) . (2.19) (2.24)

n, a

The Schrodinger equation can therefore be solved as a
time-independent matricial eigenvalue equation:

The validity of Eq. (2.23) can be confirmed by substitut-
ing (pl0(t, to)la) into the Schrodinger equation for
0(t, t, ) [Eq. (2.22)]:

(plu(t)0(t, to)la) =y (plu(t)ly &(yl0(t, to)la&

e' '((P, m IPly, o))e'" 'e ' ((y, n IA, ))((A, Ia, o))
y, m, A., n

= g e' 'e ''
(&p, m'IB k)&«A, la, o))

A., m'

= g e' ' 'e ' " (k —iriwm')((p, m'lx»«ala, o)&
A, , m'

=lb—
& pl0(t, t, )la&, (2.25}

where we have used the following identities:

& pl@(t)ly &
= g e' '&(p, m IHIy, o)&, (2.26a}

« p, mlQly, o » = « p, m+n IQly, n )),
m'=m +n

(2.26b)

(2.26c)

« p, ~'IH I& &&
= &(p, m'I(& —&~~') I&&& . (2.26d)
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III. TIME-INDEPENDENT
SCATTERING PROBABILITIES

FOR 1IME-PERIODIC HAMILTONIANS

where 00(t, o} is the time-evolution operator for a free
motion:

In several photoionization or photodissociation experi-
ments, the kinetic energy of the photofragments has been
measured [34—36]. In this section we derive expressions
for the ionization-dissociation probability as a function of
the relative kinetic energy between the fragments of the
system.

0,(r, o)=e ' '—i8 t/A

2m
(3.2)

and 0(t, o) is the exact time-evolution operator of the
system.

lim 00(t,o}~yf(0)&
= lim 0(t,o)~pf(0) &,taco t~ oo

(3.1)

A. The asymptotic condition

We assume that at infinite time the exact time-
dependent wave function is a freely evolving wave packet
along the reaction coordinate which is the coordinate of
the relative motion between the fragments. Note that al-
though the Hamiltonian we consider is time periodic, a
free motion is obtained as t~ 00. This is the case in an
experiment in which the interaction between a system
and a time-periodic field vanishes as the fragments of the
system move apart. Therefore, we refer to a motion de-
scribed by a nonCoulombic (finite-, short-, or long-range)
time-periodic potential, 0'(x, r). We adopt the asymptotic
condition of time-independent scattering theory [37]:
Each freely moving wave packet ~pf(t) & is the asymptote
of an exact solution ~gf(t) & of the time-dependent
Schrodinger equation. This reads

0 (t,o}=0 '(r, o)=0(o, r) . (3.4)

Using the Schrodinger equation for 0(t,o} [Eq. (2.22)],
the time derivative of 0 (t, o) is obtained

i A —0'—(r, o)= 0'(i, o)8(r) .a t (3.5)

The expression for ~gf(0}& in the limit t~~ can be
evaluated as an integral from t =0 to t = + Oo:

B. The exact outgoing wave function

Our first concern is the exact solution of the time-
dependent Schrodinger equation at t =0, ~l(f(0) &, which
is associated with the final asymptotic wave packet
~«( ~ ) &. From the asymptotic condition we obtain

~gf(0) &= lim 0 (t, o)OO(t, o)~«(0) &, (3.3)
t —+ oo

where we use the unitarity of the time-evolution operator:

~yf(0)&=~«(0)&+ f "dr &'(r, O)e —' "'"~qf(0)&

=iq»(0)&+ f dh Ot(r,—o) — Ot(r, o)P, e—
0

l«(0) &

=~«(0)&+—f dt 0(o, t)f (t)e ' ~«(0)&,
0

(3.6)

where in the last step we used E s. (3.2), (3.4), and (3.5)
and the time-dependent potential (t) was introduced:

P'(t) =8(t)
The evaluation of the integral in Eq. (3.6) is simplified by
taking two steps. First, we note that the integral is con-
vergent due to the asyinptotic condition assumption [37].
Therefore, the integrand can be multiplied by an ex-
ponential damping factor exp( —at), where a~+0.

~ff(0) &=~«(0) &+—lim f dt e "0(o,t}t (t)'5 a~+0 0

~g~(0)& =~p &+
' f dt e—"0(o,t)$'(t)e ' ~p&,

using the fact that

(3.11)

~q»(0) &
=f dp ~p & & p ~q»(0) & . (3.9)

By substituting the plane-wave expansion in the equation
for ~l(f(0) & [Eq. (3.8)], we obtain

le(0) &
=f dpi&, (0)&(p ~«(0) &, (3 lo).

where
~ g (0) & is given by

(3.8) 2

Bo~p&=z, ~p&, E, = p (3.12)
(From now on we shall omit the limit notation. ) Second,
we use the fact that the wave packet ~«(0) & can be ex-
panded as a linear combination of plane waves ~p &:

The state
~ g~ (0) & can be regarded as the state of the sys-

tem at t =0 which has the asymptotic behavior of a plane
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wave lp ) at t = ~. However, it is only
l itif (0) ) and not

li}'i~(0) ) which satisfies the asymptotic condition assump-
tion [Eq. (3.1)]. We rewrite Eq. (3.11) for the projection
of the state itj (0)) on a basis state (al using the conven-
tional inner product [Eq. 2.24)]:

0

&alg, (0) &=&alp &+ —I «&&alU(o, t}lp)
'I1 0

x (pl f'(t) ly)

x(yle
' ' "'lp) .

(3.13)

So far, our treatment concerns any time dependence of
the Hamiltonian B(t). We now restrict the discussion to

systems with a time-periodic potential f'(t). In this case,
the potential can be expanded in a Fourier series:

& pl V(t) ly &
= g e' "«p, m

I &ly, o », (3.14)

(alp)=(&a, nip, n » (3.15)

for any value of n (we shall choose n =0}. Substituting
Eq. (2.23) (replacing t by 0 and to by t) and Eqs. (3.14)
and (3.15) into Eq. (3.13), we obtain

and the time-evolution operator 0(o, t) is given by Eq.
(2.23). In Eqs. (2.23) and (3.14), the notation (( l ))
stands for the generalized inner product introduced in
Eqs. (2.13} and (2.14). The usual inner product can also
be expressed as a generalized one:

(alp~(0)&=&&a, olp, o&&+ —'J "dt & e
' ' " e' ' "(&a,nl~&&&& i(lp, 0&&e'

o

x(&p, m
l vly, o)&(&y, olp, o» . (3.16)

((a, nl&)) =((a,n+m lX+fiwm )),
(&Alp, o)&=&(&+iiitUmlp, m &) .

