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Low-energy-electron collisions with sodium: Elastic and inelastic scattering from the ground state
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The electron-Na system is the prototype for nonrelativistic scattering of a charged particle from a
quasi-one-electron system. At scattering energies below several eV, e-Na cross sections are particularly
sensitive to the exchange interaction and manifest a rich variety of near-threshold structures in various
spin channels. By applying the nonperturbative coupled-channel R-matrix method in carefully con-
verged calculations we have generated a comprehensive data base of accurate scattering quantities for
studying these phenomena and for comparison to present and future experimental data. In particular,
we examine elastic scattering and excitation of the 3p, 4s, 3d, and 4p excited states at energies from
threshold to 8.6 eV. In addition to conventional integrated and differential cross sections, we consider
partial cross sections for changes in the projection of the spin and orbital angular momentum of the Na
valence electron, comparing results for all these quantities to experimental data where available.

PACS number(s): 34.80.Bm, 34.80.Dp, 34.80.Nz

I. INTRODUCTION

In 1972 Moores and Norcross [1] reported four-state
close-coupling calculations of cross sections for electron
scattering from sodium in its ground state at energies
below the ionization threshold at 5.14 eV. Their results
have become the standard of comparison for experimen-
tal and theoretical determinations of integral and
differential cross sections (DCS’s) for elastic scattering
[2-10], for the 3s—3p and 35— 3d excitations [11-17],
and for the polarization of the line radiation from radia-
tive decay of the final state [14-22].

During subsequent decades, however, experimental
studies of electron—alkali-metal atom scattering moved in
new directions, making new demands on theory. The
most striking change has been an increased emphasis on
collisions involving polarized beams and spin analysis of
the final state [23-35]. For example, Hegemann et al.
[36] have crossed beams of spin-polarized electrons and
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unpolarized sodium atoms and measured the polarization
of the outgoing electron to determine spin-flip cross sec-
tions for elastic scattering and excitation of the 3 2P state,
and McClelland, Kelley, and Celotta [27] have measured
spin asymmetries for superelastic scattering from sodium
atoms initially excited to the 3 2P state.

The latter experiment is one of several in which the
target atoms are initially prepared (by one or more lasers)
in an excited state [37-42]. Many of these experiments
do not entail spin polarization or analysis: for example,
Jaduszliwer and co-workers [38,39] used an atomic-beam
recoil technique to measure absolute DCS’s for superelas-
tic (and inelastic) scattering from 3 2P.

Many studies of scattering processes involving elec-
trons and excited sodium atoms seek to determine infor-
mation about the distribution of the initial (excited)
atoms among various magnetic sublevels. The subject of
orientation and alignment effects has yielded consider-
able insight and an often bewildering variety of parame-
ters [37-40], and has been extensively reviewed [43-48].
This will be the subject of a later paper in the present
series.

Until quite recently, theoretical work related to these
more detailed and revealing experiments has been very
limited. Thus, while Moores, Norcross, and Sheorey
[49], in a continuation of the work of Moores and Nor-
cross, did extract cross sections for scattering from the
3 2P state, they did not delve into orientation and align-
ment phenomena. One motivation for the present
theoretical enterprise is to produce a data base of high-
precision scattering quantities targeted primarily at these
new experiments. Indeed, so advanced are experimental
methods for low-energy electron scattering that one can
seriously envision performing a “‘complete” scattering ex-
periment: as first articulated by Bederson [50], such an
experiment would yield sufficient independent quantities
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to obtain full knowledge of all relevant scattering ampli-
tudes [34,35].

Experiments that aspire to “completeness” often mea-
sure quantities that are far more sensitive tests of theory
than are the familiar differential and integral cross sec-
tions. Consequently in the present calculations, which
emphasize energies below the ionization threshold, we
have sought to improve on the formulation used by
Moores and Norcross in several ways—primarily
through enhanced convergence, as required for the
scattering quantities of current interest, and a more
rigorous treatment of the target and its (induced) polar-
ization interaction with the projectile. The theoretical
approach implemented here is based on an expansion of
the electron-atom wave function in bound states of the
target, and so does not explicitly allow for virtual excita-
tion of the continuum; we shall discuss the justification
for this assumption in Sec. IV A 4.

This formulation is described in Secs. II and III of this,
the first of several papers which report our results and
discuss their implications for prior experiments and
theoretical studies. As befits a foundation paper, we also
discuss here the convergence criterion for our calcula-
tions. Then in Sec. IV we present differential and integral
cross sections for excitation from the ground (3 2S) state,
comparing primarily to data from experiments which en-
tail neither (final) state selection nor spin polarization. In
subsequent papers we shall report cross sections for elas-
tic and inelastic scattering of sodium from the 3 2P excit-
ed state, orientation and alignment parameters for this
process, and scattering of polarized electrons from the
ground and 3 2P states. Unless otherwise specified we use
atomic units for length (a,), cross sections (a3), and po-
larizabilities (a}), where the Bohr radius is a,
=5.29177X10" "' m.

II. THE SODIUM ATOM

Before summarizing our formulation of the collision
problem, we first consider the representation of the target
and its interaction with the projectile. Sodium is
effectively hydrogenic, its neonlike 1s%2522p® core being
very tightly bound. Moreover, its nuclear charge Z=11
is sufficiently small that in the present study the spin-
orbit interaction term in the e-Na Hamiltonian is negligi-
ble, because the separation between the atomic terms of
Na is much larger than the fine and hyperfine splitting
[51]. Although the total spin of the e-Na system is there-
fore conserved, the spin of the projectile can change via
exchange with the valence electron of the target.

We can therefore accurately represent bound states of
the target in the LS-coupling approximation, i.e., we as-
sume that the target orbital and spin angular momentum
L and S are constants of the motion, and label the N,-
electron atomic wave functions for a particular electronic
configuration I"' by quantum numbers L, S, M, , and M.
We construct these wave functions from one-electron or-
bitals calculated using the restricted Hartree-Fock (RHF)
method [52,53].

In generating RHF orbitals for use in scattering calcu-
lations we treat the core and valence orbitals differently.

The 1s, 25, and 2p core orbitals we obtain by solving the
target Schrodinger equation (with the HF Hamiltonian of
the neutral atom) for the ground-state wave function are
“frozen” in subsequent scattering calculations, in the
sense that these orbitals are not allowed to respond to the
electric fields of the valence electron or the projectile. Of
course, the valence electron (in the ground and excited
states) does polarize the core and so it experiences a po-
tential different from that produced by these frozen orbit-
als. To include this effect simply and semiempirically, we
determine the valence and excited orbitals via a separate
calculation in which we augment the HF Hamiltonian of
the target with an /-dependent one-electron polarization
potential V,“””(rNe) (discussed in Sec. III B), as

#=3

i=1

—ipp-Z @.1)

+ 3 Ny ),

r; i>j Tij

where the sum runs over all N, target electrons, and TN,

is the radial coordinate of the valence electron. We ad-
just the parameters p, in V,‘p"”(rNe) for /=0, 1, and 2 to

ensure that the resulting orbital energies reproduce ex-
perimental ionization energies for the valence (3s) orbital
and excited s, p, and d orbitals to better than 1%.

We represent core and valence orbitals in terms of
Slater-type orbitals (STO’s), the parameters of which we
take from Clementi and Roetti [54]. For high-lying excit-
ed states, we augment this basis with additional diffuse
functions. Specifically, the target wave function ¢,(7,)
for an atomic state a=(T',L,S,M,My), which depends
on the spatial and spin coordinates 7, of the N,=11
bound electrons, is a linear combination of antisymmetric
N,-electron functions that are constructed, in turn, from
one-electron orbitals. Each such (n,l,m;) spatial orbital

is proportional to the spherical harmonic Y,m’(?) with ra-
dial factor P,(r). The aforementioned linear combina-
tions are eigenfunctions of the coupled orbital and spin
angular momentum operators of the atom with
coefficients that emerge from diagonalization of the Ham-
iltonian Eq. (2.1) for Na.

As detailed in an earlier paper [55], the wave functions
resulting from these calculations produce oscillator
strengths and an electron affinity for the 'S¢ state of Na~
that agree very well with experimental data. The ener-
gies of the low-lying excited states we shall be considering
are given (with respect to the ground state) in Table I
[56]; these, of course, are the excitation thresholds for in-
elastic collisions.

III. COLLISION THEORY

All of the scattering quantities we shall report in this
and subsequent papers follow from S matrices for the e-
Na system. The theoretical machinery we have used to
solve the Schrodinger equation for this system—the R-
matrix method—is hence key to this work. In this sec-
tion we summarize our implementation of this method,
which uses the Belfast R-matrix codes [57-59], establish-
ing useful notation along the way, and discuss the one
nonstandard feature of our representation of the interac-
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TABLE 1. Thresholds of states included in nCC close-
coupling calculations (in eV).

State number Valence electron Threshold energy (eV)

1 3s 0.0
2 3p 2.1036
3 4s 3.1912
4 3d 3.6168
5 4p 3.7530
6 5s 4.1167
7 4d 4.2833
8 4f 4.2881
9 5p 4.3448
10 6s 4.5097
11 5d 4.5919
12 6p 4.6243

tion: the polarization potential. Because of the close ties
of this study to that of Moores and Norcross [1], we be-
gin by citing briefly features of that prior work that
differentiate it from the present calculations.

A. Prior close-coupling calculations on e-Na

As in earlier calculations by Norcross [60], Moores and
Norcross represented the sodium target with a scaled sta-
tistical model potential based on the Thomas-Fermi (TF)
approximation [61]. This model includes a radial scaling
factor, which determines the potential at intermediate
distances, that Moores and Norcross adjusted to repro-
duce experimental term values—an adjustment that is
crucial to ensuring, for example, correct excitation
thresholds for inelastic scattering. The importance of
this correction was recently confirmed by Bray, Kono-
valov, and McCarthy [62].

Moores and Norcross modified their TF potential to al-
low semiempirically for polarization of the core by the
valence electron by using a one-electron polarization po-
tential of the form —ag,./(r?+r3)>.  Here
@ore=0.884a} is the polarizability of the Na™ core [63],
and the parameter r, cuts off this function at small r. To
ensure accurate experimental energies for the 32S and
32P states, Moores and Norcross chose the value
ro=0.6977a,,.

In the expansion of the e-Na wave function in target
states, they included four states: the 32D and 4 %S states
in addition to the ground 3 S state and the 3 P state. (In
the notation of this paper, theirs is a 4CC calculation, CC
standing for close coupling.) Of these states 3*P is the
most important, since it allows for nearly all of the dipole
polarizability of the (ground state) atom. Working in the
LS-coupling approximation, Moores and Norcross solved
coupled radial integrodifferential scattering equations to
obtain the reactance matrix K and hence a variety of
cross sections. A particularly important difference be-
tween their formulation and ours is the absence from the
former of terms that model the interaction of the two di-
pole moments induced by the valence electron and the
projectile, respectively (see Sec. III B).

