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Finite-element analysis of electron-hydrogen scattering
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The Schrodinger equation for electron-hydrogen scattering is solved directly using finite-element

analysis. Below the n =2 threshold, accurate phase shifts for 0~ L ~ 3 are obtained and compared with

variational and R-matrix results. Resonance positions and widths are also calculated and are in good
agreement with other theoretical values. Above the n =2 threshold, partial-wave contributions to the

cross sections 0 &, l„crl, 2„and o &, » are calculated and compared with those obtained using close-

coupling and R-matrix methods. Wave functions are shown for both elastic and multichannel scattering.

PACS number(s): 34.80.Bm, 34.80.Dp

I. INTRODUCTION

The finite-element method (FEM) offers an alternate
approach for studying few-body systems by allowing one
to obtain a direct solution of the Schrodinger equation
for both bound and continuum states [1]. Recently, we

reported preliminary results on the elastic scattering of
electrons from hydrogen using the FEM [2]. In this pa-
per, we give details of the calculation and show that the
method can be extended to the multichannel problem by
simply modifying the boundary conditions. We present
inelastic cross sections above the n =2 threshold and
compare FEM results with R-matrix and close-coupling
calculations.

In the more conventional approaches to scattering,
such as variational, R-matrix, or close-coupling methods,
one constructs an approximate wave function using a glo-
bal basis set, such as the hydrogenic states. In finite-
element analysis, one approximates the wave function
piecewise using simple polynomial functions. This has
the advantage of providing greater flexibility in simulat-
ing the behavior of the wave function in both the interac-
tion and asymptotic region. Another advantage of the
finite-element method is the ease with which one can im-

pose complicated boundary conditions. This feature
makes it ideal for treating multichannel scattering. The
major limitation to the finite-element method is that it be-
comes computationally prohibitive for more than two
electrons. Nevertheless, one could use this approach to
study electron scattering from the alkali metals by intro-
ducing an effective potential; the method can also be
readily adapted to study electron scattering from He+.

The problem of electron-hydrogen scattering has a
long history. Although the system is relatively simple in
that it contains only three charged particles, it neverthe-
less has all the complexities of multichannel scattering:
there are series of resonances below each threshold and
the number of physically open channels is infinite at the
ionization threshold. For these reasons, it has been the
subject of many theoretical and experimental investiga-
tions. Although electron-hydrogen scattering has been
treated successfully by variational, R-matrix, and close-
coupling methods, no single calculation can yield accu-

rate scattering parameters over a wide energy range and
there is still some disagreement between various calcula-
tions in the regimes where the results overlap, particular-
ly at higher energies. It is hoped that through a direct
solution of the Schrodinger equation, finite-element
analysis will provide a tool for studying scattering that is
accurate over a wide range of energy. However, we are
still far from that goal; the purpose of this paper is mere-
ly to demonstrate that the method can be used for elastic
and inelastic scattering, and in the energy region studied
to date, there is excellent agreement with other theoreti-
cal calculations.

In the next section we outline the procedure for using
the FEM for elastic scattering. We present elastic phase
shifts and resonance positions and widths below the n =2
threshold, as well as wave functions for both the resonant
and nonresonant case. In Sec. III we extend the analysis
to multichannel scattering and examine the scattering re-
gion where the 2s and 2p channels are open. We compare
FEM results for inelastic cross sections and eigenphase
sums with close-coupling and R-matrix results. Conclud-
ing remarks are given in Sec. IV.