(3.18)

Second, we recall that the Floquet Hamiltonian is Hermi-
tian in the generalized Hilbert space [3,31],and therefore
its eigenvectors are a complete set:

At this stage, the time integral can be evaluated analyti-
cally:

—t [(E —i c, )
—( X+Awm ) jt /fi

dte
fi o

= [E i E (1,+—A'ui—m )] ' . (3.17)

The number of summations in Eq. (3.16) can be reduced,
taking into consideration the properties of the eigenvec-
tors of the Floquet Hamiltonian (the set [l) ))]). First,
from Eq. (2.10), we obtain

The importance of Eq. (3.22) is in the fact that the state
lit~~(0)) [and therefore the actual state of the system

it~f (0) ), through Eq. (3.10)] is given by a time-
independent expression, which recalls the well-known
Lippman-Schwinger equation [37] of stationary scatter-
ing theory. The main difFerence from the stationary
scattering theory is the change of the definition of the
inner product, such that the time is regarded as a dynam-
ic variable. By using the time-evolution operator for
time-periodic Hamiltonians [Ref. [31] or Eq. (2.23)], the
generalized Lippman-Schwinger equation [Eq. (3.22)] is
obtained for lg~(0) ), where lf~(0) ) stands for any time-
dependent solution of the Schrodinger equation, with the
asymptotic behavior lp ). Note in passing that in Ref. [5,
a similar Lippman-Schwinger equation was introduced by
using the language of scattering theory, but only for the
quasienergy states (the eigenstates of the Floquet Hamil-
tonian).

y lx)) «xi=i. (3.19)

(3.20)

Let us introduce the generalized Green operator, operat-
ing in the generalized Hilbert space:

G(z)= [zI &f]— (3.21)

Equation (3.20) can be rewritten as

(alg, (0) ) = g ((a, n lI+G(E —ie) Vlp, o)) . (3.22}

Using Eqs. (2. 17), (2. 18), and (3.16)—(3.19) and changing
indices in Eq. (3.16), we obtain

(aliti (0)) =((a,olp, o))

+ g ((a, n l[(E, iE)I A—,]-'
lpV)0) . —

C. Ionization-dissociation probabilities
for a half-collision experiment

Consider an experiment in which at t 0, the system is
in a well-defined bound state of a field-free Hamiltonian.
At t=0, an interaction with a time-periodic field is
switched on and the system is ionized or dissociated due
to the interaction with the field. If the time needed for
the interaction to reach its maximum intensity amplitude
is much smaller than the time period of the field, the
switch can be well described as instantaneous. We argue
that in such a case the "history*' of the system at times
t (0 is irrelevant to the dynamics of the ionization-
dissociation process. Therefore, the process can be well
described by a Hamiltonian which is time periodic for all
times, as long as at t =0 the wave packet representing the
system is the bound state of the field-free Hamiltonian.
This allows the use of Floquet theory in the calculation of
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the ionization-dissociation probabilities. Our concern is
the probability to obtain a freely moving wave packet at
t = ao, ~yf ( ao ) ), provided that at t =0, the system is in a
state ~yi, (0}). According to the initial condition in the
experiment, ~q&b(0)) is a bound state of the field-free
Hamiltonian. Since the full Hamiltonian is time periodic,
we can use Eqs. (3.10) and (3.22) to obtain a wave packet
at t=o, ~1(f(0)), which will evolve in time to ~yf(~)).
The probability for the transition from ~yb(0)) to

~yf( ao ) ) is therefore given by the absolute square of the
overlaps between the two states at t =0:

Pb (p ')dp ' =Pb (Ep')de

From Eqs. (3.29) and (3.27), we obtain

P, (E, )=, (&g, (0)lq, (0)&l'.
p

(3.29)

(3.30)

By choosing the asymptotic state in Eq. (3.26), yf(0), as
an energy-normalized [38] plane wave:

' 1/2

a well-defined kinetic energy, E~ =p' /2m, is defined by
the equation

Pf &=l&yf(0)lq (0) &I',

where, according to Eq. (3.10),

&pf(0)~q (0)&=f dp&pf(0)~p)&1( (0))y (0)) .

(3.23)

(3.24)

(~ (o)&=-f

Pb(E&. ) is obtained directly from Pf b by Eq. (3.27).

D. Transition probabilities
for a full-collision experiment

(3.31)

Using Eq. (3.22) for ~P (0)) we obtain

& y, (0)~q, (0) &

= g «p OI OC(Ep+i e')+I
l
~ a && & ~ ly, (0) &

a, n

= y «p, oli+ M(E, + )lq (o}, (3.25)

lq, (0))=lp') . (3.26)

Substituting Eq. (3.26) into Eqs. (3.23) and (3.24), we ob-
tain

Pf-b —=P, (p') =
I & y, (o) lq, (0) & I'. (3.27)

Pb(p ) is the probability density to obtain the fragments
of the system in a mell-defined relative moment p'. The
normalization condition for the probability density is
satisfied when

f dp Pb(p )=1 . (3.28)

The probability density Pb(E .) to obtain the fragments in

The last equation can be physically interpreted for ioniza-
tion or dissociation of a system in an electromagnetic
field. The values of n represent the different field states
which can be obtained during the process. The total
ionization-dissociation probability amplitude for the final
wave packet, ~yf ( ao ) ), is obtained as a sum over these
states, and the calculation of the amplitude itself [Eq.
(3.23)] takes into account the interferences between the
different possible interaction paths during the ionization-
dissociation process.