In addition to integral and differential cross sections
for elastic scattering, spin flip, and excitation of the 3 2P
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state (at energies up to 5 eV), Moores and Norcross cal-
culated P3p, the intensity of radiation that is emitted at
90° to the incident electron beam in decay of the final
state [the resonance doublet (D,) line radiation]. Con-
cerning convergence, they concluded that adding the 3 2D
and 4°S states to the target-state expansion results in
only small changes in the integral elastic and 3s—3p
cross sections but significantly affects DCS’s at some en-
ergies and angles.

In a subsequent paper, Moores, Norcross, and Sheorey
[49] used reactance matrices calculated by Moores and
Norcross to evaluate converged integral elastic and su-
perelastic cross sections for scattering from an Na atom
in the (excited) 3p state, including fine-structure transi-
tions. At the time, however, no experimental data was
available for comparison to these theoretical results.

B. Core polarization

Before turning to the scattering problem, we here de-
scribe the differences between our treatment of core po-
larization and that of Moores and Norcross. At low en-
ergies, polarization of the target by the projectile is an
essential part of the electron-atom interaction potential.
We treat the other two parts—the static (Coulomb) po-
tential and nonlocal exchange effects due to the antisym-
metrization requirement—at the HF level in our repre-
sentation of the target.

As noted in Sec. II, induced polarization of the core
also plays a role in determining the orbital of the valence
electron of Na. Rather than explicitly including this
effect via virtual excitations of the target [64] or pseudo-
states, [65], we incorporate polarization semiempirically
by adding to the HF Hamiltonian the operator

Ppol) = 3 Vel im Y (Im | , (3.1

Im

where V/P°(r) is a semiempirical one-electron potential
of the form (in rydbergs)

aC
ViPl(r)=— r‘;'e We(rip)) , 3.2)
and a,. is the polarizability of the core. The cutoff
function
—(r/0)6
Wrip)=1—e /7" (3.3)

mimics the effects of short-range nonadiabatic and
many-body effects that act to diminish V;P°"(r) from its
asymptotic value [66]. This function depends on the
partial-wave order [ through the “cutoff radius” p,
which, as noted in Sec. II, we choose [55] so that the
Hartree-Fock eigenvalues for the valence and excited or-
bitals agree with the experimental ionization energies of
sodium [67]. Note that this potential does not include
the r ~%-dependent induced quadrupole term, the effect of
which should be small for low-energy e-Na scattering
[68]. Equation (3.2) is particularly appropriate for
alkali-metal atoms, where the valence electron is
sufficiently well localized outside the core that the elec-
tric field experienced by the core is nearly uniform [69].
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Moreover, the flexibility of this form makes it better suit-
ed to multielectron calculations than the form used by
Moores and Norcross.

In solving the scattering problem via the R-matrix
method (Sec. III C), we also include a potential of this
form in the (N,+1)-electron Hamiltonian of the e-Na
system to where it represents the additional attraction ex-
perienced by the projectile in the field of the distorted
target. But to accurately represent polarization of the
full system, we must also incorporate another effect. Po-
larization of the core by either the valence or scattering
electron alters the potential experienced by the other
electron. So we must allow for the interaction of the di-
pole moments induced by these two electrons—an effect
that, for example, plays an important role in binding an
extra electron to Na in the ground ('S) state of Na™ [68].
In fact, calculations of the electron affinities of alkali-
metal atoms have shown this “dielectronic potential” to
be more important than inclusion of high-lying target
states in the theory [68,70,71]. We shall investigate its
importance for e-Na scattering in Sec. IV.

The resulting “‘dielectronic interaction” produces an
additional r ~? term in the off-diagonal elements of the
coupling potential matrix in the integrodifferential
scattering equations. We model this interaction by a phe-
nomenological form that can be derived from classical
electrostatics [72]. This “dielectronic potential,” which
has been widely used in bound-state calculations [73-76],
depends on the coordinates of the valence electron (rNe)

and of the projectile (r). We cut this potential off near
the nucleus via a function that depends on the average p
of the I-dependent cutoff radii in (3.2):

V(di)(r, rNe)

2a
=— chrze—Pl(cose)[ We(r;p)Welry ;p)1'2 . (3.4)

Note that this potential depends on the angle between the
two electrons, cos© =’f-’r‘Ne, through the first-order

Legendre polynomial.

The full polarization potential for the e-Na system,
then, is the sum of one-electron potentials (3.2) for the
valence and scattering electrons and the dielectronic term
(3.4). This potential appears in the close-coupling equa-
tions that we solve via the R-matrix method —the topic
of Sec. ITIIC.

C. The coupled-channel expansion

We base the present research on the coupled equations
obtained by expanding the e-Na wave function in a set of
channel functions that is complete in the bound-electron
coordinates, which we denote collectively by 7,, and the
angular and spin coordinates of the projectile, # and o.
Inserting this expansion into the (N,+1)-electron
Schrodinger equation and projecting out the channel
functions yields the set of coupled integrodifferential ra-
dial equations we solve for the scattering matrix and
thence, the cross sections.

The channel functions are eigenfunctions of the con-
stants of the motion of the system—the total orbital and
spin angular momenta and the parity—and as such are
labeled by the corresponding quantum numbers L, &,
and II [77]. For a particular channel y=(a,l), corre-
sponding to an atomic state a=(I',L,S,M;,Mg) and
projectile orbital angular momentum (i.e., partial wave) /,
we construct the channel functions ®5+"(r,,%,0) from
products of target wave functions ¢,(7, ), spherical har-

monics Y, '(?), and spin eigenfunctions Xm (0), coupling

these products to form eigenfunctions of the constants of
the motion. We then expand the system wave function
for a specified initial channel y in this set, thereby intro-
ducing radial channel scattering functions F f‘cyg (r)as

W r0)=AL 3 05N 2, R, (1), GS)
a,l

where the bound-free antisymmetrizer A ensures that the
e-Na wave function is antisymmetric under pairwise elec-
tron interchange. Not explicitly included in this expan-
sion are (N, +1)-electron configurations constructed en-
tirely from bound orbitals; such configurations are some-
times used to represent resonances and bound-free corre-
lation effects [78].

The number of Na target states required in expansion
(3.5) to attain convergence depends in practice on the
scattering quantity being converged and on whatever in-
dependent physical variables govern this quantity (e.g.,
for differential cross sections, the energy and angle). We
have exhaustively checked convergence of the quantities
reported in Sec. IV by performing calculations using the
target-state expansion shown (with their identifying
monikers) in Table II. Also shown for each calculation is
the range of scattering energies at which that level of ex-
pansion is required to converge the reported scattering

TABLE II. States of Na included in the close-coupling expansion. For 7CC and larger bases, the
new states added to the basis in the previous row are shown in boldface. The radius of the R-matrix
box r, is related to the extent of the largest orbital (given in parentheses). Also shown are the range of
scattering energies at which we used each level of convergence.

Calculation Target states r, (units of ag) E (eV)
4CC 3s,3p,4s,3d 34.2 (3d) 0.5-8.6
7CC 3s,3p,4s,3d,4p,4d Af 55.8 (4f) 2.0-8.6
9CC 3s,3p,4s,3d,4p,5s,4d,4f,5p 61.8 (5p) 5.0,8.0
10CC 3s,3p,4s,3d,4p,5s,4d,4f,5p,5d 79.6 (5d) 3.0-8.6
11CCa 3s,3p,4s,3d,4p,5s,4d,4f,5p,6s,5d 79.6 (5d) 4.1—4.4,5.0,8.0
11CCb 3s,3p,4s,3d,4p,5s,4d,4f,5p,5d,6p 89.2 (6p) 4.1—4.4,5.0,8.0
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quantities and the radius r, of the “R-matrix box,” the
(imaginary) boundary that delimits the inner region as
discussed in Sec. III D. For a given nCC calculation, we
choose this quantity to be the radius at which the ampli-
tude of the wave function for the state with the widest
spread in r attains 0.001 of its maximum value. Taking
full advantage of the power of the R-matrix method (Sec.
IIID) to efficiently generate scattering quantities at a
large number of energies, we used a very dense energy
mesh in most of these studies (these energies are indicated
by solid circles on many of the graphs in Sec. IV). Com-
plete tabulations of these results (on floppy disc) are avail-
able on request.

Far from the target, the radial functions satisfy bound-
ary conditions that identity the reactance matrix K for
scattering from initial channel y to final channel v, i.e.,

_ . T
F;S,J‘Lyg(r)r:wk}, 172 1sin kor—lo—z— 8y,
+cos |k, r—1Z |K$LN0 (3.6)
cOoSs .},r 2 Y70 ’ .
where the final-state wave number ky is related to the in-

cident energy k3, initial and final target energies, and to-
tal system energy E by conservation of energy

E=erps+iky=er s, T1ks - 3.7)

From the K matrix we calculate the transition matrix
2iK
T=——"". 3.8)
L 1—iK (
Like the K matrix, T is diagonal with respect to the quan-
tum numbers §.LII, and independent of the projections of
the total spin and orbital angular momentum on the
quantization axis and of the parity. From this matrix we
can construct scattering amplitudes, differential, and to-
tal cross sections, or other scattering quantities [24,79].
The equations we must solve to obtain the K matrix

from the functions F fﬂ], (r) are integrodifferential in

nature owing tg exchange terms that arise from the an-
tisymmetrizer A. These equations also contain Lagrange
undetermined multipliers that enforce orthogonality to
bound functions P, (r) of the same symmetry (same /).
Different channel functions are coupled by the potential
matrix elements

Vf{y!‘(r)=<<p$ﬂ‘ 1 +ViPol(r)

+2,i

i=1

+ Vi, ry )

qﬂ") . (3.9)

Unlike Moores and Norcross and many others who
have studied the integrodifferential equations for e-Na
scattering [1,80-84], we do not solve them directly.
Rather, we adopt a strategy that exploits the fundamen-
tally different physics of the electron-atom interaction
near and far from the target: the R-matrix method.

D. The R-matrix method

The R-matrix method [85], originally introduced to
atomic physics by Burke, Hibbert, and Robb [78], has
since been applied to a wide range of problems in
electron-atom and -molecule scattering [86—89]. Because
it is the heart of our generation of the K matrices we here
summarize its salient points [90], establish notation to be
used here and in later papers, and report key numerical
details of the present calculations [91].

The R-matrix method subdivides configuration space
into an “inner region” (near the target) and an “outer re-
gion” (everywhere else). Near the target the (predom-
inantly Coulomb) electron-atom interaction is strong,
nonlocal exchange effects are very important, and many-
electron bound-free correlation effects and nonadiabatic
polarization distortions of the core must be taken into ac-
count. Outside this region, the Coulomb interaction as-
sumes its (comparatively weak) multipolar form, ex-
change effects vanish, and the polarization potential
reduces to a simple adiabatic form that asymptotically
goes to a function whose variation with 7 is » ~* and that
is proportional to the polarizability of the neutral atom
[see Eq. (3.2)].

