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A collision integral is derived that gives the rate of change of an electron distribution function due to
ionizing collisions made by electrons with gas atoms. The treatment is valid for nonisotropic electron
distribution functions. The development of the collision integral in this paper uses doubly differential

cross sections (DDCS's) for ionization since accurate analytical approximations for different target gases
will be more easily available for DDCS's than for the other cross sections that give a more complete
description of the ionizing collisions. The treatment takes advantage of the inherent incompleteness in

the description provided by the DDCS s and reduces (the incompletely specified) three-body ionization

problem into a set of two, fictitious, binary collision processes. These binary collisions are valid in mutu-

ally exclusive ranges of parameter space and complement each other in their contributions to the col-
lision integral. The price for this simplification is that these binary collisions conserve neither kinetic en-

ergy nor orbital angular momentum. To handle this, the phase space of the gas atoms has been expand-
ed by introducing fictitious scalar and vector parameters, which lend extra internal degrees of freedom to
the atoms and destroy the isotropy of space. The overall approach is based on the treatment of S. Chap-
man and T. G. Cowling [The Mathematical Theory of Non Uniform-Gases (Cambridge University Press,
London, 1952)].

PACS number(s): 34.80.Dp, 52.20.Fs, 52.25.Jm, 34.80.Gs

I. INTRODUCTION

For a realistic modeling of the numerous plasma phys-
ics experiments and of the various plasma based techno-
logies that are coming into increasing use, it is necessary
to account for the ionization process with reasonable ac-
curacy and in a self-consistent manner. Ionization by
electron impact is one of the most important ionization
mechanisms in plasmas and this can be accounted for by
introducing an appropriate collision term in the
Boltzmann equation for electrons. Such a collision term
(also called a collision integral) would give the rate of in-
crease of the electron distribution function due to ioniz-
ing collisions, at each point of the electron phase space.

A collision integral for ionization by electron impact
was first constructed and used in the electron Boltzmann
equation by Holstein [1]. The integral uses the total and
differential scattering cross sections for ionization of a
gas by electrons. The differential scattering cross sections
used in this work are for the processes in which an in-
coming primary electron of given energy produces a
"secondary" (or a "scattered") electron of specified ener-

gy. The treatment assumes that electron scattering and
production during ionization are isotropic and that the
electron distribution function is isotropic in the velocity.
This form of the collision integra1 is frequently used by
workers [2] for computing theoretically the ionization
and transport coefBcients of electron swarms moving
through a gas. In such applications it is customary to use
the two-term spherical harmonic expansion for the elec-
tron distribution function (Lorentz approximation} [1,3],
and the collision integral for ionization is used only in the
equation for the zeroth-order isotropic part of the distri-

bution function [2].
In most plasma experiments and applications, howev-

er, a magnetic field is usually used to improve the
confinement of the plasma. For such plasmas the elec-
tron distribution functions are highly anisotropic in the
velocity and the use of the Lorentz approximation is no
longer justified. This in turn implies that, in such cases,
the use of collision integrals which assume the electron
distribution function to be isotropic in the velocity is also
not valid.

The construction of collision integrals for ionization
that do not have the above limitation requires not only a
careful analysis of the kinematics of the collision process
but also more detailed information on the nature of the
collisions involved. The latter information is supplied
through the collision cross sections. The most detailed
information on an ionizing collision is provided by the
triply differential cross section (TDCS} [4,5], written for-
mally as BstriBE, BQ,BQz. Here dE, and dQ, give, re-

spectively, the energy range (E„E,+dE, ) and the solid
angle element into which one of the outgoing electrons
from the ionization process is scattered or ejected, while

10& specifies the solid angle element into which the other
electron is ejected or scattered. The cross sections are
specified in a reference frame in which the gas atoms are
initially at rest before the collision. Due to conservation
of energy and momentum, this description of the collision
(with the energy E~ of the incoming electron as a parame-
ter) suffices to fix the final momenta of all the outgoing
particles (including that of the ion). Cross sections are
also specified as doubly differential cross sections
(DDCS's) [4,5], written as Bio /BE, BQ, and obtained for-
mally from the TDCS by an integration over Q2, the
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direction variables of the second electron. A further in-
tegration over 0& yields the singly differential cross sec-
tion [1,2] (=—Bo /BE &), used in the work of Holstein [1].