The scattering asymptotic state represents the final
measurements in the experiment. For example, the mea-
surement of the averaged relative momentum between
the collision fragments, and the uncertainty in its deter-
mination, define the center and the width of a Gaussian
wave packet which represent the asymptotic state of the
system, ~yf(ao)). If the momentum in the relative
motion of the fragments is measured exactly, a final state
can be represented as a plane wave with a well-defined
momentum p':

lim 0(t,o)~f;(0)) = lim 0 (t,o)~qr;(0)),
t —+ —oo t~ —oo

lim 0(t,o) ~ff(0) ) = lim 00(t, o) ~yf(0) ) .t~~ t~ oo

(3.32)

The transition probability amplitude is given by the over-
laps between the exact states at t =0, ~f,.(0)), and

ly, (0)):

Pf =
I & P (0) I g;(0) & I',

& qf(0)lq, (0) &

=f" dp f" dp'&qf(0)lp &

(3.33)

x & P, (0)lg, (o) & &p'lq;(0) & (3-34}

and we can use Eq. (3.22) for
~ g (0) ). In order to evalu-

ate the overlap &f (0}~g .(0)) in Eq. (3.34), we should
obtain an expression for If .(0) ). This expression is ob-
tained from the asymptotic condition in the limit

Consider an experiment in which the interaction be-
tween two particles (or fragments) is time periodic, the
intensity of the interaction changes as a function of the
relative distance coordinate between the particles, and it
vanishes as the distance becomes infinite (a finite-range
interaction}. A collision starts at t = —~ where the wave
packet describing the system evolves in time freely. As
the fragments collide, they interact with each other and
with the external time-periodic field, and state-to-state
transitions may occur. After the collision is over, as
t~ ~, the relative motion is free again. In such a pro-
cess the Hamiltonian is time periodic for all times. How-
ever, the transition probabilities are time independent,
provided that the experimental detection is carried out at
times that are much larger than the collision time.

In this section we derive expressions for the time-
independent probability that a system, described by a free
wave packet ~tp,.(t)) at t = —ao (initial state), will be
found at t=+~ in a state ~yf(t)) (final state). Both the
initial and the final states satisfy an asymptotic condition.
Therefore, for each one of them there is a unique state at
t =0, which will evolve to it, by the time-evolution opera-
tor of the interacting system:
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t —+ —oo:

(+~1(,,(O)) = g ((~,m ~f+C(E, , +iE)VIp', 0)) .

(3.35)

An alternative expression for the transition probability
amplitude can be derived by imposing the asymptotic
condition directly on the amplitude. From Eq. (3.32) we
obtain

(ilf(0)(f;(0) ) = lliil (pf(0)( Uo(t, O)U(t, O) U (
—t, O) U()(

—t, O))(p, (0) )

lim (Tpf(0)(e " U(t, i)—e '
~(p;(0) ) .

f~+ oo
(3.36)

Using a derivation similar to the one in Sec. III B, the probability amplitude (ff(0)~g;(0) ) can be obtained as an in-
tegral over time. Using Eq. (2.23) for the time-evolution operator of the interacting system [ 0(t, to) ], this integral can
be evaluated. %ithout going through the details of the derivation, we give the final time-independent expression for the
probability amplitude

(yf(O)~y, (0))=J'"
dp j" dp (qf(0)~p)S(p', p)(p ~q, , (O)), (3.37)

where

S(p',p) =(p lp') +-,'
E +E +own E +E~+Awn

,0 +ic +G +is V p', n
2 2

(3.38)

and C(z) is defined in Eq. (3.21). We define two new operators in the generalized Hilbert space:

Co(z) = [zI (&f—V—) ]

and

T(z) = V+ VC(z ) V .

The operators V, G, Go, and T are related by the identity

(3.39)

(3.40)

VC(z)+ C(z) O'= Cz(z) f'(z)+ T(z)Go(z), (3.41)

which can be verified, if the operators [(zI &f )] and —[zI (&f—P')]—are not singular [37]. In our case, z has a
nonzero imaginary part (c,) and indeed these operators are regular. Using Eq. (3.41) and the fact that

G (z)~p, n )) =[z (E +fiwn)—] '~p, )n),

Eq. (3.38) can be rewritten

E +E +own
s(P P)= (P(P )+ X (p, o T +is p', n

(3.42)

(3.43)
l 1

E —(E +A'wn)+is E +A'wn E+iE—
Taking the limit c~O and using the definition of Dirac s 5 function, we finally obtain

E +E +own
S(p', p ) = 5(p —p') —2~( X (P,O T

tl

+iE p', n 5(E (E +own)—) . (3.44)

Our derivation and the final result are in close analogy to
the well-known results of the stationary scattering theory
[37]. For example, by recognizing S(p',p) as the scatter-
ing matrix and the matrix elements of T as the T matrix,
Eq. (3.44) is a well-known relation between the S matrix
and the T matrix [37]. The main differences from station-
ary scattering theory arises from the use of the time-
evolution operator for time-periodic Hamiltonians. The
last equation gives physical insight for scattering with a
time-periodic interaction. We see that a plane wave with
a momentum p gains or loses quantized energy Awn,
where w is the frequency of the time-periodic field and n
can get positive or negative integer values. For an elec-
tromagnetic field, the index n can be interpreted as the
number of photons which are absorbed or emitted by the

!

system during the process. The infinite summation ovex
n in Eq. (3.44) takes into account all of the possible multi-
photon transitions. The interference between the
different transitions, as we11 as the momentum represen-
tation of the initial and final wave packets, are taken into
account by substituting the probability amplitudes in
Eqs. (3.33) and (3.37). Since the Hamiltonian is time
dependent, there is no energy-conservation limitation on
the process. However, the 6 function imposes that for
the n photon transition [the nth term in Eq. (3.44)]; the
initial and the final momenta are related through the
equation E =E .+own.

Equation (3.37) is an expression for the transition prob-
ability amplitude between two states defined by the wave
packets ~(pf(0)) and ~(p, (0)). As in the case of a half-
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Pf t =P(—p', p)= Is(p', p }I' . (3.45)

collision experiment, we are interested in the transition
probabilities between states in which the relative momen-
tum is asymptotically well defined. By choosing lqrf(0) )
as Ip) and lip;(0)) as Ip'), we obtain from Eqs. (3.33)
and (3.37):

A. The complex-coordinate Green operator

The main difficulty in the calculation of the transition
probability amplitudes & g (0) Iipb (0) ) [Eq. (3.25)] or
S(p',p ) [Eq. (3.44)] is in the evaluation of the matrix ele-
ment of the generalized Green operator [Eq. (3.21)] in the
limit c~O:

P(E&,Ez )dE& dE& =P(p', p )dp'dp . (3.47)

P(p,p) is the transition probability density, which we
normalize in the momentum space

I dp I dp'P(p', p ) =1 . (3.46)

We denote the transition probability density as a function
of the fragments' initial and final kinetic energy as
P(E,E ), where E =p /2m and E.=p' /2m.
P(E,E ) is related to P(p', p) by

1«fl[(E+)1~] I
&&~&&fl&&&&&&lg

g~O E

In Eq. (3.25), If )) and Ig )) are given by

«f I

= «p, olP, Ig )) = y I(pi, (0),n »,

whereas in Eq. (3.44)

Ig » = ~lp', n )), «f I

= «p, ol I} .