To acknowledge these differences between the two re-
gions, the R-matrix method erects an artificial boundary
between them (roughly speaking, at a value r =r;, beyond
which the bound orbitals are small [92] and exchange and
other many-electron effects are negligible) and treats each
region differently. The R matrix enables us to relate the
solutions in the two regions and to extract asymptotic
(outer region) quantities such as the K matrix that reflect
the effect of the physics of the inner region. Within the
“R-matrix box” thus constructed the (continuum) wave
function of the scattering electron is represented by a
linear combination of discrete basis functions in terms of
which we diagonalize the e-Na Hamiltonian. (This diago-
nalization is independent of the scattering energy and so
must be performed only once, a significant advantage
over traditional, propagative close-coupling methods.) In
the outer region, the simpler physics of the electron-
target interaction reduces the coupled equations to forms
that admit straightforward propagation into the asymp-
totic region.

Turning now to the details of the method we begin, as
before, with the e-Na scattering function \I/ Nr,,1,0)of

q. (3.5). In the inner region, we shall represent the
scattering electron by a linear combination of N, basis
functions {D;(r):i=1,...,N,} that are orthonormal on
the interval [0,7, ] and that satisfy the following bound-
ary conditions at the boundary between the inner and
outer regions [93]:

p,(0)=0

(3.10)
—u,(r

il ( ry ) dr r=r,

where b, although in principle arbitrary, is usually chosen

to be zero.

We calculate the basis functions ;(r) by solving un-
coupled radial scattering equations using a reference po-
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tential ¥ ™0(r) that builds into the basis as much of the
physics of the inner region as feasible, thereby reducing
the number of such functions required to converge the R
matrix. This equation

2
1
:r ’”r+ XD | yienir) 412 |50r)= 3 MpPy(r)
(3.11)
contains Lagrange undetermined multipliers
{(MDin=1+1,...,n.,(])}] that ensure orthogonality of

the basis functions to the bound radial functions of the
same symmetry on [0,r, ]; this guarantees the correct no-
dal structure in the inner region. As the reference poten-

tial we use the static e-Na potential for the ground state
—32
ay=3°S:

V(ref)(r)=V(st)(r)
N
- _Z §_ 1
_<¢a0('re) * 3o

i=1

Bu(r0)) -

(3.12)

The solutions of (3.11) together with the bound radial
functions P, (r) constitute a complete set for [0,r,] and
hence a suitable basis for construction of the radial
scattering function.

We form N, such functions for each channel y as

—_ Nb
FifMr=3 cfivy(r),

i=1

k=1,...,N, . (3.13)

Since the basis functions satisfy the boundary conditions
(3.10), so do these linear combinations and so do the new-

ly constructed N, e-Na wave functions in the inner re-
gion:

TN (7, 1,0)=A— ch“"(re,?,a)iiﬁ"(r),

0=r=r,, (3.14)

where o is the spin coordinate of the scattering electron.
We determine the expansion coefﬁcwnts in (3.13), the
only parts of the scattering functions FSt Ik (r) not already
specified, by diagonalizing the (N,+1)-electron Hamil-
tonian in the interval [0,7,]. (As we shall demonstrate at
the end of this subsection, we need not include exchange
terms for high-order partial waves.)

In effect, then, by imposing the boundary conditions
(3.10) the R-matrix method transforms the continuum
problem into a discrete problem that we can solve using
the linear variational method. The only glitch is that this
Hamiltonian is Hermitian on the infinite interval [0, o ],
not on [0,r,]. So to ensure that the eigenvalues we ob-
tain by diagonalizing on the finite interval are real, we di-
agonalize the sum of the Hamiltonian and the Bloch
operator [94]

_b

L,=3 |05y 18(r—r,) (@M, 3.15)
Y

where the sum of projection operators onto the channel

subspace ensures that this operator affects only the radial
coordinate of the projectile, the 8§ function ensures that it
acts only at the boundary, and the boundary conditions
(3.10) ensure Hermiticity. The constant b in Eq. (3.15) is
the (arbitrary) value of the logarithmic derivative of the
wave function at the boundary r,.

This diagonalization yields N, eigenvalues E, and cor-
responding eigenvectors {c};:k N,} that, in turn,
define N, discrete e-Na wave functions (3.14). These
functions thus correspond to quantized eigenvalues that,
in general, do not equal the desired total energy E. So to
produce an approximation to the e-Na wave function at
this energy for 0<r<r,, we must further construct
linear combinations of these functions as

b —
Vih(r, 0)= 2 A Vi (r,,1,0) . (3.16)
k=1
The expansion coefficients { Ag.:k=1,...,N,}, sensi-

bly, depend on the values of the dlscrenzed radial func-

tions F ’Pﬁ (r), on the continuum scattering functions

F ffg) ,O(r) at the boundary, and on the eigenvalues E,

[78]):

A =—
B 2 (E,—E)

PsLn

% Yo (3.17)

d
——b

| e
Equation (3.16) reveals the essential difference between
the R-matrix and coupled-channel approaches to the

inner region. In the latter approach, the numerical radial
functions Fﬂ"(r) contain information about scattering

of the prOJectlle at energy E from the target in initial
state y,. In the former, this information is contained in
the coefficients (3.17) that combine the discrete functions
F f‘,f“(r) into an approximate scattering function for en-
ergy E. Specification of the initial state is left in the R-
matrix method to the treatment of the outer region,
where the asymptotic boundary conditions (3.6) are im-
posed so as to yield the K matrix.

However, in practice we do not need the continuum
wave function to determine the K matrix. We need only
the R matrix. By definition, the elements of this matrix
relate the radial scattering functions F e%"(r) and their

first derivatives at the boundary r =r,:

Fyil(ry)= ER““(E,r,,)

d pscn sLn
X ’;Fr',ro(’)"'be’,ro(’) ,

=r,

(3.18)

where the sum runs over all channels ¥ =(a,!) included
in the close-coupling expansion (3.5). Given the form of
the coefficients (3.17) in (3.16), the elements of the R ma-
trix can be written in terms of the discrete radial func-
tions as
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1Y By ) F(ry)

RSEME,ry)=—— = (3.19)
&4 b 2ry 2 E,—E
So given the radial functions F ffn(r) at r=r, (conven-

tionally called “surface amplitudes”) and the eigenvalues
E, ( the poles of the R matrix), we can calculate a finite
approximation to R ;s:f" Of course, the sum in (3.19) in-
cludes only as many surface amplitudes as we include
functions in the basis {U,(r):k=1,...,N,} in (3.13).
But we compensate for omission of high-energy terms in
the diagonal elements (y'=y) of the R matrix using a
procedure due to Buttle [95] that ensures rapid, accurate
convergence of the R matrix except at energies near the
poles E, .

In practice, determining the number N, of basis func-
tions U;(r) required to accurately represent the continu-
um wave function requires considerable judgment. Too
few functions leads to inaccurate results because the con-
tinuum is not well represented; too many functions make
the calculation more unwieldy than it has to be and may
introduce numerical errors that degrade accuracy.

As a final technical matter, we note that one can
reduce the scale of the coupled-channel scattering calcu-
lations by exploiting the effect on the scattering functions
F f:f,g} 1,(r) of the centrifugal barrier term in the kinetic-

energy operator of the Hamiltonian. In particular, we
can reduce the number of channel functions
(fo“(re,?,a) that must be included in the basic expan-
sion (3.5) to attain a desired degree of convergence, be-
cause the centrifugal term effectively “excludes” high-
order partial waves from the region of the Na charge
cloud. This exclusion, for example, minimizes the effect
of exchange on the high-order channel scattering func-
tions; at very high order, in fact, it significantly dimin-
ishes the effect of the static potential. That is, “low-
order” partial waves are highly penetrating and must be
treated accurately, both in the representation of the po-
tential that acts on them and in the solution of their
dynamical problem; “high-order” terms, by contrast, can
accurately be included with simplifying approximations.
To illustrate, we consider a typical calculation with ten
target states (10CC in Table II) at energies between 0.5
and 8.6 eV, where partial waves up to / =80 are required
to converge the differential cross section. As shown in
Table III, for each channel with a weak (or no) barrier,
1=0,...,8, we must include all ten target states and ful-
ly couple the static (S), exchange (E), and polarization (P)
potentials. For states of larger partial wave order, how-

TABLE III. Partial waves and target states included in the
coupled-channel expansion (3.5) for a typical 10CC calculation.

Example: 10CC calculations
Partial waves Target states Potential
1=0,...,8 3s,3p,4s,3d,4p,5s,4d,4f,5p,5d SEP
=9, ...,13 3s,3p,4s,3d,4p,4d 4f SEP
=14, . . . ,19 3s,3p,4s,3d SEP
/=20, ...,26 3s,3p,4s,3d SP
=27, ...,80 Born approximation

ever, we require fewer target states. By / = 14 the barrier
has effectively eliminated measurable effects due to the
exchange potential, and we need only couple these chan-
nels via the static and polarization potentials. Channels
with even larger orders are subject to still weaker interac-
tions, since their huge barriers largely exclude the chan-
nel scattering function from the region of strong e-Na
Coulomb potential; these channels can be accurately in-
cluded via the Born approximation [96,97].

The mitigating effects of the centrifugal barrier on
high-order partial waves further eliminate the distinction
between singlet and triplet scattering. For example, in
Fig. 1 we show these cross sections for elastic scattering
(3s—3s) at 5.0 eV, and for the 3s —3p excitation at 8.0
eV; at these energies we must calculate separately singlet
and triplet amplitudes for / < 10, but for higher / we need
determine only one: say, the singlet amplitude.

E. Determination of the K matrix and diverse cross sections

Getting from the R matrix to the K matrix requires
getting from the boundary of the inner region to the
asymptotic region, i.e., to a value of r where the potential
is weak enough that the boundary conditions (3.6) are ob-
tained. In the region r >r, the potential matrix elements
reduce to a simple analytic form, the “long-range” limit
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FIG. 1. Dependence of singlet (solid line and closed circles)
and triplet (dotted line and open circles) e-Na cross sections on
the number of partial waves included in Eq. (3.5). Two
representative cases are plotted vs the maximum partial-wave
order: (a) 3s —3s elastic scattering at 5.0 eV, and (b) the 3s —3p
excitation at 8.0 eV.
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of Eq. (3.9), where V{P°")(r) is the one-electron polarization potential
i defined in Eq. (3.2), and the multipole matrix elements,
LN e al (pol) i i i i i .
VL (r )r_» 5 o+ 2 H—l al, +V{F(r),  (3.20 Zvrlélch also include the dielectronic potential of Sec. III B,
J
NE
ai'y' <¢$Ln 2 P}»(??k) [rlé 2 [WG rk)p)] SAI ] ¢$7£n> . (3.21)
k=1 , Tk
[
Because the matrix elements (3.20) are not zero, we re- D (O)=L["f 3 3,(0)+3f3_,5(0)], (3.24a)
quire radial functions in the outer region that satisfy cou- (e) 1 3
pled differential equations, 35035 (0)= 5[ f3,3,(0)—"f3,_,3,(6)] . (3.24b)

4?2 Il,+1) 2N,

______—+_T__2leol)(r)+k2 F&LH(r)

max

v | Fyar)=0,

T (3.22)

A=1

and that reduce to the boundary conditions (3.6) as
r— . To facilitate determination of the solution we use
well-established methods of asymptotic expansion
[98-100]. Specifically, we used an asymptotic package
based on the variable phase method [101].