While it is difBcult to obtain complete information on
TDCS's for even the simplest target gases such as hydro-
gen, fairly detailed DDCS data are already available for a
large number of target gases [4,5]. Using the available
data, therefore, it is possible to construct semiempirical
models which give accurate analytical approximations to
DDCS's for a large number of gases. Such a semiempiri-
cal model was presented recently by Rudd [6] for hydro-
gen and helium and similar calculations for argon are un-
derway [7]. Thus, even though TDCS's yield more infor-
mation than DDCS's, it is the latter that are more con-
venient to use in applications requiring suitable analytical
approximations to the cross sections. The collision in-

tegral developed in the present work uses DDCS's for
modeling ionization by electron impact.

Although the two outgoing electrons are indistinguish-
able, an artificial distinction is made in the literature to
aid in bookkeeping [2,4,6]. In this nomenclature, the out-
going electron with the lower energy is called the secon-
dary electron (e„,), while the other with the higher ener-

gy is called the scattered electron (e„,). It can be seen
that a description of the collision in terms of E, and 0,
(as is done in the case of DDCS's) does not permit the
determination of the momenta of the ion and the second
electron. Therefore, when using DDCS's, it is customary
to regard the atom and ion as infinitely heavy or massive
and treat the ionizing collision in the fixed reference
frame formed by the immobile atoms and ions. In such a
frame, all the available energy is shared between the two
outgoing electrons. There is no correlation between the
momenta of the scattered and secondary electrons, how-
ever, since the fixed atom or ion can absorb or impart ar-
bitrary amounts of momentum in any direction. The en-

ergy of the secondary electron (=E„,) lies in the range
O~E„,~(Ez E;)/2, while—that for the scattered elec-
tron (=E„,) lies in the range (Ez E; )/2 ~ E~, —
+ (Ez —E;}. Here Ez is the energy of the incoming elec-
tron and E; is the ionization energy.

It can be seen that with the above terminology, the
DDCS data become partitioned into two parts: one part
pertaining only to the secondary electron and the other
only to the scattered electron. This partitioning of the
DDCS data leads to considerable simplification in
describing the ionizing collision. Thus, in considering
data for the secondary electron, say, one may replace the
actual collision reaction e+A ~(I+e, )+e, by an
equivalent binary collision, viz. , e+A —+S+e„,. Here
A (I} is the atom (ion) and S is a fictitious particle which
replaces the composite system (I+e„,). Such a replace-
ment can be made only because this partition of the
DDCS contains no information regarding the ion or the
scattered electron, except for their total energy (deduced
from energy conservation). The energy of S is equal to
that of the system (I+e,). For a massive atom or ion,
however, S wi11 also be massive and hence immobile. In
such a case the energy of S (=E,} will correspond to its
internal energy, which has to be continuously variable in
order that E, may vary continuously. To allow this we

introduce a single, continuously variable, fictitious pa-
rameter to characterize both A and S. A change in the
internal energy of A (in transforming to S) may then be
effected by assuming an interaction law which depends on
this fictitious parameter. This would produce a corre-
sponding change in the kinetic energy of the incoming
electron, as required by the transition from e to e, in the
binary collision reaction proposed above.

Orbital angular momentum will be conserved in an ion-
izing collision if the interaction does not involve any
quantity that disturbs the isotropy of space [8). For such
cases, the orbital angular momentum of each of the out-
going electrons will, in general, be different from that of
the incoming electron. This will hold for massive atoms
and ions also. Therefore, in the corresponding binary
collision e+ A —+S+e„„the transition from e to e, (as-
suming fixed A and S) will not conserve orbital angular
momentum. This violation may be permitted, however,
by introducing a fictitious vector parameter attached to
A and S whose orientation in space is continuously vari-
able. (Its magnitude is of no consequence and may be
kept fixed. ) To violate conservation of orbital angular
momentum, we break the isotropy of space by requiring
that the interaction law depend on this vector parameter
as well.

The above arguments apply equally well to the part of
the DDCS data pertaining to the scattered electron. For
this case one may introduce the equivalent binary reac-
tion e+ A ~S'+e„„where S' =I+e, .

The paper is organized as follows. Based on the ideas
introduced above, the loss term of the collision integral is
formulated in Sec. II. Following that the gain term is set
up in Sec. III. The overall approach is that of Chapman
and Cowling [9].