(4.1)

(4.2)

(4.3)
Therefore

P(Ep. , Ep }=
Ipl

Is(p', p) I' .
Ip

(3.48)

The complete set ( j I
A, )) ] ) are the eigenstates of the Flo-

quet Hamiltonian operator:

(4.4)

As in Sec. IIIC, we note that P(E,E } is obtained
directly by Eqs. (3.33} and (3.37) if the initial and final
wave packets are energy normalized as in Eq. (3.31).

IV. THE COMPLEX-COORDINATE
SCATTERING THEORY

FOR TIME-PERIODIC HAMILTONIANS

The complex-coordinate scattering theory is by now an
established tool for calculations of inelastic transition
probabilities. A remarkable agreement between theoreti-
cal transition probabilities and experimental scattering
intensities was obtained for the cases of He scattering
from corrugated Cu surfaces [39—42] and HD scattering
from fiat metal (Ag, Pt) surfaces [43]. Recently, the
theory was found to be efficient for the calculation of the
scattering matrix even for long-range (non-Coulombic)
time-independent potentials [44]. The potential that was
studied in [44] was of the type —[(1—e ")"]/r"+',
n & 1. The successful application of the time-independent
complex-coordinate scattering theory to such potentials
is of physical importance, since these potentials represent
the field-free s-wave interaction between an electron and
many-electron ions.

The key point in the theory is the rotation of the reac-
tion coordinate (the relative distance between the col-
lision fragments) into the complex-coordinate plane
x ~x exp(i8) [45—50]. The complex-coordinate method
has also been applied to the calculation of quasienergy
resonance states of atomic and molecular systems in-
teracting with a time-periodic field [7—24]. In the follow-
ing discussion we snake use of the complex-coordinate
method in order to obtain state-to-state transition proba-
bilities for these systems. We combine the time-
independent scattering theory for time-periodic Hamil-
tonians with the complex-coordinate scattering theory
approach and derive an algorithm for the computational
implementations of the equations that were derived in
Sec. III.

It is seen that for any possible value of the energy E, the
denominator vanishes for one of the values of A., since A,

gets real values from —00 to + 00. This problem can be
avoided provided that the interaction potential is an ana-
lytic function in the coordinate representation and that
« x, t

If )) and « x, t
I g )) are square-integrable functions

of the coordinate x. Both conditions are satisfied for an
analytic finite-range potential 0' [see Eqs. (4.2) and (4.3)].
In such a case the integration contour in Eq. (4.1) can be
rotated into the complex-coordinate plane:

x xe' (4.5}

dx e
00 T

x dt f '(xe ', t )e' 'y (x),1

« a, nlg'))

=I" dxe"—'
Tx J dte '" 'y'(x)g(xe', t)

0 eie

(4.7)

By introducing the unity operator in the generalized Hil-
bert space [Eq. (2.17)] under the inner product defined in
Eq. (2.14) into Eq. (4.1), we obtain the complex-scaled
matrix element

iim« f1[(E+te)1—f] 'Ig »
@~0

=«f 'l~'(E)lg'&&

«f IP, m )) «P, mls la, n ))«a, n lg )) .
Q, P, m, fl

(4.6)
In (x, t) representation, «f Ip, m )) and «a, n Ig )) are
given by

«f -'IP, m »
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f(z, t) and g(z, t) are the analytical continuations of
f(x, t) and g(x, t) into the complex-coordinate (z) plane,
and the factors I /+e' arose from the renormalization of
the scattering asymptotic states [in Eqs. (4.2) and (4.3)]
on the complex contour x exp(i8). For a inore detailed
discussion of the generalized complex inner products, see
[51,52].

The complex-scaled generalized Green operator 0 (E)
is defined in (x, t) representation as the analytical con-
tinuation of G(E) in Eq. (3.21):

G (E)=[EI &f(x—e', t)] (4.8)

As in the nonscaled problem [see Eq. (4.1)], G (E) can be
represented using the eiyenvectors of the complex-scaled
Floquet Hamiltonian &f .

&f &f(xe ', t ) (4.9)

genvalues are given by the equation

f—iwn ~exp( —Zi 8),
for n = —~, . . . , + ~ and A,'C[0, tto]. The eigenvalues
of the second kind are the complex resonance energies
k=k„—iI /2, which are independent of the rotation an-

gle 0. The resonances become square integrable in the
complex-coordinate representation when 0 exceeds a crit-
ical value [46—50]. Each resonance represents a metasta-
ble state where A.

„

is the resonance position and A'/I is

the lifetime of the state.
Equation (4.14) provides an explicit expression for the

matrix G (E) for any value of the energy E. However, if
G (E) is required for a specific value of E, it is possible to
reduce the numerical effort in the calculation. First, we

introduce the matrices U" and U, whose columns are
the eigenvectors A, and A, correspondingly:

f
(t)(. }'H =t(, (A, )'.f

(4.11)

Since the complex-scaled Hamiltonian matrix Hf is non-
Hermitian, its left eigenvectors A, cannot be obtained by
taking the complex conjugate of the transposed right
eigenvector t)(, . Rather, they are the right eigenvectors
of the transposed matrix, Hf [51,52] as can be verified by
transposing the last equation:

To obtain the eigenvectors, we represent &f as a matrix
in the generalized Hilbert space, Hf, where

[Hf](p )( ) ((p, m~% f~a, n && . (4.10)

The right and left eigenvectors of the analytically contin-
ued matrix are given by

UR —[gR gR ]

U'= [XL„ZL„.. . ] .