Once one has converted the K matrix to a transition
matrix via (3.8), one can calculate the (spin irreducible)
singlet (28+1=1) and triplet (28+ 1=3) elastic scatter-
ing amplitudes for incident energy E,=k3 /2 as

BHIf s 5(0)= 2 (2L +1)P/(cosO) TN .

2k0
(3.23)

These amplitudes are simply related to the familiar direct
and exchange amplitudes by

J

At energies below the first inelastic threshold €;,, we can
express the singlet and triplet amplitudes Eq. (3.23) in
terms of phase shifts in these spin channels as

2+ 1f3:—>3s(0)

2i é°+l,,”
2 (21+1)P;(cos)(e -1).

3.25
21k0 - (3.25)

At all energies, we can use the singlet and triplet ampli-
tudes to construct differential and integral cross sections
[1,79]. The integral elastic cross section, for example, is
simply

O35 35—

k2 2(2.L+1)IT‘L“%£+3T‘3,{£%,LI2 ,

(3.26)

where we note that both singlet and triplet scattering
contribute. Similarly, we can calculate the inelastic am-
plitudes for excitation of the M, sublevel of the 3p state
from the T matrix as

172
1|4 - - -M
S o, (O=5 |2 | 3 L+ DCUL —M MY, 0,9 TEE, (3.27)
0 L=01=L+1
[

The squared moduli of the singlet and triplet amplitudes &. These partial cross sections are
contribute to the differential cross section for the 3s —3p 20 41) (28+1
(averaged over initial and summed over final spin projec- 0% ( ) ) |T$Em|2 (3.29)

tions) as

k +1 3 )
. 2 (3] f3s,0—>3p,ML(0)I
3s—3p 0 ML

do
dQ

+4l 1f3s,0—»3p,ML % .
(3.28)

In discussions of near-threshold structures (as in Sec. IV)
it is useful to decompose elastic and inelastic cross sec-
tions into components identified with particular partial
waves—i.e., for scattering from the ground state, with
particular total orbital and spin angular momenta .£ and

Tro=r™ 3,2(2L0+1)(2SO+1) 770

where we recall that S, is the spin and L, is the angular
momentum of the target in the entrance channel y,,.

IV. RESULTS

A. Integrated cross sections

We begin with integrated cross sections for elastic and
inelastic scattering from the ground state. These cross
sections, shown in Fig. 2, manifest a remarkable diversity
of structures at the various excitation thresholds
throughout the energy range from 0.5 to 8.6 eV. The
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FIG. 2. Theoretical integrated total (solid
line with points), 3s — 3s elastic (long-dashed
line), and various 3s —nl inelastic e-Na cross
sections from the present 10CC R-matrix cal-
culations. The inelastic cross sections shown
are those discussed in Sec. IV: 3s—3p (dot-
dashed line), 3s—4s (medium-dashed line),
35— 3d (dotted line), and 3s—4p (thick solid
line). Vertical lines indicate excitation thresh-
olds (see Table I).
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sum of cross sections for all energetically allowed scatter-
ing processes at a given energy is the total cross section in
this figure:

Oiot— 2 O35l - 4.1)

nl=3s
In this section we shall compare these cross sections to
experimental data and discuss particularly interesting
physical features of them.

1. Excitation of the 3p state

The most thoroughly studied low-energy e-Na scatter-
ing process is the ‘“‘resonance” excitation 3s—3p, so
called because of its exceptionally strong transition prob-
ability. Most experimental cross sections for this process
have been determined from measured optical excitation
functions. Enemark and Gallagher [11], for example,
used crossed electron and ground-state Na beams to in-
duce this transition. In their experiment, atoms excited
by the collision subsequently decay, emitting photons at
5890 and 5896 A (the Na D lines). By observing the pho-
tons emitted at 90° to the directions of the incident elec-
tron and Na beams, Enemark and Gallagher determine
two quantities: the polarization of the (unresolved) dou-
blet radiation and the relative apparent.electron excitation
function. The former is just the difference of the intensi-
ties of photons with polarizations parallel and perpendic-
ular to the incident electron wave vector divided by the
sum of these intensities (and converted to a percentage).
The latter is the sum of these intensities normalized to
the total electron current that passes through the target
beam.

Determining integrated cross sections from optical ex-
citation functions requires two corrections of the raw
data: for cascade and for the anisotropy of polarized
fluorescence [102]. These corrections alone do not place
the resulting cross sections on an absolute scale. For ex-
ample, Enemark and Gallagher first correct their excita-
tion functions, then determine absolute cross sections by
normalizing the shape of the results to the predictions of
the first Born approximation at energies a few hundred

5.0

times threshold.

Cascade corrections account for electrons in the in-
cident beam that excite Na states above the level of
interest—here, states above the 3p state. These higher-
lying states decay to the 3p state and so contribute to the
measured fluorescence. The experiments do not distin-
guish between photons resulting from direct electron-
impact excitation of the 3p state and those from excita-
tion to a higher-lying state (say S5s) followed by two-step
radiative decay, first to the 3p and thence to the ground
state. Only at energies below the next-highest excitation
threshold is the measured optical excitation function ac-
tually proportional to the integrated cross section.

Because direct excitation of the 3p state is particularly
strong, cascade corrections to the optical excitation func-
tion for this state are comparatively small: Enemark and
Gallagher estimate that about 75% of this cascade comes
from the 3d state, 5% from higher-lying d states, and the
rest from high-lying s states, the most important of these
being 4s. (Contributions from high-lying p states to the
cascade to 3p are negligible.) In determining cross sec-
tions for excitation of higher-lying states, however, cas-
cade effects are often much more important than for the
3p state.

Figure 3 illustrates these points in a comparison of
35 —3p cross sections from the present R-matrix calcula-
tions to the results of Enemark and Gallagher [11] and
Phelps and Lin [14,103]. Contrasting the latter results
with and without cascade correction shows the magni-
tude of cascade effects for this cross section. Our theoret-
ical results from the various nCC close-coupling calcula-
tions listed in Table II clearly demonstrate the nature of
convergence for this cross section. The 4CC results of
Moores and Norcross [1] (not shown) are graphically in-
distinguishable from the present 4CC results, which differ
in ways described in Sec. I A. At energies above 4 eV,
we find the 4CC representation of the target to be inade-
quate: the additional higher-lying 4p, 4d, and 4f states
included in our 7CC calculations are essential to accu-
rately determining the magnitude of this cross section
above a few eV. To accurately reproduce the structures
at thresholds above that of the 3d level (3.62 eV), an even
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FIG. 3. Comparison of 3s—3p e-Na in-
tegrated cross sections to experimental data of
Enemark and Gallagher (Ref. [11]) (solid
boxes) and Phelps and Lin (Ref. [14]) with
(open boxes) and without (open circles) cas-
cade corrections. Theoretical results are from
11CC with 6s (open diamonds), 11CC with 6p
(crosses), 10CC (solid curve), 7CC (dashed
curve), and 4CC (closed circles) R-matrix cal-
culations (all as described in Table II).
Thresholds are shown as in Fig. 2.
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more capacious representation that includes the 5s, 5p,
and 5d states of our 10CC and 11CC calculations is re-
quired. As we shall see in subsequent subsections, these
n=4 and 5 states are even more important for the
structurally richer excitation cross sections for states
above 3p.

Unlike Enemark and Gallagher, Phelps and Lin [14]
excite their sodium atoms by passing an electron beam
through a heated collision chamber filled with gas-phase
Na. They too observe photons emitted at right angles to
the axis of the electron beam. From this measurement at
a single angle, Phelps and Lin determine the total intensi-
ty integrated over all angles (this quantity is proportional
to the sum of the intensities of components of light emit-
ted at 90° with the electric vector of the photon parallel
and perpendicular to the incident electron wave vector)
and thence the optical excitation function. They studied
an enormous number of states over a wide range of ener-
gies, including the four lowest members of the ns, np, and
nd manifolds from O to 150 eV, incorporating careful
corrections for radiative cascade from higher-lying states.
In Fig. 3 we show their results for the 3s — 3p transition,
and in subsequent sections will examine their cross sec-
tions for other transitions.

In their discussion of the earlier 4CC results of Moores
and Norcross [1], Phelps and Lin note good agreement
within a narrow energy range from the 3p threshold (2.10
eV) to 2.5 eV but “a considerable discrepancy, in both
shape and magnitude, between theory and experiment”
between 2.8 and 5.0 eV, where their (cascade corrected)
data does not exhibit the flattening seen in the theoretical
cross sections. By way of explanation, Phelps and Lin
suggest that “perhaps in this region, just below the ion-
ization threshold, the close-coupling expansion may not
be fully converged with only four states.” Since conver-
gence is at issue for this excitation, we show in Fig. 4
convergence studies for the singlet and triplet parts of
this cross section [104]. These studies show in more de-
tail that although a four-state representation of the target
is inadequate in this energy range, a lack of convergence
for the 4CC results explains the (small) shape discrepan-
cy, but not the magnitude discrepancy, between theory
and experiment—this disagreement is, in fact, more

severe for our converged (7CC, 10CC, and 11CC) results
than for our 4CC results. The energy range around 4 eV
is particularly rich in structures, and Fig. 4 shows the ori-
gin in the two spin channels of the various near-threshold
structures evident in Fig. 3. The inset on these figures
show results from the two 11CC calculations described in
Table II to show that even in the region of the densest
maze of near-threshold structures, the present 10CC re-
sults are converged in all but the finest detail. For exam-
ple, the structure just above the 5s threshold at 4.21 eV is
due solely to scattering in the triplet channel. Finally, we
note the considerable sensitivity of some of these struc-
tures to the representation of the target, an acuteness that
will be exacerbated in the higher excitations to be dis-
cussed below.

2. Excitation of the 3d and 4s states

Unlike excitation of the 3p state, the 3s — 3d transition
is not dipole allowed. So we expect its cross section to be
more sensitive than o;_, 3, to high-lying target states in
the close-coupling representation of the target. As shown
in Fig. 5, states above 3d (the highest in a 4CC calcula-
tion), are indeed important at energies from the 3d
threshold to several eV above it. The cross section for
3s—4s is of comparable magnitude to o3,_,;; and, as
seen in Fig. 6, exhibits a similar sensitivity to high-lying
target states. As expected, 7CC calculations reproduce
the magnitude and large-scale shape but not the detailed
features in this cross section. The 10CC calculations do,
however, produce these features, and comparison to
11CC results show them to be well converged even in
these details.