II. FINITE-ELEMENT ANALYSIS
OF ELASTIC SCATTERING

A. Description of the algorithm

The two-electron Schrodinger equation (in atomic
units} is

V& V2 ——+ EV(r„r2)=0—; (2.1)
2 2 r1 r2 ~12

solutions of Eq. (2.1) are identified by their total angular
momentum L, spin S, and parity m", for scattering states,
the parity is determined once L and S have been
specified. The wave function 4 (r„r2)is first expanded
in coupled spherical harmonics,

(r„rz}=g Ut t (r„rz}Ytt (r„rz}. (2.2)
II, l~

All of the angular dependence of the wave function is ac-
counted for through the spherical harmonics; the values
of l, and 12 retained in the sum for 0 ~ L ~ 3 are
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L=0
l, l~

L=1 L=2
l, l~

L=3
l) l~

Substituting Eq. (2.2) into Eq. (2.1), we obtain a set of
coupled differential equations for the radial functions
ULS

I
l 12&

L
12'12 l 2

l~ 2

(2.3)

where

1 a' 1 a l(l+1)
)1 2')1)2

i 2 dr r; Qr. , 2r 11,11 12,12

+ g „,(F,, , (r„rz)~P„(cos8,z)iF, ) (r„rz)) .
O f 1 2

(2.4)

The angular brackets indicate integration over the angu-
lar coordinates and E = —

—,'+k l2 is the total energy,
where k is the incident momentum of the electron and
the hydrogen target is in the ground state. Note that all
of the coupling between states with difFerent li, li comes
from the electron-electron interaction. The radial func-
tions U, &

are obtained by solving Eq. (2.3) with the

FEM.
In finite-element analysis, the coordinate space

spanned by r, and rz is truncated and discretized into
small regions called elements [1].The cutoff r, must be
chosen large enough so that one can impose the asymp-
totic boundary condition at r, =r, and r z

=r, . The size of
the elements may vary, and in general one uses smaller
elements in regions where the potential is strong and the
function is expected to have a lot of structure, and larger
elements where the wave function is smooth and the
probability density is small.

In each element c, we seek a solution of the coupled ra-
dial equations; the radial functions U1 1 are expanded in

a local basis set

36
ULs(E)(r r ) y ~Ls(E)y(c)(» r )

i=1
(2.5)

The functions P( (r), ri) are products of fifth degree po-
lynomials in r& and rz and are nonzero only in element c.
These basis functions have the unique property that the
36 expansion coefficients u1 1',"are the value of the func-

tion U1 &
and its derivatives BU& 1 /Br, , BU, , /Br~, and

0 U1 1 /Br, Br& at nine nodes in the element; the nodes

are located at the four corners, the midpoints of the sides,
and the center of the element. It is this particular feature
of the finite-element method that allows one to impose ei-
ther bound or continuum state boundary conditions with
relative ease. Substituting Eq. (2.5) into Eq. (2.3) and
projecting onto the local basis functions, we obtain a set
of coupled linear equations for the expansion coefficients
for element c.:

~here

(2.7)

The angular brackets here indicate integration over the
area of element c. Since the diagonal matrix elements in-
volve only simple polynomials, all of the integrations can
be done exactly with eight-point Gauss quadrature. For
the off-diagonal terms, we also used eight-point Gauss
quadrature except for elements along the diagonal r, = rz,
where the quadrature was increased to 16 points. The lo-
cal matrices are symmetric and of order 144 for L =0
and 216 for L ~1.

Local equations of the form Eq. (2.6) are generated for
each element c, but are not solved independently. The
expansion coefficients for nodes that lie on the boundary
between two or four elements couple together the local
equations for those elements. That is, if u1 1',"and u1 1",''
correspond to the value of the radial function at a com-
mon node on the boundary between elements c. and e',
those two coefficients must be equal if the function is to
be continuous across the element boundary. Thus the
coupling of the equations ensures continuity of the func-
tions (and derivatives) across the element boundaries.

The local matrices are "added" together to form a sin-

gle global matrix

y HL(E)& LS(c) ~L& LS p (2.8)

The global matrix is banded and symmetric, and a single
global matrix element may contain contributions from
one, two, or four local matrices. The components of the
vector u are the yet undetermined values of the radial
functions and derivatives at all the nodes in the (r„rz)
grid.