These matrices are related according to Eq. (4.13):

(UL)t(UR)

We rewrite Eq. (4.14) for G (E):
Gt)(E) UR A

—1(UL)t

where the matrix A(E) is defined by

[A], =(E—
A, ;)6;i .

From Eqs. (4.11) and (4.16), it follows that

A=(U }'[EI—H ]U"

(4.15)

(4.16)

(4.17)

(4. 1 8)

(4.19)

(4.12) By substituting Eq. (4.19) into Eq. (4.17) using Eq. (4.16),
we obtain

The spectrum (t A, ] ) of Hf may be incomplete for
specific values of the scaling angle 8 [53]. However, even
for these values, a complete spectrum is obtained by
infinitesimal change of the value of 8 [53]. Therefore, it
is always possible to normalize the right and left eigen-
vectors such that

or

G (E)= [EI—Hf ]

((P, mls (E)la n &) =[G (E)],p
=[EI—Hf ](P m) (a n) .

(4.20)

(4.21)

( g )Ltg~R (4.13)

Provided that the spectrum of Hf' is complete we can
represent the complex-scaled generalized Green operator
as a matrix G (E) in the generalized Hilbert space using
the components of the right and left eigenvectors:

((P m i6 (E)ia n )) =[G (E)](p

(p, m ) (an),
z —x' (4.14}

The eigenvalues of the non-Hermitian complex-scaled
Floquet Hamiltonian [t(. ] are complex and therefore the
denominator in the last equation is nonzero for all values
of E (excluding the threshold energies; see, for example,
Fig. 2 in Ref. 43). There are two kinds of eigenvalues.
One kind are the continuum energies which are rotated
into the complex energy plane by the angle 20. These ei-

The matrix elements of G (E) can therefore by obtained
by a matrix inversion (for a specific energy E) instead of a
matrix diagonalization (for any E).

By substituting ((P,m~0 (E)~a, n)) from either Eq.
(4.14) or Eq. (4.21), and Eq. (4.7) into Eq. (4.6), an explicit
expression for the calculation of the Green-operator ma-
trix element is obtained. In contrast to the nonscaled ex-

pression [given in Eq. (4.1)], the scaled one does not suff'er

from singularity problems.

B. Complex-scaled ionization-dissociation probabilities
for a half-collision experiment

In a half-collision experin "nt the system is initially
bounded in a state ~yb(0)) and at t =0 it is exposed to a
time-periodic interaction (see Sec. III C). The probability
density I'b(E ) to obtain the fragments of the system in a
well-defined kinetic energy E is given by Eq. (3.30), and
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where

(4.22)

the probability density amplitude (g (0)l)pb(0) & is given

by Eq. (3.25}. We obtain the complex-coordinate scatter-
ing theory expression for the amplitude by substituting
Eqs. (4.2) and (4.6) into Eq. (3.25):

(g, (0)lq (0)&'

=(ply, (0) &+ y (&p-', olO'0'(E, )lq,', (0)n »,

The substitution of Eqs. (4.21), (4.23), and (4.24} into Eq.
(4.22} provides the exact expression for the amplitude.
However, in numerical applications the summation in Eq.
(4.23) is over a finite set of variational basis functions. In
any Pnite basis-set representation the amplitude depends
on the value of the scaling angle 0. This dependence was
studied extensively for time-independent Hamiltonians
[44,45,54—58]. It was shown that the variationally op-
timal scaling angle 0, , satisfies a stationarity condition of
the transition amplitude [44]. In our case this condition
reads

«p ', ol~''(E, )lq'(0),

y «p-', ol~'Ip,

~((1(,(0)Iq, (0) &') =0. (4.25)

a,P, m, k

X((p, mls (E )la, k »((a, klpb(0), n » .

(4.23)

The complex-scaled time-independent variational expres-
sion for the probability density to obtain the half-collision
fragments in a final kinetic energy E is therefore [see Eq.
(3.30}]

((P,mls (E }Ia,k » is given by Eq. (4.21) [or by Eq.
(4.14)]. From Eq. (4.7) we obtain

p (E, )= I&1(,(0)lq (0}& "'I' (4.26)

«p ', ol t&' IP, m » = J dx c"—
oo T

e
~

e
~ ~ It 8

e i(pxe—' )/k
X

o v'e" &2iriri

X V(xe', t }e' 'gati(x),
(4.24)

(( akl )p(b)0, n»= f dx e'—
00 T

f d Ikwi

o geie

Xy (x))pb(xe', 0)e'" ' .

C. Complex-scaled transition probabilities
for a full-collision experiment

Here we consider an experiment in which two frag-
ments collide under the influence of a time-periodic
finite-range potential (as discussed in Sec. III D). For ini-
tial and final states in which the relative kinetic energy of
the fragments is well defined (E and Ep, respectively),
the transition probability density is given by Eq. (3.48).
The probability density amplitude S(p,p) is given by Eq.
(3.44). We obtain the complex-coordinate scattering
theory expression for the amplitude by substituting Eqs.
(4.3), (4.6), and (3.40) into Eq. (3.44):

E +E +own
s'(p', p)=oip —p') —2wix «p, o)~P)~p', n))+ p ',o i"c' ' ' i" p', nIj

n

X5(E —(E .+irtwn)),

where

(4.27)

—g0 8 8 P P e Pg

E +E +own
«p ',olp'Ip, m»((p, m 0'

P, m, a, k
a, k a, k p', n . 4 28

((p, m
I G (E) I a, k » is given by Eq. (4.21) [or by Eq. (4.14)]. From Eq. (4.7) we obtain

T dt ~(—ipxe' )/A((p, ol f' Ip, m » =f dx e' —f, V(xe', t)e' 'gati(x),&2'"
(4.29)

T (p' ' )/R
(( ,ak&lip', n » = J dx e' —J dt's'(x)e '" 'V(xe'e, t) e'" '.