Phelps and Lin [14] have measured both of these cross
sections, and in Figs. 5 and 6 we compare our theoretical
results to their data, as corrected for cascade contribu-
tions and polarization anisotropy. For the 3s —3d exci-
tation the most important cascade corrections come from
excited f states, the transition probabilities for np —3d
(n>3) being quite small. Since cascades contribute at
most 20% of the population of the 3d state, Phelps and
Lin place a 15% precision estimate on their cross sec-
tions; their estimate was the basis for the error bars in
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this figure. The full width at half maximum of their elec-  their measured optical excitation function, Phelps and

tron beam, <0.75 eV, may explain the presence in their Lin use a linear model that automatically allows for mul-
data listing of a point at 3.5 eV, below the 3.62-eV thresh- tistep cascades. They first divide Q; 3; by the branching
old for this excitation. ratio to produce an apparent cross section for the 4s level,

Cascade effects are much more dramatic for the  then subtract a term that allows for cascade from higher
35 —4s cross section. To generate this cross section from  levels:

FIG. 5. Comparison of 3s—3d e-Na in-
tegrated cross sections to experimental data of
Phelps and Lin (Ref. [14]) with cascade correc-
tions (open boxes) and Stumpf and Gallagher
(solid triangles) corrected as described in the
text with error bars as in Ref. [15]. Theoreti-
cal results are from 11CC with 6s (open dia-
monds), 11CC with 6p (crosses), 10CC (solid
curve), and 7CC (dashed curve) R-matrix cal-
culations as in Table II. Also shown are the
singlet (long-dashed curve) and triplet (short-
dashed curve) components of the 10CC results,
o and the 4CC results of Moores and Norcross
R . . (Ref. [1]) (open circles).
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FIG. 6. Comparison of 3s—4s e-Na in-
tegrated cross sections to experimental data of

Phelps and Lin (Ref. [14]) with cascade correc-
tions (open boxes). Theoretical results are
from 11CC with 6s (open diamonds), 11CC
with 6p (crosses), 10CC (solid curve), 7CC
(dashed curve), and 4CC (closed circles) R-
matrix calculations as in Table II.
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where A4, .. is the spontaneous radiation probability for
the nl—n'l’ transition (the Einstein A coefficient), and
Ty 18 the radiative lifetime of the nl level (so A4 3,75, is
the aforementioned branching ratio). The excitation
function Q,; .- in the second term corresponds to an ex-
perimentally observable transition originating in a state nl
that cascades to the 4s state. Writing the cascade correc-
tion in this form allows for the possibility that Q,, ,, may
be unobservable. Of the cascade contribution to o;,_, 4,
85% comes from the 4p state. Consequently this cross
section is strongly dependent on the transition probabili-
ties in Eq. (4.2) for 4p —4s and 4p —3s. Uncertainties in
these quantities led Phelps and Lin to estimate the pre-
cision of this cross section at 40%.

Noting that the 4CC 3s —3d cross sections of Moores
and Norcross are significantly higher than their experi-
mental results, Phelps and Lin suggest that this difference
may be due to an incomplete representation of the contin-
uum in the theoretical calculations. But Fig. 5 and Fig. 6
show that, as for o3_,;,, improved inclusion of higher-
lying states actually exacerbates the disagreement be-
tween theory and experiment. Not unexpectedly, the
theoretical results in these figures further show that in
the region of rich structure between 4.0 and 4.5 eV,
where the thresholds for 5s, 4d, 4f, and 5p occur, both
O35_.3q and o;,_ 4 are acutely sensitive to the represen-
tation of the target. '

The only other experimental investigation of the
3s —3d excitation appears in a study by Stumpf and Gal-
lagher [15], the primary focus of which is electron
scattering from excited Na atoms. In their crossed-beam
experiments a large fraction of the target atoms are first
optically excited to the desired excited level (resulting in
a nonstatistical mixture of magnetic sublevels), then a
beam of electrons excites these atoms to higher-lying
states. Stumpf and Gallagher measure the intensity of
the subsequent 3d fluorescence as a function of electron
energy and normalize the resulting excitation functions to
first Born cross sections at 200—1000 eV. For the 3s —3d

tical excitation function with an estimated uncertainty of
15%. We have corrected these data for cascade and an-
isotropy effects using Table II of their paper, and in Fig.
5 compare the corrected results (with the original error
bars quoted by Stumpf and Gallagher) to our calculated
cross sections.

Stumpf and Gallagher note an exceptionally rapid on-
set of o4,_, 34 at threshold, where this cross section rises
to about 75% of its maximum value within 0.1 eV. This
behavior is evident in both the singlet and triplet theoret-
ical cross sections in Fig. 5 and, as shown in Fig. 7, con-
trasts strikingly with the threshold onset of o;3,_,4,. The
complexity and richness of these and other threshold
structures precludes their consideration at length here;
they will be the topic of a forthcoming paper [105].

3. Excitation of the 4p state

We conclude this study of integral excitation cross sec-
tions with the 3s —4p cross section. In their determina-
tion of excitation functions and integrated cross sections
(corrected for cascade and anisotropy effects) for this ex-
citation, Phelps and Lin [14] note that cascade effects
contribute about as much as does direct excitation, with s
and d high-lying excited states of roughly equal impor-
tance. Because of uncertainties in corrections for these
effects, they place the precision of their experimental
O35_.4p at 40%.

In a more recent study, Marinkovi¢, Wang, and Gal-
lagher [16] measured optical excitation functions for
several highly excited states of Na near their respective
thresholds. We show their results for the 3s —4p excita-
tion along with those of Phelps and Lin in Fig. 8. Since
Marinkovi¢, Wang, and Gallagher normalized their data
to the “apparent” excitation cross sections of Phelps and
Lin [14], these data do not include cascade corrections.
(It has, however, been corrected for the anisotropy of the
fluorescence polarization.) Comparison to their experi-
mental results, therefore, is least ambiguous below 4.12
eV, the threshold for excitation of the next-highest excit-
ed state, Ss, (indicated by the small arrow in Fig. 8).



FIG. 7. Near-threshold integrated e-Na
cross sections for the 3s—4s (solid curve),
3s—3d (long-dashed curve), and 3s—4p
(short-dashed curve) excitations.
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Marinkovi¢, Wang, and Gallagher remarked upon a dis-
tinct difference between the near-threshold behavior of
their measured excitation functions for p states and those
for s and d states; the theoretical near-threshold results in
Fig. 7 confirm the origin of this difference in the relevant
cross sections.

4. The total and elastic cross sections

Finally we turn to the total cross section o, defined in
Eq. (4.1). As we saw in Fig. 2, just above the first excita-
tion threshold the elastic 3s —3s component dominates
this cross section. By breaking the elastic cross section
into contributions from the singlet and triplet spin chan-
nels in Fig. 9 we find that o5 _, 5, in turn, is overwhelm-
ingly dominated by triplet scattering. This figure also
shows a convergence study for this important cross sec-
tion. Near the thresholds for various excitations, intri-
cate structures appear in o ;,_,3, in both singlet and trip-
let channels: a structure near the 5s threshold at 4.12 eV,
for example, is evident in the singlet channel, while one
near the 3d threshold at 3.62 eV exhibits effects in both
spin channels. As we have seen in inelastic cross sec-

tions, such structures emerge only when high-lying n =4
states are included in the target-state expansion. Figure
9(a) shows, moreover, that details of the triplet structure
near the 5s threshold are extremely sensitive to the n =3
states in the 10CC and 11CC calculations. At higher en-
ergies, the elastic cross section settles down, and calcula-
tions including n =5 and 6 states show that these states
are no longer necessary; the 7CC are quite well con-
verged.

Kasdan, Miller, and Bederson [12] have measured the
total cross section in atom-beam recoil experiments.
Their experiments differ radically from those discussed so
far: in them, the fundamental observed quantity is the at-
tenuation due to electron scattering of the intensity of the
atomic beam in the forward direction. From this quanti-
ty Kasdan, Miller, and Bederson determine absolute cross
sections within an estimated statistical and systematic un-
certainty of 13% below 4 eV and 12% above. We com-
pare our and their results in Fig. 10, where we see that
except at and above 4.0 eV the agreement between experi-
ment and theory is excellent. Also shown in this figure is
a single data point from the recent measurements of
Kwan et al. [17], an extensive study using a beam-
transmission technique of electron and positron scatter-

Cross section (10" cm?)

FIG. 8. Comparison of 3s—4p e-Na in-
tegrated cross sections to experimental data of
Marinkovié, Wang, and Gallagher (Ref. [16])
(dot-dashed curve) and Phelps and Lin (Ref.
[14]), the latter with (open circles) and without
(open boxes) cascade corrections. Theoretical
results are from 10CC (solid curve) and 7CC
(dashed curve) R-matrix calculations as in
Table II. Thresholds are shown as in Fig. 2.
The inset shows results from 11CC with 6s
(open diamonds) and 11CC with 6p (crosses)
calculations to demonstrate convergence at en-
ergies from 4.10 to 4.35 eV.
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show the energies at which these R-matrix cal-
culations were performed. The inset shows ad-
ditional 11CC results to demonstrate conver-
gence of the 10CC cross sections at energies
from 4.10 to 4.35 eV.
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ing from Na at energies up to 102 eV. To clarify the role
of elastic scattering in the energy range of these experi-
ments and the origin of the structures in o,,, we also
show the elastic and largest inelastic cross sections
O35 3p-

To conclude, we compare integrated elastic and inelas-
tic (3s —3p) cross sections to the results of another high-
ly accurate but quite different theoretical calculation. We
are fortunate to have available e-Na scattering ampli-
tudes from the nonrelativistic coupled-channel optical-
potential (CCO) [106-112] calculations that Bray has
performed at 1.0, 1.6, and 4.1 eV [106,107,111,112]. This
method has been reviewed by McCarthy [108], its formal
background surveyed by McCarthy and Weigold [109],
and its application to e-Na scattering reviewed by Bray
[110]. Like the present approach, the CCO method is
based on an expansion in a finite set of target states
within the independent particle model using a frozen
Hartree-Fock Na™ core, and includes the nonlocal ex-
change potential exactly. Unlike the present approach, it
entails numerical solution of the integral partial-wave
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FIG. 10. Comparison of theoretical (10CC) integrated total
e-Na cross section to experimental results of Kasdan, Miller,
and Bederson (Ref. [12]) (closed triangles) and Kwan et al. (Ref.
[17]) (open triangles). To show the contribution of the dom-
inant cross sections to this quantity [see Eq. (4.1)] we also in-
clude the elastic (long-dashed curve) and 3s—3p (medium-
dashed curve) cross sections.
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scattering equations in momentum space (the Lippmann-
Schwinger equation for the 7 matrix) [113] in which
high-lying target states (and the ionization continuum)
are represented via a complex, nonlocal, energy-
dependent polarization that, together with the static and
exchange potentials, constitute the eponymous optical
potential [111]. The central approximation of the CCO
method is modeling the amplitudes for excitation of the
states included in the polarization potential making ap-
proximation that the coupling of these states is weak.