The global matrix is independent of the spin S. We can
now use the symmetry properties of the singlet and triplet
state to reduce the size of the global matrix by a factor of
2. Under exchange of the two electrons, the radial func-
tions must obey

0L (E, ) Ls(c) p (2.6) (2.9)
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H L-LS -LS

where

(2.11)

Consequently, we can solve the finite-element equations
on the half-grid r&

) rz and require that the singlet and
triplet radial functions satisfy Eq. (2.9); this imposes a
constraint on certain components of the vector u that
correspond to nodes with r, =rz.

The asymptotic scattering boundary condition must
now be imposed at r

&

=r, . For elastic scattering, the ra-
dial functions UI i are given asymptotically by

UI I (r„r2)=5)1.5I oR,o(r )&k

X [JL (kr& )+tan5Lg L t(kr, )], (2.10)

where jL is the spherical Bessel function, R &p is the ls hy-
drogen radial function, and 5L is the elastic phase shift.
[The values of the derivatives on the boundary can be ob-
tained by differentiating Eq. (2.10).]

The indices for the global matrix (of order N) given in
Eq. (2.8) can be arranged such that the first n components
of u correspond to the value of the radial functions and
derivatives at interior nodes and the last (N n) com--

ponents are associated with nodes on the boundary.
These boundary components are determined by Eq. (2.10)
up to a common phase shift. We cast the global matrix
equation into a new form

H&j H&j 1 ~ i (n + 1, 1 j(n

u =u 1(j~nj
u„+i=tan5L,-LS

N
KL u

Ls ~Ls w KLuLs
i n+1 n+1 i ~ ij jj=n+1

(2.12)

The matrix H is of order (n + 1) and the last component
of the vector u is the unknown phase shift. The matrix
H is inverted to obtain the radial functions and the un-
known phase shift using standard routines for Gaussian
elimination of banded matrices.

B. Results for elastic phase shifts

The finite-element results for the elastic phase shifts
were obtained on a 10X10 grid, with r, =40ap for
k =0. 1 and 0.2 and r =24ao for 0.3(k 0.8. No at-
tempt was made to optimize the grid at each run. In the
interaction region, we used six elements with boundaries
at Oap 0.25ap 0, 5ap, lap, 2ap, 4ap, and 8ap, between

Sap and r„weused four additional elements of size 4ap
or 8ap, depending on the wavelength in the asymptotic
region. The CPU time on an IBM ES/9000 computer
was 1.0 min per phase shift for L =0 and 1.5 min for
L & 1. Unlike the variational method, the computational
effort does not steadily increase as a function of L. The

TABLE I. Singlet and triplet elastic phase shifts. Finite-element results are compared with R-matrix [7], variational [3-6], and
finite-diiference [8] calculations.