—oo T Q &2'"
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As discussed in Sec. IVB, in numerical applications of
the theory the amplitude is 0 dependent due to the use of
a finite basis-set representation. The variationally op-
timal scaling angle 8, , satisfies the equation [44]

of the system is a bound state of the field-free Hamiltoni-
an. This wave function is obtained by diagonalization of
A, (x) in a linear variational space. As a basis set we
choose X„particle-in-a-box basis functions, with a box
length L. The initial bound state is obtained as

=0. (4.30)

P(E,E )=, Is "'(p' p)l'p ~ p (4.31)

The complex-scaled time-independent variational expres-
sion for the transition probability density is therefore [see
Eq. (3.48)]

am(x+L/2)
sin

L
(5.4)

The coefficient vector C is the solution to the eigenvalue
problem

e.„.where S "' is obtained by substituting Eqs. (4.21), (4.28),
and (4.29) into Eq. (4.27).

V. ILLUSTRATIVE NUMERICAL EXAMPLE:
THE CALCULATION

OF ABOVE-THRESHOLD-IONIZATION SPECTRA

In this section we apply the theory to the study of ion-
ization of an atomic system due to its interaction with a
monochromatic electromagnetic field. The Hamiltonian
(in a.u. ) of the field-free system is A', (x):

H, C=EbC,

where the matrix elements of H, are given by

2 L, n . am(x+L/2)
sin

L —L/2 L

1 a2
X —— + V()(x)

Bx

P~(x +L /2 )X sin

(5.5)

(5.6)

(5.1)

Vo
P(x) = f'o(x) =-

cosh (ax)
(5.3)

with the parameters V0=2, a= I/+3. The initial state

where the potential P'o(x) supports bound states of the
electron-atom system. Within the framework of the
semiclassical treatment of a monochromatic electromag-
netic field, the full Hamiltonian for the atom interacting
with the field is given by

8(x,t)=8, (x)+ HOP(x)cos(wt) . (5.2)

)M(x) is the dipole moment of the system and Ao is the
amplitude of the field intensity. We choose to study the
Rosen-Morse [15—17,19,21,22,59] model for the atom-
field interaction where

and Eb is the bound state energy.
The above-threshold ionization spectrum is the ioniza-

tion probability versus the final kinetic energy of the
emitted electrons, Pb(E ). In order to obtain the spec-
trum, we use the complex-coordinate time-independent
expression given by Eqs. (4.21)—(4.26).

In the first step of the calculation we represent the
complex-scaled operators and asymptotical states in a set
of variational basis functions. The Fourier basis func-
tions are used for the time-variable representation and
the particle-in-a-box functions (that were used to obtain
(pb(x, 0) [Eq. (5.4)]) are used for the x-coordinate repre-
sentation. The matrix elements of the complex-scaled
Floquet Hamiltonian

%f= —i()l(()/()t)+H(xe', t)

are therefore given by

8
I. f ](t),m), (a, n)

L/2 1
dx —f dt e ' 'sin

L —L /2 T O

X iA ———. + V()(xe' )+ Hop(xe' )cos(wt) e'" 'sin
(jt

La~ x+—
2

(5.7)

where P=1,2, . . . , N„;a=1,2, . . . , N„;and n = N, /2, . . . , +N, /2; —m = N, /2, . . . , +N, /2—. (In the present cal-
culations N„=100 and N, = 8 were found sufficient for convergence. ) The final asymptotic state with the kinetic energy
E and the interaction potential are complex scaled and represented in the basis set according to Eq. (4.24):
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T I./2 ;g e«p, o~P' Ip, m &&=—f dt f dx e'e
[~p

[Vo(xe' )+ Aop(xe' }cos(tot}]&2'"

1/2
2

X — sin
L

immit (5.8)

The complex-scaled initial bound state is similarly obtained from Eq. (4.24):

«P, m ~q),'(0), n &&= f dx e'e—
' 1/2

sin

pn. x+—L
2

yb ,(xe 'e, 0)5„ie
(5.9)

G (E )=[E I—Hf] (5.10)

The complex-scaled ionization probability density ampli-
tude is obtained from Eqs. (4.22} and (4.23):

& l(p(0) lpi, (0) &'=
&p l pi, (0) &+(p')'G'(Ep )(b'),

where

[p']p, =«p ', 01~'lP,

[b']p, =y «P, m ling(0), n » .

(5.11)

(5.12}

In the second step of the calculations the complex-
scaled generalized Green matrix [Eq. (4.20)] is obtained
for a given 6nal kinetic energy E by a matrix inversion
according to Eq. (4.21}:

grid points). This is due to the absorbing boundary con-
ditions which are imposed by the complex coordinate and
which result in a decay of the resonance wave functions
at large values of x. Another important advantage of the
present calculation is that the time integration of the
Schrodinger equation is carried out analytically to t= eo

and therefore no time-averaging procedures are needed in
order to obtain a time-independent spectrum. This ad-
vantage of the time-independent scattering theory is espe-
cially pronounced when narrow (long-lived) resonances
are studied and long propagation times are required in
order to obtain the tine-independent ATI spectrum.
Therefore, it is expected that it will be difficult to obtain
the narrow peaks in the ATI spectra from time-
dependent calculations. The truncation of the time prop-

According to Eq. (4.26), the probability density for ion-
ization with a well-de6ned relative kinetic energy E~ is
given by

l &ply', (0) &+(p "'}'G "'(E,}(b "')I

(5.13)

where p =+2mE and the variationally optimized seal-
ing angle 8, , is determined from the stationarity condi-
tion:

&& l(, (0)Ig, (0) &'

opt

(5.14)

In Fig. 1 the results for PI,(E ) are presented. The field
intensity parameter is 20=0.8 a.u. and the initial state
was chosen as the first excited eigenstate of 8, . The dots
represent the results obtained by the complex-coordinate
time-independent scattering theory [Eq. (5.13)], while the
solid line represents results of time-dependent wave-
packet calculations that were carried out by Bench,
Korsch, and Moiseyev [29] for the same model Hamil-
tonian. The agreement between the results is remarkable.
The present time-independent calculation, however, has
the advantage of using a much smaller grid space (—,'6) and
number of basis functions for the coordinate representa-
tion (100 particle-in-a-box functions rather than 10000

C)

o0
I

0.0 0.5
I I

1.0 1.5

Ep(a.LL)

2.0 2.5

FIG. 1. Time-independent photoionization probability densi-
ty vs. the final kinetic energy of the electron. The initial
bound-state energy is —