II. THE LOSS TERM

Let the electron distribution function be given by
f(r, v, t }. Here r represents the spatial coordinates, v the
electron velocity, and t the time. We shall let dt denote
the time interval between t and t+dt and d rd v the
infinitesimal phase-space volume element located in the
neighborhood of the electron phase space point (r, v). Let
(5f /5t); be the change in the distribution function per
unit time, per unit phase-space volume, due to ionizing
collisions. Then the net change in the number of elec-
trons in a time dt, within the volume d rd v, is given by
(5f/5t);d rd vdt. This change is composed of two
parts: a loss term, which gives the number of electrons
lost from this volume in the time dt, and a gain term,
which gives the number of electrons entering this volume
within this time. For every electron lost due to ionization
at the point (r, v) two electrons will appear simultaneous-
ly at two other points (r, v, ) and (r, v2) of phase space.
(The electrons appear at the point r, but have velocities
v& and vz which are different from v.) Thus in the loss
term, details of the outcome of the ionizing event are not
of chief concern, since only changes at (r, v) are being
considered. For the gain term, however, it is the out-
come of an ionizing collision that is of major interest.
Now an electron entering the volume element d rd v at
(r, v) in time dt may be either a secondary electron or a
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scattered electron. This will depend on the energy range
of the incoming electron (which caused the ionization)
with respect to the energy of the electron at the phase-
space point (r, v) where an electron is added.

Let the electron energy at the phase-space point (r, v)
be denoted by E (=mv /2). If the electron, enters the
phase space at (r, v) as a secondary electron, then E„,=E
and as per the discussion of the preceding section, E will
lie in the range 0 ~ E ~ (E~ E; )—/2, where E~ is the ener-

gy of the incoming electron that caused the ionization.
This inequality may be inverted to give E 2E+E, . It
is thus seen that whenever E lies in the range
2E+E, +E (. oo, the electron produced at (r, v) will be a
secondary electron. Likewise, it can be shown that when-
ever E lies in the range E+E, ~E ~2E+E;, the elec-
tron emerging at (r, v) will be a scattered electron. It may
be noted that the above two ranges for E are nonover-

1apping, so that from any ionization event, only one elec-
tron (either the scattered one or the secondary, but not
both) can contribute to the gain term at (r, v). This
means that if the contributing electron is a secondary
electron, no information regarding the scattered electron
is required and vice versa. It is thus seen that the
DDCS's (which are specified with respect to the energy
and momentum of any one of the outgoing electrons)
would suf5ce for evaluating the gain term of the collision
integral and as discussed in detail in Sec. I, the actual ion-
izing collision reaction may therefore be replaced by the
fictitious but equivalent binary collision reactions
e+ A ~S+e„, or e+ A ~S'+e„,. For the loss term,
to prevent double counting any one of these (but not
both) may be used. For the gain term, both reactions
have to be used depending on the energy range of the in-

coming electron.
We now proceed to construct the loss term using the

reaction e+ A ~S+e„,. We assume initially that
(and hence S) has a finite mass, so that a velocity distribu-
tion can be attributed to the gas atoms. (We shall invoke
the limit of infinite mass later in the derivation. ) As dis-
cussed in Sec. I, this reaction does not conserve kinetic
energy and orbital angular momentum. We therefore let
the distribution function of the gas atoms be denoted by
F(r, V,p, l, t) Here V is. the velocity variable of the gas
atoms and p is a dummy, continuously variable parame-
ter, describing the inner state of A and S. We assume
that it a8'ects the collision interaction and so allows the
internal energy of A to change continuously. This per-
mits the total kinetic energy to change during the col-
lision. More specifically, this prescription allows the
kinetic energy of e, to change continuously even when

A is treated as massive. The phase space of the gas
atoms has therefore been expanded to include p. (In this
discussion, p is assumed to be dimensionless, since this
does not lead to any loss of generality. ) Likewise, I is
another dimensionless vector parameter (of fixed magni-
tude) attached to A and S. I also takes part in the col-
lision interaction and allows the orbital angular momen-
tum to change during the collision, by introducing the re-

quired anisotropy into space.
To represent I (~1~ =1), we assume that a set of Carte-

sian direction axes has been set up at each point r of

space. The vector I can then be represented by a polar
angle 8 and an azimuthal angle P at each space point r.

Let the loss term be denoted by (5f /5t ), . The num-
ber of electrons lost from the volume d rd v in time dt is
(5f /5t), d rd vdt. The number of electrons present in
this volume at time t is f(r, v, t)d rd v. The number lost
from this in time dt (due to ionization) will be equal to
the number of ionizing collisions these electrons make
with the gas atoms at r, within the time interval dt.