State

'S' R-matrix
variational
finite-difference
finite-element

'S' R-matrix
variational
finite-difference
finite-element

'P' R-matrix
variational
finite-element

P' R-matrix
variaiional
finite-element

0.1

2.550
2.553
2.555
2.553
2.939
2.939
2.939
2.938

0.006
0.007
0.006
0.010
0.011
0.010

0.2

2.062
2.067
2.067
2.066
2.717
2.717
2.717
2.717

0.015
0.015
0.015
0.045
0.045
0.045

0.3

1.691
1.696
1.696
1.695
2.500
2.500
2.500
2.500

0.016
0.017
0.016
0.107
0.106
0.107

0.4

1.410
1.415
1.415
1.414
2.294
2.294
2.294
2,294

0.009
0.010
0,009
0.187
0.187
0.187

0.5

1.196
1.202
1.201
1.200
2.105
2.105
2.104
2.104

—0.002
—0.001
—0.002

0.270
0.271
0.271

0.6

1.035
1.041
1.041
1.040
1.933
1.933
1.933
1.933

—0.012
—0.009
—0.012

0.341
0.341
0.342

0.7

0.925
0.930
0.930
0.930
1.780
1.780
1.780
1.780

—0.016
—0.013
—0.015

0.392
0.393
0.393

0.8

0.886
0.887
0.887

1.643
1.646
1.645

—0.004
—0.007

0.427
0.428

'D' R-matrix
variational
finite-element

3D' R-matrix
variational
finite-element

'F' variational
finite-element

F' variational
finite-element

0.0013
0.0012
0.0007
0.0013
0.0013
0.0007

0.0000

0.0000

0.0051
0.0052
0.0048
0.0052
0.0052
0.0049

0.0016

0.0016

0.011
0.011
0.011
0.011
0.011
0.011

0.0038
0.0037

0.0038
0.0037

0.018
0.018
0.018
0.020
0.020
0.020

0.0066
0.0065

0.0067
0.0065

0.027
0.027
0.027
0.030
0.030
0.030

0.010
0.010

0.010
0.010

0.038
0.038
0.038
0.042
0.042
0.042

0.015
0.015

0.015
0.015

0.052
0.052
0.052
0.055
0.055
0.055

0.020
0.020

0.020
0.020

0.075
0.074

0.070
0.070

0.026
0.026

0.026
0.027
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1
t00 Cr-. , r, , )

1-==0 Fj

TABLE II. Resonances below the n =2 threshold. Finite-
element results are compared with the R-matrix method [7] and
complex-coordinate rotation method (CCRM) [9].

Method Position (eV) Width (eV)

R-matrix
CCRM
finite-element

9.5572
9.5574
9.5573

0.0471
0.0471
0.0472

3pp R-matrix
CCRM
finite-element

9.7382
9.7381
9.7382

0.0058
0.0058
0.0058

R-matrix
CCRM
finite-element

10.125
10.124
10.128

0.0088
0.0086
0.0093

FIG. 1. Radial function U at k =0.8 (a.u. ); rl and r& are in
units of ao.

results were stable with respect to increasing r„increas-
ing the number of elements and increasing the number of
angular basis functions. The FEM results are compared
with variational [3—6] and R-matrix [7] results in Table I;
also included for L =0 are the recent numerical results of
Wang and Callaway [8], who used a finite-difference
propagation scheme.

The radial function U at k =0.8 is shown in Fig. I.
This function is symmetric about the diagonal and is the
only radial function that does not vanish asymptotic 11ica y.

00 ~s about a factor of 10 larger in magnitude than th
00

an e
other functions UI I, which contribute to the total 'S'
scattering wave function. Figure 1 is typical of the entire
nonresonant scattering region, 0 k (0.8. In all cases
0( l (0 L . 3, the total wave function was dominated by the
contribution of the states UI0 and U0L ', this is consistent
with the rapid convergence of the results with respect to
the number of angular states retained in the expansion in
Eq. (2.1).

and under 5 min for L ~1, using a 14X14 grid with

r, =40a0. We compare these results with R-matrix cal-
culations [7] and the complex coordinate rotation results

[9] in Table II. [The values for the positions and widths
given in Table II are slightly improved over those in Ref.
[2], where a two-point fit to Eq. (2.13) was used with an
approximate value of 5o.]

In Fig. 2 we show the radial function U00 at k =0.838,
w ich lies within the width of the lowest 'S' resonance.
Although the radial functions at k =0.8 (Fig. 1) and
k =0.838 were obtained using the identical boundary
conditions, the structure of the functions is dramatically
di8'erent. The behavior associated with a doubly excited
state is clearly observable at the resonant energy. The
"bound-state" part of the radial function is much more
extended in space than its nonresonant counterpart d
t e amplitude of the wave function along the diagonal
r, =r2 is significantly greater.

Clearly, the finite-element method is successful for sin-

gle channel elastic scattering. In the next section, we de-
scribe how this procedure can be extended to treat mul-
tichannel scattering.

C. Resonances below the n =2 threshold

In the energy region 0.8& 0 &0.886 (k =0.886 is the
n =2 threshold), there are a series of resonances corre-
sponding to quasistable doubly excited states of H . As
one passes through a resonance, the phase shift under-
goes an abrupt change of m,

' this resonant behavior is su-
perimposed on the general background behavior of the
phase shift as a function of k. To a good approximation,
the resonance can be fit to

00
UOO( l 2~

tan(6 —6o) = r
2(EIt E)—(2. 13)

where Ez is the resonant energy, I is the width, and 50 is
the background value of the phase shift, which is as-
sumed to be constant over I .