3 a.u. and the field intensity parameter
is Ao =0.8 a.u. The dots represent the results obtained by the
time-independent complex-coordinate scattering theory. The
solid line is borrowed from Ref. [29]. It represents the results of
a time-dependent calculation. The spectra are normalized such
that the total-ionization probability is unity.
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CL o

0
0

C)
C)

0.0 0.5
I

1.0 1.5

Ep (a.u.)
2.0 2.5

FIG. 2. The same as Fig. 1, with 30=0.4 a.u. The normal-

ized results of Ref. [29] were multiplied by a factor of 2.33 in or-

der to 6t the maxima of the two spectra.

agation at a finite time results in broadening the peaks in
the ATI spectrum. Indeed, as one can see from the re-
sults presented in Fig. 2, when the field intensity parame-
ter is reduced to Ho=0. 4 (and the resonance lifetime is
almost doubled), the peaks in the ATI spectrum obtained
from the time-dependent calculation are broader than the
peaks obtained from the "t=(x)" ATI spectrum. The
ATI spectra presented in Figs. 1 and 2 clearly show peaks
which correspond to the absorption of an integer number
of photons by the emitted electron. The sharp structure
of the ATI spectrum can be explained by analyzing a sin-

gle complex-scaled square-integrable resonance wave
function that had maximal overlap with the bound state
of the field-free Hamiltonian [19]. The width of the peaks
in the ATI spectrum is the total width of the resonance
state, whereas the relative heights of the peaks are pro-
portional to the partial widths obtained by asymptotical
analysis of the resonance wave function [17,22,26,27].
The present calculation is also based on the complex-
coordinate method. The complex-scaled quasienergy res-
onance states are used with all other quasienergy states in
order to obtain the ionization probability [see Eq. (4.14)].
Therefore, we believe that the theory presented here
should also have a pronounced advantage in the study of
photoionization or photodissociation processes which
cannot be explained by analyzing a single resonance state.
This may be the case in systems where overlapping reso-
nances or avoided crossing of resonances occurs, for high
field intensities.

VI. CONCLUDING REMARKS

A time-independent scattering theory for time-periodic
Hamiltonians was developed. Expressions for state-to-
state transition probabilities were obtained for half-
collision experiments [Eqs. (4.22) —(4.26) or Eq. (A14)]
and for full-collision experiments [Eqs. (4.27) —(4.31) or

Eq. (A22)]. In the text an ab initio scattering theory was
introduced, which is based on the asymptotic condition
assumption. In the Appendix the derivation is based ori
the representation of the asymptotic states as vector func-
tions. We postulated that the initial vector function de-
scribes the noninteracting system of an atom or molecule
and a field, while the final vector function represents free
motion in the absence of the field. The latter assumption
is justified only by the fact that it yielded the same ex-
pressions as the ab initio theory for the transition proba-
bilities. However, we argue that the vector function rep-
resentation of the asymptotic states provides insight for
the understanding of rnultiphoton ionization-dissociation
processes.

The key point in our derivation is the analytical evalu-
ation of the time evolution of the system up to t=+~.
This is enabled by using Shirley's expression for the
time-evolution operator and by carrying out analytical
continuation of the photofragment energy into the lower
half of the complex energy plane. In our numerical appli-
cation to the calculation of ATI spectra, the analytica1
continuation was carried out by the complex-coordinate
method (known also as complex scaling or the complex
rotation method). We should stress here that any other
kind of analytical continuation could be used as well.
For example, one could use "optical" potentials [60—62]
or the exterior complex scaling [20,63—65] in order to im-

pose absorbing boundary conditions.
The ATI spectra for a model system which were calcu-

lated by the time-independent method presented here
were found to be in remarkable agreement with spectra
that were previously obtained from time-dependent cal-
culations. The possibility to avoid long propagation
times and large grid space looks promising for the future
applications of the method using three-dimensional real-
istic model Hamiltonians. This however is beyond the
scope of the present article.
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APPENDIX: AN ALTERNATIVE DERIVATION
OF THE COMPLEX-SCALED TIME-INDEPENDENT

TRANSITION PROBABILITIES

Using the matrix representation of the Floquet Hamil-
tonian combined with the complex-coordinate method,
the time-independent transition probability amplitudes
for half-collision and for full-collision processes in the
presence of time-periodic potentials are obtained. In the
present derivation we use the fact that all the eigenvalues
of the complex-scaled Floquet Hamiltonian are complex
with negative imaginary parts and the generalized inner
product for non-Hermitian operators (also known as the c
product [51,52]).

The time-independent Floquet Hamiltonian matrix
which describes the interaction of an atom (or a mole-
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cule) with an external time-periodic field is given by

[HI(x)]„„=—Jt B(x,t)e'"'" ""dt+fimn5„„,

(Al)

That is, at t =0 the initial state is a vector whose corn-
ponents at any Brillouin zone n = —~, . . . , ~ are given
by yb (x ). pb (x,0) is developed in time under the
influence of the time-independent Floquet matrix opera-
tor. Therefore,

where
—iHI(x)t/A

pb(x, t)=e I pb(x, O) . (A5)

fi+(x, t)=—,+ P(x, t'),
2p (jx

0'(x, t ) = 0(x, t'+ T),
T=2m/w .

(A2}

P (x t)=e (A6)

The final state is determined by the detector which is lo-
cated far from the focal region of the electromagnetic
field. Therefore,

1/2

As in solid-state theory, the indices n and n' refer to the
nth and n'th Brillouin zones, respectively. In the case of
an electromagnetic field, m =(n n') c—an be regarded as
the number of photons which are absorbed (m (0} or
emitted (m )0) as a result of the interaction between the
atom (molecule) and the field.