To determine the number of collisions [9] we consider
the problem in a reference frame Q(r, t) with its origin at-
tached to the colliding electrons at (r, t) moving with a
precollision velocity v. Thus Q(r, t) also moves with a ve-
locity v in the laboratory frame before collision. (After
the collision its velocity becomes v', the final postcollision
velocity of the electrons. ) Next consider atoms with ve-
locities in the volume d V (in the neighborhood of V) at
time t just before collision occurs. The total spatial densi-
ty of such atoms at the space-time point (r, t) is given by

d3V fF(r, V,p, l, t)dp dQi .

Here the integration is over all possible values ofp and all

possible orientations of l. [dQ& =sin(8)d8dg is the solid

angle element at r, within which I lies. ] These gas atoms
will have a relative velocity g =V —v in the frame Q(r, t).
We now choose the polar axis of Q(r, t) to be along the
vector g and construct the azimuthal plane (normal to g)
passing through the origin of Q(r, t). Polar angles mea-
sured in Q(r, t) will be denoted by y, while azimuthal an-

gles measured from a suitably chosen axis in the azimu-
thal plane [of Q(r, t)] will be denoted by e Of the g. as
atoms having a spatial density given by (1) above at (r, t),
consider those which are incident on the azimuthal plane
of Q(r, t) (see Fig. 1) with impact parameter and azimu-
thal angle in the ranges b, b+ db and e, a+d e. The direc-
tion of incidence of these atoms is parallel to the polar
axis of Q(r, t). It can be seen, therefore, that the number
of such gas atoms which can collide with the electrons at
rest at the origin of Q(r, t), within the time interval
t, t +dt, is given by the number of these atoms contained
within the parallelepiped with base area bdbde and
height gdt (g =

~g ~ ), shown in Fig. 1. The volume of such
a parallelepiped is gb db de dt and multiplying this by the
density of atoms given in (1) yields the total number of
atoms with velocities in the volume d V (in the neighbor-
hood of V), contained within the parallelepiped at time t
It is given by

gb db dedt d'V fF(r, Vp, l, t)dp dQ, .

To obtain the number of such gas atoms incident over the
entire azimuthal plane of Q(r, t), we integrate (2) over 6
and e as well. Multiplying this by f(r, v, r )d rd v and in-

tegrating over all possible gas velocities V gives the total
number of collisions which take place within the time
(t, r +dt). Hence the loss term will be given by

(6f/5t)", drd vdt.
=f(r, v, t)d rd vdt

X fF(r, V,p, 1, t )d V dp d Qigb db de
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where we have assumed p to be scaled appropriately so
that (p2

—p i ) = 1. Substituting (5) into (3) and integrating
over g& gives

d E'I

(5f/5t); =f(r, v, t) fF(r, V, t)d V dp gb db ds,

FIG. 1. Atoms are incident along the polar axis (along g) in
the frame Q(r, t) with impact parameters and azimuthal angles
between (b, b+db) and (e,a+de), respectively. The number of
collisions with the electrons located at 0, in the time interval

(t, t+dt), will be proportional to the number of such atoms con-
tained within the parallelepiped shown in the figure (the volume
is gdtbdbde) at time t. (The figure has been reproduced from
Ref. [9],p. 61.)

or

(5fl5t),

=f(r, v, t)fF(r, V,p, /, t)d'V dp dQigb db de, (3)

where the integrations on the right-hand side of (3) are
over V, p, 8, P, b, and e.

The origin of the system Q(r, t) coincides with the
space point r at time t. Therefore, at time t, / is also lo-
cated at the origin of Q(r, t} and so it is possible to define
polar and azimuthal angles subtended by / in the frame
Q(r, t) at this instant of time. It may be noted that the
coordinate system in Q(r, t) will in general be rotated
with respect to the coordinate system in which 8 and P
are specified. It can be shown, however, that

pi-p-p2
Further simplification of (6) can be made by introduc-

ing the scattering cross section. As shown in Fig. 2, con-
sider a gas atom A impinging with velocity g on an elec-
tron located at the origin of Q(r, t) at time t. The atom
has impact parameter and azimuthal angle in the range
(b, b+db) and (E,e+ds), respectively. The / vector of the
atom lies within a solid angle element d 0&
(=sinyidgide&) and its parameter p lies in the range

(p„pz}. Since scattering takes place by the reaction
e+ A ~S+e„„kinetic energy is not conserved in the
reaction. In the frame Q(r, t), the S particle therefore
emerges with a velocity g' such that g' =

~

g'
~
Ag.