We calculated the position and width of the lowest-
lying resonance for each partial wave using a three point
fit to Eq. (2.13). CPU times were under 2 min for L =0

FIG. 2. Radial function U~ at k =0.838 (a.u. ); r, and r2 are
in units of ao.
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III. FINITE-ELEMENT ANALYSIS
OF INELASTIC SCATTERING

A. Modifications to the algorithm

In principle, the treatment of multichannel scattering
with the FEM involves nothing more than a change in
the asymptotic boundary conditions and an increase in
the value of r, . In practice, this involves a substantial in-

crease in "bookkeeping" and computational effort. In
this section, we limit our discussion to inelastic scattering
above the n =2 threshold, but below the n =3 threshold.
We discuss only the modifications to the procedure out-
lined in Sec. II A.

The wave function is now labeled with an additional
superscript a to indicate the incident channel of the
scattering system. (For the elastic case, only one channel
is physically accessible and this index was unnecessary. }
The index a represents the asymptotic quantum numbers
of the target ( n z, 12 } and the angular momentum of the
projectile electron (I, ); we use the designation

rr L- LSa -LSaHQ =C (3.2)

where

H,"=H, , 1(i (n+4, 1~j ~n
—LSa LSa l~j~n

(3.3)
u„+p=Kp, /=1, 2, 3,4

(r$ r2 ) y 51 Is~1 ipse p ip(r2 }
1 2

P
1'1 2'2 2'2

X[5 y s(k~r, )+Kp j,s, (k~r~)],
1 1

(3.1)

where j& is the spherical Bessel function, R„Iis the hydro-
gen radial function, and E& is the unknown reactance
matrix element. The components of the vector u that
correspond to nodes on the boundary are completely
determined by Eq. (3.1), except for the four unknown K-
matrix elements; the global equation can be rewritten as

n 2
Ia

2
Ia

1

L
L

L+1
L —1

n+4 N

H u c=—~ H ul "(i (n+4ij j i ~ ij jj=n+1 j=n+1

where E=—
—,'+k l2= —

—,'+a. . (Note that for L =0,
there are only three physical channels. )

The wave function %' is again expanded in coupled
spherical harmonics; we retain the same angular states as
for elastic scattering (see Sec. II A). The coupled radial
equations are then solved by the FEM. The multichannel
nature of the inelastic problem effects only the boundary
conditions. For the elastic case, only a single radial corn-
ponent was nonvanishing on the boundary r1 =r, and it
contained a single unknown, the tangent of the phase
shift. We now replace Eq. (2.10) with the more compli-
cated boundary condition

State

's

S

Method

close-coupling
R-matrix
finite-difference
finite-element
close-coupling
R-matrix
finite-element

+1s-ls

0.561
0.564
0.561
0.570
3.692
3.692
3.692

0'1s-2s

0.059
0.059
0.058
0.063
0.0012
0.0012
0.0013

0'1s-2p

0.026
0.026
0.028
0.023
0.0006
0.0006
0.0008

TABLE IV. Partial-wave cross sections (in m.ao) at k =0.9.
Finite-element results are compared with close-coupling (28
basis functions) [10],R-matrix [7], and finite-difference calcula-
tions [8].

Grid

CPU

10X 10
24ao
3 20

14X 14
40ao
11:57

20X 20
64ao
19.42

24X24
80ao
36.45

1.864
0.213
0.198
0.069
0.048

1.860
0.211
0.204
0.074
0.060

1.846
0.203
0.208
0.074
0.075

1.851
0.200
0.200
0.074
0.075

~1s-1s
~ ls-2s

~ ls-2p

0.575
0.063
0.018
1.765

0.574
0.064
0.021
1.700

0.570
0.063
0.023
1.675

0.571
0.062
0.023
1.681

TABLE III. T-matrix elements, cross sections (in m.ao) and

eigenphase sums as a function of r, and grid size for 'S' at
k =0.9. CPU times (min:sec) are for entire E matrix.