The coordinates are scaled by a complex factor such
that

x =x'e' (A3)

1. Half-collision processes

At t & 0 the atom or molecule is in an eigenstate of the
field-free Hamiltonian, yb(x ). At t =0 the atom or mole-
cule is suddenly exposed to a time-periodic field. Our
definition of the vector function that describes the atom
or molecule and the field at t =0 is

Pb(x, O) =(. . . ,yb(x), gab(x), yb(x), . . . ) . (A4)

where x' gets real values only. Following the c-product
definition, we will not take the complex conjugate of
exp(i8} whenever matrix elements with complex-scaled
functions are evaluated. [This definition is equivalent to
the introduction of the complex integration contour in
Eq. (4.7).] HI(x) is a time-independent matricial opera-
tor which is represented as a matrix in the Fourier basis
by an integration over the tiine t [Eq. (Al)]. The states
which describe the atom-field system are therefore vector
functions. The components of the vector functions are
the x-dependent coeIcients in the Fourier basis-set ex-
pansion of the states. The representation of the initial
and the final scattering asymptotes as vector functions is
the key point in the following derivation.

describes the free particles (electrons or ions) with the
kinetic energy Ez=p /2m which are trapped by the
detector. The final state can be represented as a vector
function:

Ao

Pz(x, &)=e ~ fz(x, O)=e I Pz(x, O), (A7)

where the diagonal block Floquet Hamiltonian matrix
Ap
H& is given by

H&(x ) =HJ (x)—V(x), (AS)

[V(x)]„„=—f V(x, t)e' '. " ""dt (A9)

and $~(x, 0) is given by

P (x,O)= rn

27TApe

' 1/2

eipx/A p p

(A10)

I' (E )=I lim (p, (r)lp (r)&I'
t~ oo

(A 1 1)

p (r) stands for the transposed vector [p~(t)]', and ( I )
stands for the c product [51,52] (an integration on the
complex-coordinate contour, x'e' ). The probability am-
plitude is obtained by using Eqs. (A5) and (A7):

where the only nonzero component is for n =0.
At taboo the state vector of the system pb(x, t) is

spanned by the set of all possible final states. The
complex-scaled probability to detect a final kinetic energy

E~ is therefore given by

lim ($,(r)Ipb(r)) =(p, (0)Ipb(0))+ f dr ($,(r)Ipb(r))—

=(p (0)Ipb(0))+ f dt (f (0)Ie ~ e —~ Ipb(0))
o Bt

JL

=(y, (0}fy,«}&——„'f "~«y, (0}IV. '"~ ""'"Iy,(0» .

Using the spectral representation of the Green operator
and bearing in mind the fact that a11 eigenvalues of the
coxnplex-sealed Floquet Harniltonian matrix are complex
with negative imaginary parts, we immediately get the re-

I

suit that

——f e ~ ~ dt=[E I—H ] '=6(E ).
(A13)
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&'(E, )= I &4,(0)II+VG(E, ) ly (0}& I', (A14)

By substituting Eqs. (A12) and (A13) into Eq. (Al 1), one
gets that

)p (x)=
]./2

ipx /Ae
27TRpe

(A16)

where all components of l()()i, (0) & are identical and equal
to the bound eigenstate of the field-free Hamiltonian,
whereas the only nonzero component in lg~(0) & is the
n =0 component as described above. Note that Eq. (A14)
is equivalent to Eqs. (4.22), (4.23), and (4.26) in the text.
The difference is that in the present representation the
operators and the states are represented as functions of x,
whereas in the text they are presented in a basis set

I la & ]. As discussed in the text, the numerical advantage
of this formula is in the fact that only one inversion of the
complex-scaled Floquet Hamiltonian matrix (constructed
from square-integrable basis functions) is required in or-
der to obtain the transition probability amplitude for a
given value of the kinetic energy E of the detected free
particle.

A Q

i'(x,o}:ae /
)I) (x,o), (A17)t~ oo

where la l
is the probability to find the system at Pe(x, t)

as t~ ~. As t ~—00, the initial vector state of the sys-
tem is(I) (x,o). Therefore,

—i H (,x)t/fi
e / g(x,o):e (A18)

A
Q

or (by replacing t by t)—

As t ~ oo, the actual vector state of the system it/(x, t) is
spanned by all possible final states. By introducing the
time-evolution operators from Eqs. (A5) and (A7), we ob-
tain

2. Full-collision processes

Here we describe a situation where, for example, a pos-
itive ion and an electron (or a negative ion) with a relative
kinetic energy Ez collide inside an ac field. As a result,
an electron and an ion with a relative kinetic energy Ez
are obtained. Let us define the vector state of the system
at t =0 as |ti(x,o). The initial and final asymptotical vec-
tor states are represented by the vectors (}() (x, —~) and

Pz(x, ~), respectively, where at t =0,

iH/(x)i /S iH/(x)t /S

t~ac

From Eq. (A19) one can get that as t ~ ~,
—iH/(x)i/S iH/(x)t/S

By substituting Eq. (A20) into Eq. (A17), we obtain

i H~(x)t/A —2i Hf (x)t/A

t —~ oc

A
Q

(A19)

(A20)

P~ (x,o) =(. . . , (Ii (x),pz. (x),p~ (x), . . . ),
P (x,o)=(. . . , o, y (x),0, . . . ),

(A15)
Therefore,

(A21)

(A22)

E +E +finnI'(E, ,E, )= (y, (0)l4, ,(0}&+-,' y y, (0) vG
n = —oo

As for the case of a half collision, we can replace the limit t ~ ~ by time integration from 0 to ~. Thus, we obtain

E +E +finn
+G V P" (0) . (

2

(A24)

lP~ (0) & is a vector function in which the only nonzero
component is the nth component of lP (x,o) & defined by

Eq. (A16). We now replace VG by G T and GV by TG,
where [37]

T=V+VGV

lem is the introduction of a factor exp( —Et} into the time
integration leading from Eq. (A22) to Eq. (A23) and tak-
ing the limit E~o. Therefore, by operating with G (E)
on the asymptotic vector functions, the time-independent
complex-scaled transition probability is obtained:

and

G (E)= [EI—Hf ] (A25)
P (E,E )= ())() I)((

Note that the complex-scaled operator G (E) cannot be
computed directly by Eq. (A25) if the Hamiltonian sup-
ports bound states. In such a case the bound-state ener-
gies are real even upon complex scaling and the operator
[EI—Hf ] is singular. The formal solution to this prob-

—2~i y &y, (0)lf(E, )ly,"(0)&, (A26)

where E and E ~ are related by the equation
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E =E +Amn &0, n =0,+1,+2, +3 .

The last equation is identical to Eqs. (4.27}, (4.28}, and
(4.31) in the text, if a basis set is used to represent the

coordinates. %e note in passing that unlike in the half-
collision experiment, the kinetic energy of the detected
electron is quantized and that it may happen that
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