(g'=V' —v', where V' and v' are the final postcollision
velocities of the S particle and e„„respectively, in the
laboratory frame. ) g' makes an angle go with the polar
axis g and since orbital angular momentum is also as-
sumed to change during the collision eo, the angle sub-
tended by g' in the azimuthal plane of Q(r, t) is not equal
to e (the azimuthal angle at which the atom was original-
ly incident).

To introduce the collision cross section we observe the
following. The variables specifying the incoming particle
and its trajectory are g, p, /, b, and e. The variables speci-
fying the trajectory of the outgoing particle S are g', yo,
and eo. It may be noted that only the trajectory of S (and
not its state) is of interest, since the trajectory of e~, in
the laboratory frame will be completely specified by the
trajectory of S in Q(r, t), in the limit of infinitely heavy
gas particles. Thus the final value ofp and the new orien-
tation of / associated with the outgoing S particle are of
no consequence.

sin(8)d8dg=sin(y, )dyidei, (4)

F(r, V, t)
F(r,v,p, /, t)= 4~(p2 pi}—

0 otherwise,

F(r, V, t)
for p, &p &p2

(5)

where gI and eI are the polar and azimuthal angles I
makes in Q(r, t) at the instant of time t Thus the v.ari-
ables 8 and (() specifying / in (3) may be replaced by yt
and ei with dQ&=sinyidyidei. We now specify the dis-
tribution of the gas particles over /. Since we are not
considering any specific orientation, we may treat the gas
particles to be unpolarized with respect to /. Thus all
directions of I are equally likely and we will have

F(r,V,p, t }

4m

We may further assume that the gas particles are
prepared in an initial state such that F is uniformly distri-
buted for p within a range p, p &p2 and zero outside.
This gives

A particles

9

FICx. 2. Gas atoms A impinge on electrons located at 0, with
velocity g, impact parameters between (b, b+ db), and azimuthal
angles between (e, @+de). The atoms are scattered as Sparticles
with velocity g', into the solid angle element d Qp
(=sinypdgpdE'p) where yp is the angle g' makes with the polar
axis (along g) and E'p is the azimuthal angle subtended by g' in
the azimuthal plane with respect to the e=O axis. Note that
~g'~A~g~ and eo&e, since kinetic energy aud orbital angular
momentum are not conserved by the reaction e+ 2 ~S+e,
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In view of the above, an appropriate set of variables for
framing the scattering problem would be the set g, g', y0,
and e0. Here the initial speed g of 3 has been included in
the set, since it provides a bound on the total energy
available for the collision process. A corresponding ini-
tial set of variables may be identified as g, p, b, and t. , and
the solution to the collision problem will be the transfor-
mation laws which connect the initial set of variables

(g;p, b, E) to the new set of variables (g;g', yo, eo). It is
seen, however, that the transformation laws involve the
angles e and e0, while the e=O axis in the azimuthal
plane of Q(r, t) was chosen completely arbitrarily. To re-
move this arbitrariness, we make use of / as an internal
reference vector and measure all angles in the azimuthal
plane with respect to /t, the projection of / onto that
plane.

I.et a and P be the new angles corresponding to E and
t.0, respectively. For consistency, we choose the conven-
tion that these angles are always measured in the coun-
terclockwise direction from the reference vector /t.
From Fig. 3 we see therefore that a and P have to be
defined as follows:

a+2~—e

The transformation laws connecting the initial variables
to the new ones may be formally written as

which yields on inverting

Now p lies in the interval (p „p2). This implies

(13)

Xo Xo(g p b a)

P=P(g;p, b, a),
g'=g'(g;p, b, a) .

These may be inverted to yield

p =p(g gx'o P)

b =b(g;g', Xo,P),
a=a(g'g' xo P) .

In (11) we have written p =p(g;g', go, P). Noting, howev-
er, that p is an internal variable, giving the internal ener-
gy of S, we write

(12)

cz—

0+2+' el for co+@

~0 ~l 0+ ~l

or

g 1 (g &P 1 ) —g —g2(g iP2 )

g 1(gsP2 ) —g —g 2(g&P I )

(14)

The integral over e in (6) may now be written as

f"de= f 'de+ f'de

dA,

so that (6) now reads

(5f lot); =f(r, v, t)f d V F(r, V, t) gb db dp da,

Thus g cannot vary arbitrarily, but has to lie within the
limits specified by (14).