In Table IV we compare R-matrix, 15CC, and CCO in-
tegrated cross sections at 1.0, 1.6, and 4.1 eV. Two
points are worthy of comment. First, although the
methods use completely different numerical strategies to
solve the Schrodinger equation the agreement is good.
Second, both the model polarization potential we have
implemented, Eqgs. (3.1)-(3.4) and the optical potential of
the CCO method, appear to be comparably accurate rep-
resentations of this aspect of the physics of e-Na scatter-
ing. The CCO method, however, does not allow for
dielectronic polarization, which we include via the model
defined in Eq. (3.4). As Table IV shows, although at
these energies dielectronic polarization effects are not
enormous, their omission does alter these cross sections
to within the accuracy of the present calculations—

TABLE IV. Comparison of integrated elastic and 3s—3p
cross sections (in square bohr) from 10CC R-matrix and
coupled-channel optical-potential (Ref. [106]) calculations. To
demonstrate convergence of the 10CC results, we also show R-
matrix cross sections for 4CC at 1.0 and 1.6 eV, and for 7CC at
4.1 eV. Also shown are 10CC R-matrix cross sections calculat-
ed without inclusion of the dielectronic polarization potential of
Eq. (3.4).

3s—3s
Singlet Triplet Total
1.0 eV
10CC 77.569 561.69 639.26
4CC 77.50 560.43 637.93
10CC (no dielectronic) 81.699 564.45 646.15
15CC (Bray, Ref. [106]) 84.00 563.00 647.00
1.6 eV
10CC 92.669 391.07 483.74
4CC 92.48 389.45 481.93
10CC (no dielectronic) 98.685 397.33 496.02
15CC (Bray Ref. [106]) 103.2 399.1 502.3
4.1 eV
10CC 34.184 149.06 183.24
7CC 35.742 149.35 185.09
10CC (no dielectronic) 35.717 153.72 189.44
CCO 37.26 159.14 196.4
3s—3p
41 eV
10CC 30.053 68.330 98.859
7CC 30.34 67.01 97.35
10CC (no dielectronic) 30.880 70.322 101.12
CcCoO 30.34 67.01 97.35

changing, for example, the singlet integrated cross sec-
tions at these energies by as much as 6%. We shall re-
turn to comparison to CCO results in Sec. IVB on
differential cross sections.

B. Differential cross sections

Because differential cross sections (DCS’s) are more
sensitive than integrated cross sections to details of the
scattering matrix, they afford an excellent medium for
comparing theoretical and experimental results. For e-
Na, the availability of measured DCS’s for well-defined
changes in the projections of the spin and orbital angular
momenta make possible an unusually sensitive compar-
ison of this kind, as we shall see in the next subsection.
Here we consider elastic and inelastic (3s—3p) DCS’s,
paying special attention to the much-studied cusp in
03,_,3, near the 3p threshold at €;, =2.10 eV.

1. Elastic 3s —3s DCS

Elastic scattering occurs predominantly in the forward
direction, and this DCS is comparatively structureless.
Structures do appear, however, for fixed scattering angles
as a function of energy near excited-state thresholds:
e.g., near 3.62 (e;,) and 4.2 eV (in the vicinity of
€5,=4.12 eV, €,;,=4.28 eV, and €,,=4.29 eV). The
most pronounced (and most thoroughly investigated)
near-threshold structure occurs near the 3p threshold at
2.10 eV. This feature is both most pronounced and most
studied for the same reason: near this threshold, strong
coupling of the elastic and 3s — 3p channels enhances the
effect of the (E,—¢;,)!/? factor that governs the shape of
the elastic DCS very near this threshold [79,114-118].

Before discussing experimental measurements of the
elastic DCS, we compare our converged results to those
of the CCO calculations of Bray, Konovalov, and
McCarthy [111] (see Sec. IV A) 1.0, 1.6, and 4.1 eV in
Fig. 11. The excellent agreement between these two quite
different theoretical calculations of this sensitive scatter-
ing quantity supports the validity of the two quite
different representations of the polarization interaction
used in these studies, and suggests that at these energies
the effect of the full optical potential used by Bray, Kono-
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FIG. 11. Theoretical elastic DCS from 10CC R-matrix (solid
curves) and CCO (dotted curves) calculations of Bray (Ref.
[106)) at 1.0, 1.6, and 4.1 eV (Ref. [112]).
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valov, and McCarthy is small.

Andrick, Eyb, and Hofmann [7] and Eyb and Hofmann
[9] first reported observations of the cusp at €3, in
crossed-beam measurements of relative elastic cross sec-
tions normalized (at 1.6 eV) to the 4CC theoretical results
of Moores and Norcross [1]. These authors emphasize
that the importance of cusp features is not due solely to
their considerable theoretical interest: “[a]s the edges
and cusps are so well defined they are assumed to lie at
threshold and as the threshold energy is known exactly
the cusps are a powerful means for energy calibration.”
Perhaps in consequence this feature has also been studied
in experiments by Gehenn and Reichert [6] and (at 90°
only) by Hafner [8].

To see the origin of this structure, we show in Fig.
12(a) the singlet and triplet partial elastic cross sections
for s, p, and d waves [as defined in Eq. (3.29) with y =v,].
Clearly, the near-threshold cusp arises from the singlet
p-wave contribution to the elastic cross section. We also
see clear indications of structure in the singlet d-wave
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FIG. 12. Partial-wave contributions to the (a) elastic and (b)
inelastic 3s—3p e-Na cross section near the 3p excitation
threshold. These partial cross sections, which are defined by
Eq. (3.29), are labeled by total orbital and spin angular momen-
tum quantum numbers £ and spin &, respectively. In (a) we
show singlet, triplet, and total elastic cross sections for S (solid
curves), P (medium-dashed curves) and D (short-dashed curves)
waves. In each case the singlet and total cross sections are
denoted by (labeled) lines and the triplet cross sections by sym-
bols, as S (closed circles), P (closed boxes), and D (closed trian-
gles). In (b) we show the near-threshold behavior of the first six
inelastic partial-wave contributions, including both singlet and
triplet terms, with each curve labeled by its partial-wave order.

cross section; Eyb and Hofmann attribute this feature to
a resonance just below the 3p threshold. By contrast, the
magnitude of the triplet scattering amplitude, although
larger than the singlet and hence an important deter-
minant of the magnitude of the elastic cross section, does
not contribute to its distinctive behavior near €;,.

The particular character of the cusp arises from the in-
teraction near €3, of the 3s and 3p channels. To clarify
this interaction, we show in Fig. 12(b) the partial inelastic
cross sections for the 3s —3p excitation. The inelastic p
wave clearly exhibits the behavior of a nearly bound
state. Moreover, the rapid rise of the inelastic d-wave
cross section explains the precipitous drop in its elastic
counterpart in Fig. (12a).

The dramatic effect of these near-threshold features on
the elastic DCS is evident in the three-dimensional over-
view of Fig. 13, and in the more detailed two-dimensional
comparisons in Fig. 14. The first figure shows fairly
well-defined regions of energy and angle where the cusp
effect is most pronounced. The breakdown of this cross
section into singlet and triplet DCS’s at selected near-
threshold energies in Fig. 14 emphasizes the importance
of the triplet contribution. Although the singlet cross
section causes structure in the elastic DCS, the triplet
spin channel is primarily responsible for its overall shape.
But this DCS emphasizes forward scattering; so the cusp
we saw in the integrated cross section in Fig. 3 is almost
entirely due to variations in the singlet contribution at
angles below about 40°.

The near-threshold structure in the singlet DCS is con-
siderably more dramatic below than above €;,: this cross
section changes a great deal between 1.0 and 1.5 eV but
very little between 2.5 and 3.0 eV. It clearly does not
manifest the behavior one would expect were the singlet-p
cusp in control: in that case the resulting P,(cos6)
dependence would force the DCS to zero at 90°. Instead,
the singlet-d resonance, which becomes important away
from threshold, ultimately overpowers the singlet-p cusp,
giving the DCS an overall shape characteristic of almost
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FIG. 13. Overview of the angular and energy dependences of
the elastic differential e-Na cross section near the 3p threshold
at2.10 eV.
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pure d-wave scattering. Moreover, the (E,—€3,)*/? ener-
gy dependence introduced by this resonance broadens the
cusp.

In Fig. 15 we show theoretical (7CC) elastic DCS’s as
functions of energy at selected fixed scattering angles,
compared to the relative angular distributions of Eyb and
Hofmann, which, following their recommended prescrip-
tion, we have renormalized at each angle at 1.6 eV. Con-
verging these DCS’s at this energy is rather easy; as the
comparisons in these figures demonstrate, four states is
quite sufficient. Although some differences with the mea-
sured data are apparent (e.g., at 20°), theory and experi-
ment agree throughout the measured angular range from
20° to 145° on the general features of the DCS: the
dramatic diminution of the cusp near 60°, its striking
reappearance near 90°, and its persistence to about 120°.
The disappearance of the cusp near 60°, which Eyb and
Hofmann remark as “unexplained,” is here revealed to be
a consequence of the dominance of triplet scattering in
this angular range. The triplet DCS at angles near 60°,
shown as a function of energy in Fig. 14(b), does not ex-
hibit any structure; neither do the observed angular dis-
tributions. Gehenn and Reichert [6] and Ying et al.
[119] and Vuskovi¢ [120] have also measured this DCS at
2.1 eV, and in Fig. 16 we compare their data to our cross
sections. Particularly notable is how well the relative an-
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FIG. 14. Behavior of weighted (a) singlet and (b) triplet elas-
tic differential cross sections at selected energies near the 3p
threshold: 1.0 (solid line), 1.3 (long-dashed line), 1.5 (medium-
dashed line), 2.0 (short-dashed line), 2.1 (alternating dashed
line), 2.5 (dots), and 3.0 eV (crosses).

gular distributions from the early measurements by
Gehenn and Reichert show the distinctive shape of this
DCS over essentially the whole angular range. Theirs is
the only experiment to date to report relative DCS’s at
energies above 2.0 eV, and in Fig. 17 we show their and
our results at 5.0 and 8.0 eV along with detailed conver-
gence studies at these energies. The quality of conver-
gence and agreement with this experiment at these higher
energies is comparable to that seen at 2.1 eV in Fig. 16.

Although the cusp near 2.10 eV has received the lion’s
share of experimental attention, data are available at a
few other energies. The most recent such study is the
recoil atom experiment of Ying et al. [119]. From the
ratio of the measured intensities of unscattered Na atoms
and those recoiling from the collision with electrons in a
beam, these authors determine absolute DCS’s at energies
from 0.5 to 3.0 eV for angles from 1° to 60°. In Fig. 18 we
show representative comparisons of our results to theirs
and to the relative angular distributions of Gehenn and
Reichert [6] (normalized to our DCS at 60°). The quality
of the agreement here and at the other energies studied
(except 0.5 eV) is very good. Comparison to the 7CC re-
sults at 3.0 eV show that at these energies four states are
quite adequate for this cross section. By 4.0 eV, as shown
in Fig. 18(b), the n =4,1 >0 states included in the 7CC
calculations (and less so the n >4 states in the 10CC cal-
culations) begin to (minimally) affect the shape of the
elastic DCS.