1p

3p

1D

D

1F

F

close-coupling
R-matrix
finite-element
close-coupling
R-matrix
finite-element

close-coupling
R-matrix
finite-element
close-coupling
R-matrix
finite-element

close-coupling
R-matrix
finite-element
close-coupling
R-matrix
finite-element

0.0012
0.0015
0.0017
1.979
1.989
2.005

0.063
0.063
0.063
0.130
0.130
0.131

0.010
0.011
0.012
0.032
0.033
0.036

0.0034
0.0034
0.0048
0.052
0.052
0.055

0.060
0.061
0.056
0.0027
0.0027
0.0029

0.0008
0.0010
0.0009
0.0105
0.0096
0.0099

0.052
0.052
0.051
0.047
0.048
0.047

0.111
0.100
0.116
0.0059
0.0058
0.0051

0.0032
0.0031
0.0033
0.031
0.032
0.035
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001
U00 (rl
k=0.9

The matrix H is of order (n +4), and the last four entries
in the vector g are the a column of the E matrix. The
FEM calculation is repeated for each incident channel a
in order to obtain the full K matrix.

B. Inelastic results

002
U00 «1, r2 )

Once the E matrix has been obtained from the solution
of Eq. (3.2), it can be used to calculate the T matrix, in-
elastic cross sections, and eigenphases. In the FEM ap-
proach to electron-hydrogen scattering, the symmetry of
the K matrix, and consequently the T matrix, is not
guaranteed. In fact, the symmetry of the T matrix was
used to determine when the radial cutoff r, was
suSciently large. Typical results are shown in Table III
for the 'S' state at k =0.9. Note that although the T
matrix was quite nonsymmetric at r, =24ao (10X10
grid), the cross sections are still within a few percent of
the fully converged values.

The FEM results for partial wave contributions to the
cross section for 0~K 3 are given in Table IV; all re-
sults were obtain using r, =64ao (20 X 20 grid). These re-
sults are compared with the close-coupling calculation
[10], the R matrix [7], and finite difference (for 'S' only)
[8]. There is good agreement between the three calcula-
tions for the cross sections o„„,, o „2„ando.„2,with
the exception of the 'S' state, where the FEM result for
0.

&, „

is slightly higher than other calculations.
In Fig. 3, we show the radial functions U for

+=1,2, 3 at k =0.9. For the incident channel corre-
sponding to the 1s target, the wave function is similar in
structure to the elastic wave function (Fig. 1). In con-
trast, if the incident target is in a 2s or 2p state, the radial
wave function near the nucleus exhibits structure associ-
ated with the n =2 state of hydrogen and, in the asymp-
totic region, one can see the superposition of the two
free-particle states with A, = 2m jk and 2m/z.

IV. CONCLUSIONS

003
U00 «1
k=0.9

We have shown that the 6nite-element method can be
successfully used to study both elastic and inelastic
scattering. Unlike other approaches, we have avoided
the diSculty of long-range couplings among the 1s, 2s,
and 2p states by choosing a suf5ciently large value of r, .
Thus the 6nite-element approach is fundamentally
different from R-matrix and close-coupling calculations.
(The finite-difference calculation of Wang and Callaway

[8] included 2s-2p coupling; they have since obtained
converged results without asymptotic coupling [11].)

In order to extend finite-element analysis to higher en-

ergy, it will be necessary to systematically increase the ra-
dial cutoff r, . In order to prevent CPU times and storage
requirements from becoming prohibitively large, new

ways of optimizing the finite-element scheme are being
investigated. The effect of including asymptotic coupHng
in the boundary condition is also being studied.

FIG. 3. Radial functions U, U', and U~ at k =0.9
{a.u.), corresponding to the incident target in the 1s, 2s, and 2p
states, respectively; r, and r, are in units of a0.
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