C. Inelastic 3s —3p DCS

Ying et al. [119] have reported absolute inelastic
DCS’s based on data taken in atom recoil experiments at
energies including 2.6, 3.0, and 3.7 eV. Their measure-
ments at the lowest energy affords an opportunity to
compare this DCS with results from the quite different
crossed-beam experiments of Han, Schinn, and Gallagher
[117] (see Sec. IVD). In Fig. 19(a) we see that theory and
these experiments agree about the predominantly forward
character of this DCS but not about its qualitative shape
at intermediate and large angles. At this energy and at
3.0 eV, the level of agreement between experiment and
theory is comparable to that at 2.6 eV seen in Fig. 19(a).
The convergence data in Fig. 19(a) show that, as expected
from convergence near the cusp at 2.10 eV, near and just
above the 3p threshold one need include only the lowest
four target states to converge elastic and inelastic cross
sections. But by 3.7 eV this representation of the target
is no longer adequate. As shown in Fig. 19(b), by this en-
ergy one must include n =4, [ >0 Na states to generate
the correct shape of this DCS. Perhaps surprisingly, even
as high as 4.1 eV, the energy of Fig. 19(c), the n > 5 states
we include in our 10CC and 11CC calculations are not re-
quired for this particularly strong transition. Finally, we
include in this figure the CCO inelastic DCS’s of Bray
[106], which, encouragingly, agree as well with ours as
did the elastic DCS in Fig. 11.

Examination of inelastic and (as seen in Sec. IV B),
elastic DCS’s at the particular energies where measure-
ments have been made may not reveal the full richness of
their behavior, especially near thresholds for higher exci-
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tations. So we close by surveying, in the three-
dimensional plots of Fig. 20, the differential cross sections
for 3s—3p and 3s—4s. The two are strikingly different
in character. With increasing energy, forward scattering
comes to dominate the (dipole allowed) 3s — 3p cross sec-
tion, while the (dipole forbidden) 3s-—4s exhibits a
variety of complicated structures in both forward and
backward directions. Experimental measurements of
these subtly varying angular distributions would provide
an invaluable aid to assessing the assumptions underlying
the present and other theories.
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D. Spin- and orbital-angular-momentum-changing
cross sections

In a series of remarkable experiments Han, Schinn, and
Gallagher [116,117] determined integral [116] and
differential [117] 3s —3p cross sections corresponding to
well-defined changes in the projections of the spin
(|AMg|=Mg—My) and/or orbital (|AM,|=M; —M;)
angular momentum of the valence Na electron (where
primes denote the final state). These data approach a
complete description of the collision [50] in terms of con-
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FIG. 15. Comparison of theoretical elastic e-Na differential cross sections as functions of energy at selected angles to the experi-
mental results of Eyb and Hofmann (Ref. [9]) (closed triangles): (a) 20°, (b) 45°, (c) 60°, (d) 90°, (e) 120°, and (f) 135°. In each case, the
theoretical data are from 7CC (solid curves) and 4CC (closed circles) calculations, to which the data of Eyb and Hofmann at 1.6 eV
has been normalized.
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FIG. 16. Theoretical elastic differential cross sections at 2.0
and 2.1 eV compared to absolute experimental data from
Vuskovi¢ (Ref. [120]) (pluses) (at 2.0 eV) and Gehenn and
Reichert (Ref. [6]) (open diamonds) (at 2.1 eV). To illustrate
convergence of the 4CC results (dotted curves) at this energy,
we also show 7CC DCS (solid curves) cross sections.

ventional scattering quantities (as opposed to orientation
and alignment parametersf' in particular, the four in-

dependent cross sections o AM‘Z J[(G) (see below) can be re-

garded as four of the seven independent quantities needed
to fully describe the 3s—3p excitation. These cross sec-
tions also permit a more sensitive probe of theoretical
models and approximations than do the usual inelastic
differential (or worse, integrated) cross sections—which
amount to sums of the quantities measured by Han,
Schinn, and Gallagher. In effect, these experiments
probe features of the scattering matrix that are masked in
more traditional cross sections. They have clarified,
among other things, the importance of exchange effects in
the 3s — 3p transition—effects whose investigation other-
wise would require knowledge of the spin polarization of
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FIG. 17. Elastic differential e-Na cross sections from various
nCC theoretical calculations compared to relative angular dis-
tributions measured by Gehenn and Reichert (Ref. [6]) at 5.0
(solid diamonds) and 8.0 eV (pluses). The theoretical results are
from the following calculations: 4CC (closed circles), 7CC
(long-dashed curve), 9CC (medium-dashed curve), 10CC (solid
curve), 11CC with 6s (dotted curve), and 11CC with 6p (short-
dashed curve). The basis sets used in these calculations are de-
scribed in Table II.
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the electrons, atoms, or both.

An earlier theoretical paper [55] compared R-matrix
results to experimental integrated angular-momentum-
changing cross sections; the present discussion focuses on
their differential counterparts. The convergence proper-
ties of the integrated angular-momentum-changing cross
sections in Fig. 21 show that one must include a full com-
plement of ten states in order to produce some of the rich
structure at high excitation thresholds in the energy
range from 2.1 to 8.6 eV.

In their crossed-beam experiment, Han, Schinn, and
Gallagher first use optical pumping techniques to prepare
the atoms in a pure spin substate of the ground 3 2 state
of Na. They then use an electron beam to excite various
(Zeeman separated) M; sublevels of the 3 2PJ term, the
relative populations of which they determine by detecting
fluorescence from the 4p state to the ground state. (In
this two-step process, excited 3p atoms are first excited to
the S5s state by a cw laser whose frequency sweeps across
all four magnetic sublevels of the 3 2P state; these then
decay to the 4p state. Further cascade to the ground
state produces the measured photons.) From these popu-
lations they determine the aforementioned cross sections
(corrected for cascade at energies above the 4s threshold

. et
DN s Ll
ot

i\‘ 3s93s
10° = N
g 10
§ -
= -
@
43 3
A 10°}
10"
0 20 40 60 80 100 120 140 160 180
Angle (deg)
\ 3s—3s |
{ . (b) 4.0 eV |
Lt
10' *
| -
~ | . %
W ’ ) ;
€ ; . -
= i o :
8] . -
a q0 * 5 j
{ s o !
| Y 1% !
| L Y |

10" | s j
0 20 40 60 80 100 120 140 160 180

Angle (deg)

FIG. 18. Elastic e-Na differential cross sections from theory
and experiment. Theoretical results shown are 10CC (solid
curves), 7CC (dashed curves), and 4CC (closed circles). In (a),
the experimental data is that of Gehenn and Reichert (Ref. [6])
at 1.0 (open diamonds) and 3.0 eV (closed diamonds), and
Vuskovié¢ (Ref. [120]) at 0.5 (pluses), 1.0 (open squares), and 3.0
eV (closed squares). In (b), the experimental data is that of
Gehenn and Reichert at 4.0 eV (closed diamonds).



49 LOW-ENERGY-ELECTRON COLLISIONS WITH SODIUM: ... 3639

at 3.192 eV) for changes in M; and Mg of the valence
electron.

Because of reflection symmetry in the scattering plane
defined by the incident and outgoing electron wave vec-
tors, only four of the nine possible partial cross sections
are independent; these cross sections are invariant with
respect to simultaneous change of the signs of |AM, | and
|AMg|. (Since the ground state is an s state, M, =0;
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FIG. 19. Inelastic 3s — 3p e-Na differential cross sections. (a)
DCS at 2.6 eV compared to experimental results of Han,
Schinn, and Gallagher (Ref. [117]) (dotted line) and of Ying
et al. (Ref. [119)) (closed squares). (b) DCS’s at 3.0 and 3.7 eV
compared to the measured DCS of Ying et al. (labeled open and
closed squares). (c) DCS at 4.1 eV compared to theoretical
CCO results of Bray (Ref. [106]) (dotted curve). In each com-
parison, our results are cross sections from 10CC (solid curves),
7CC (dashed curves), and 4CC (closed circles) R-matrix calcula-
tions.
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FIG. 20. Three-dimensional overview of the (a) 3s—3p and
(b) 3s —4s inelastic e-Na differential cross sections.

since the final state is a P state, M; =—1,0,+1.) This
follows from the symmetry proéperties of the singlet and
triplet scattering amplitudes >°"'f3, o 3, » (6) of Eq.

(3.27), which we abbreviate **'f,/ (6):

W (9)==2T1f (0). 4.3)
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FIG. 21. Integrated angular-momentum-changing 3s—3p

cross sections alﬁﬁi'|(o> from 10CC (solid curves) and 7CC
(dashed curves) R-matrix calculations.
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Moreover, the weakness of the spin-orbit interaction
(and the absence of other explicitly spin-dependent
forces) means that these cross sections are invariant with
respect to a sign change of either |AM/ | or [AM|. Thus
we onle consider four independent cross sections: o }(6),
(@), o%6), and a(0), where the superscript shows the
change in Mg and the subscript the change in M. The to-
tal DCS for the 3s — 3p transition is just the sum of these
angular-momentum-changing cross sections; allowing for
the twofold degeneracy in the case |AM, |=1, we have

do

70 (3s—3p)0)=00)+al(8)+20%6)+201(0) .
(4.4)

In terms of the fundamental scattering amplitudes of Eq.
(4.3), we can write these partial cross sections as

08(0)=%7(I-(—[|’fo(0)+3f0(0)|2+2|3f0(9)|2] ,
0
(4.5a)
0(1,(0)=%7ck—|‘f0(6)—3f0(0)|2 : (4.5b)
0

3s—3p
(2) AM, = AMg = 0
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a?(e)=li[|‘f1(9)+3f](9)|2+2|3f1<9>|2] ,
4 k,
(4.5¢)
olo)=LK1r ()37, 0)] . (4.5d)

4 k,

Han, Schinn, and Gallagher [117] report partial DCS’s
at 2.6, 3.1, and 3.6 eV. In comparing these results to
theoretical cross sections it is important to note that the
observed signal in this experiment is a convolution of the
excitation cross section and the optical excitation
function—itself a convolution of the natural line shape,
the thermal Doppler profile, and the Doppler shift due to
the atomic recoil. To extract the DCS for changes in M
and/or Mg requires an extremely complex deconvolution
and a least-squares fit. Han, Schinn, and Gallagher as-
sume a fairly simple functional form for the cross section:
the sum of a few Legendre polynomials, together with ex-
ponential functions to improve the fits in the forward or
backward directions. One can reasonably expect such an
analysis to produce cross sections of the correct overall
shapes, but it is unlikely to get fine details, especially
where the DCS is relatively small.
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FIG. 22. Energy and angular dependence of the four independent angular-momentum-changing differential 3s — 3p cross sections

for e-Na scattering: (a) o3(6), (b) d%(8), (d) g(6), and (d) o 1(6).
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To provide a context for the particular energies at
which we compare to experiment, we provide in Fig. 22 a
bird’s-eye view of all four as functions of angle and ener-
gy. The DCS’s that correspond to a change in M,
and/or Mg exhibit a wealth of structure, especially in the
threshold-rich energy region from 2.1 to 4.6 eV. Espe-
cially splendid is the terrain in Fig. 22(d) for o}(8), the
smallest of the four cross sections.

The non-angular-momentum-changing cross section
o3(6), which dominates the total 3s —3p DCS, does have
structure at several of the excitation thresholds, although
the scale of these are too small to be seen in Fig. 22(a).
Most striking about this dipole-allowed cross section is
the strong forward peaking which, as the energy in-
creases, becomes more pronounced and shifts to smaller
angles. Similar forward peaking is apparent in the corre-
sponding optically allowed |AMg|=0,|AM,|=1 cross
section 0%(@), but this phenomenon is considerably small-
er than in 0(@), as we expect from the Percival-Seaton
threshold condition [102]

o3(6)

1m 0
E—e, a%(6)

—>o00 . (4.6)

This cross section plunges to zero in the forward and
backward directions, vivifying the quantal counterpart of
the classical adage that angular momentum cannot be
transferred in a straight-line collision.

The two cross sections for [AMg|=1 in Figs. 22(c) and
22(d) are less amenable to classical explanations since
they are largely controlled by purely quantal exchange
effects. Both o{(6) and o}(6) exhibit opulent structures
between threshold and 4.6 eV, clustering at the myriad
thresholds in this energy range. The DCS for |AM,|=0
in Fig. 22(c) exhibits pronounced backward peaking at
energies below a few eV —a manifestation of the especial
effectiveness of exchange at angles of greatest overlap of
the prOJectlle and core wave functions. The abrupt de-
crease of o'(8) above about 3.5 eV is consistent with the
diminished importance of exchange effects with increas-
ing energy. [Because of the comparatively structureless
character of o}(6) above 4.5 eV, we do not show this en-
ergy range in Fig. 22.] Finally, the small but fascmatmg
o1(6) in Fig. 22(d) shows rich structure at low energies
and the predominance of forward scattering at higher en-
ergies expected of a dipole-allowed excitation.

Let us now return to the experimental energies. In Fig.
23 we compare the results of Han, Schinn, and Gallagher
for a3(6), 0 (), and d(0) to cross sections from 4CC,
7CC, and 10CC calculations. [No experimental results
are available for o}(8), as for this case the line shape can-
not be extracted reliably from the experimental signal.]
The first point to note is the excellent convergence at all
three energies. Even o(8) is converged in the 7CC cal-
culations except at the highest energy, where the n =35
states of the 10CC results affect details of its shape.
Turning to the other, larger cross sections, we see in Fig.
23 that at 2.6 eV four states reproduce the oscillatory
structure of 03(8) as well as the more gentle undulations
of 0§(6) and 0%(8). These shape characteristics are also
evident at 3.1 and 3.6 eV. At these higher energies the
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n=4,1>0 states in the 7CC calculations are required to
pin them down; but only at 3.6 eV do the 5p and 5d states
in the 10CC calculations alter in the least the shapes of
these cross sections.

The experimental o(8) at 2.6 eV does not show the
backward peak or the intermediate-angle oscillations evi-
dent in the theoretical result. This difference is probably
due to the fitting procedure used by Han, Schinn, and
Gallagher, which does not allow for a peak in both the
forward and backward directions, and which is
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FIG. 23. Differential 3s—3p angular-momentum-changing
cross sections compared to experimental data of Han, Schinn,
and Gallagher (Ref. [117]) at (a) 2.6, (b) 3.1, and (c) 3.6 eV. The
experimental data for o is represented by solid lines, o} by
long-dashed lines, and o9 by short-dashed lines. The theoretical
results are from 7CC (pluses) and 4CC (closed circles), and, in
(b) and (c), 10CC (open squares) R-matrix calculations.
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insufficiently sensitive to detect variations where the DCS
is small. Other differences in these figures are real, not
artifacts of the fitting procedure. Thus at all three ener-
gies, the experimental a?(@), for which only M; changes,
is more strongly peaked than the theoretical result. The
experimental o((6), for which only Mg changes, is less
strongly peaked in the backward direction.

The present theoretical calculations extend the experi-
mental work of Han, Schinn, and Gallagher, which em-
phasized the near-threshold region, to energies up to 8.6
eV. Notwithstanding the dominance of o3(@) for the
3s—3p transition, the theoretical angular-momentum-
changing cross sections clarify and emphasize, as do the
experiments of Han, Schinn, and Gallagher, the domi-
nance of the exchange interactions for this important ex-
citation.

E. Polarization of the fluorescence from decay of the 3p state

To conclude this section we consider briefly the polar-
ization of the atomic line radiation emitted in the decay
of the electron-excited (unresolved) resonance doublet
(the 3p state). A number of groups have measured this
quantity [19,18,11,20,14,21], which is particularly in-
teresting near threshold, where it reveals the influence of
exchange.

If the target atoms are not polarized, the wave function
is cylindrically symmetric with respect to the incident
axis. Consequently the emitted photons are linearly po-
larized. Jitschin et al. [21] have measured the polariza-
tion of such photons in experiments involving spin-
polarized atoms, where the degree of circular polariza-
tion provides insight into the importance of exchange for
the 3s —3p excitation. These authors note that within
experimental uncertainty the linear polarization of the
fluorescence in their experiments is the same as that for
unpolarized target atoms, the case of interest here, and it
is to that data that we compare.

The linear polarization P, reflects the anisotropy of
the 3p state due to the collision. Hence it can be ex-
pressed in terms of the angular-momentum-changing
cross sections of Sec. IVD. Since measurements of P;,
do not entail spin analysis, we must first construct (in-
tegrated) cross sections for orbital angular momentum
transfer |AM, | as

O'|AML|(9)EO’?AML|(9)+U!1AML|(9) . 4.7)

From these partial cross sections, where |AM |=0and 1,
the percent polarization perpendicular to the incident
electron wave vector for a p —s transition is [22]

p. = 300(9ahfs—2)(00-01)
¥ 12(04+20,)+ (9 —2Noy—0,)

(4.8)

where a; is a constant that depends on the ratio of the
hyperfine splitting in the exit channel (which diminishes
the observable polarization) to the neutral linewidth; its
value for Na is ay,¢=0.288.

The values of P, are compared to a variety of experi-
mental determinations in Fig. 24. We first note seven tar-
get states is sufficient to converge this quantity except
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FIG. 24. Polarization of the fluorescence from decay of the
3p state emitted at 90° to the incident electron wave vector:
theoretical 10CC (solid curve) and 7CC (dashed curves) values
and experimental data of Enemark and Gallagher (Ref. [11])
(closed squares), Gould (Ref. [18]) (crosses), Hafner and Klein-
poppen (Ref. [19]) (pluses), Jitschin et al. (Ref. [21]) (open dia-
monds), and Phelps and Lin (Ref. [14]) (closed diamonds).

above about 5.0 eV, where one needs ten. Second, we
note a satisfying confirmation of these calculations: as
the exit-channel energy of the electron approaches zero
at threshold, P;, approaches the theoretical limit for e-
Na P;,=14.104 predicted by (4.8) for an excitation dom-
inated by an outgoing s wave (0,/0,—0 at €, in Fig.
21). Thus the calculated results are consistent with fun-
damental, dynamics-independent threshold laws. Finally,
we note that the theoretical values reveal near-threshold
structures not seen in the experimental data.

V. CONCLUSION

The present theoretical study of e-Na collisions is the
most comprehensive look to date at low-energy scattering
from the ground state of an alkali-metal atom. Based on
close-coupling R-matrix calculations within the LS-
coupling representation appropriate to this low-Z target,
the various scattering quantities reported here, converged
in the space of bound target states and in partial waves,
are approximate primarily in their representation of core
and dielectronic polarization. Overall, the comparisons
in this paper to experiment and other theory indicate the
accuracy of these approximations for integrated and
differential elastic and inelastic cross sections at energies
below about 8 eV, and suggest their viability for more
complicated systems for which, say, optical-potential cal-
culations may be technically infeasible or excessively ex-
pensive. The accuracy of the present approach hinges in
part on the validity of neglecting explicit inclusion of the
continuum for the energy range of interest; as discussed
in Sec. IV A 4, comparison to recent CCO calculations
show this approximation to be valid for e-Na scattering
at energies below 8.6 eV.

The present study of elastic scattering and excitation of
the 3p, 4s, 3d, and 4p excited states has uncovered a
wealth of structures at each of the excited-state thresh-
olds. By decomposing these cross sections into singlet
and triplet contributions (and, in some cases, further into
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partial-wave contributions) we have gained insight into
the origin of these structures. This decomposition has
also shown how various spin channels control each cross
section as the scattering energy changes. In particular we
have investigated in detail the well-known cusp in the
elastic DCS at the 3p threshold and less well-known
features near the 3d threshold. And our investigation of
various inelastic cross sections near their respective in-
elastic thresholds has confirmed [16] that the onsets of
03,39 and o3, 4 are much more rapid than that of
03x—>4p'

Comparison of our converged cross sections to experi-
mental results for these excitations has shown that some
of these results may not be as accurate as heretofore
thought; in particular we have been able to address con-
cerns expressed in several prior reports that differences
between experiment and theory (previously the 4CC re-
sults of Moores and Norcross) might have been due to
lack of convergence. Instead, we find for the important
3s—3p transition that our converged cross sections,
which at higher energies do require inclusion of states
with n =4, />0, and n =S5, differ strikingly from many
current measured cross sections. Such findings argue for
a reconsideration of measurements of these low-lying e-
Na cross sections. The present three-dimensional graphs
of various DCS reveal the overall structure of these cross
sections and suggest angular and energy ranges for
such measurements. Finally, our converged angular-

. . . . VA
momentum-changing differential cross sections o AMi 1(6)

provide detailed information concerning their angular
and energy dependence that should be of value to future
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experimental studies of exchange interactions in low-
energy electron-—alkali-metal-atom scattering.

In this paper we have considered only scattering of un-
polarized electrons from the ground state of unpolarized
atoms. Future papers in this series will explore scattering
from excited states and collisions involving polarized tar-
gets and/or projectiles.
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FIG. 20. Three-dimensional overview of the (a) 3s—3p and
(b) 3s —4s inelastic e-Na differential cross sections.
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FIG. 22. Energy and angular dependence of the four independent angular-momentum-changing differential 3s — 3p cross sections
for e-Na scattering: (a) a3(8), (b) ¢3(8), (d) o'(8), and (d) o'}().