Using (11) and (12) we may write

db dp da =
I
J

I dg'dyodP, (15a)

where J=B(p,b, a)IB(g', yo, P) is the Jacobian of the
transformation. Thus

b(g;g', Xo,P)
b db dp da= '. ' '

IJI dg'sin(Xo)drodP
S1Q+0

P& -5' -P2 ~ (9) ol

b db dp da=o n(g;g', yo, P)dg'd&, (15b)

~here o.
g z is the doubly differential scattering cross sec-

tion with respect to g' and 0 and is defined as

b(g;g', Xo,P)
a&(g;g', x Po)

=
sin/0

and (15c)

& =OAxis

8 ~ e~ -. a = e —p-
l

& =0 Axis
8 ~ & ~ 0 = E + 2 77 -

K~

FIG. 3. Determination of a in the azimuthal plane of Q{r,t)
l& makes an angle e& and 08, an angle e with respect to the e=O
axis. o. is the angle OR makes with respect to l~ (measured
counterclockwise). The definitions of a for the cases e) eI and
e&e/ are given in the figure. Similar considerations hold in
defining P from eo. [Note: The polar axis {along g) points out of
the plane of the paper. ]

dQ=sin(yo)dgodP .

Substituting (15b) into (9) gives

(6f/5t)," =f(r, v, t)f d V gF(r, V, t)

tz, n(g;g', yo, P)dg'd 0,
2~

g'1 —g™g2.

with g ', and g 2 defined by (13) and (14).
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The integral over p in (16} may be converted to one
over ep as follows. Writing for brevity

we obtain, considering only the integral over p in (16),

the e=O axis. Equation (19}now reads

(5fl5t), =uf(r, v, t)N(r, t)

QADI
X fo„n (u;v', gp, ep e—()du' dQp (22}

f cr(P)dP= f o(P)dP+ f o(P)dP . (17)
with v& u' uz and dQp=sin(pp)dppdep.

We now evaluate the integral over eI. Again writing
for brevity

Noting that p=2m. —e( corresponds to the e=O axis and
using (7) gives

ep e(—, O~P~2n e(—
op+2m. e(, —2m —e( ~P ~2m . (18)

Further, invoking the periodicity of cr in p, i.e.,
o (p) =o (p—2m.), and using this for transforming cr(p} in
the second integral in (17} [with the help of the second of
the transformations in (18)],we obtain

cr(P) =o (P 2m—) =o (co+2m e( —2n ) =—cr(ep e(), —

2n e(&p&—2m .

o(ep E()=crU~ n (veau ~gp, Ep E()'

we obtain for the integral over e( in (22)

de( Ep
O' &0 &) = 0 &0

o 2~ 0 2m

d61+ ~ ep
—~I

6p 2m

We use Fig. 4 to define the variable y. We have

60 6'(, 0 6'( 60

E'0+ 2' 6'I, 6'0 GI 277 .

(23)

(24)

(5fl5t); =f(r, v, t)

X VgF r, V, t

X 0'((~ n (gag qgpq6p E( }dg dQp

for gI ~gz, dQp sin(gp}dgpdEp . (19}

At this stage we invoke the limit of infinitely heavy gas
atoms and S particles. In this limit both ~V~ and
(V'~ ~0, so that

g~v, g' —+u', FrV t V~X rt

Thus (17) transforms into,

Cr d = 0 ep ~t &O+ «O &t &0~
0 6( 0

2'
0'(ep e()dep,

0

so that (16) reads

As before we invoke the periodicity of 0 in E'0 or E'I to
write cr(ep e()=—cr(ep e(+—2n) Using . this for trans-
forming o in the second integral of (23) gives, with the
help of the second of the transformations in (24),

cr(ep e()=o—(ep e(+2m —)=o (y ), ep e( 2n.

so that (23) becomes

(25)

The integral in (25) represents an averaging over e(, the
azimuthal angle made by the projection /t of the refer-
ence vector I, in the azimuthal plane of Q(r, t). As a re-
sult of this averaging, all dependence on the angle ep is
eliminated. This is to be expected since our original dis-

where N(r, t) is the density of gas atoms at the space-time
point (r, t). Further, (12) and (13) become in this limit

p=p(v;u'), v'=u'(v;p)

and (14) reads

(20)

vI(v;pt ) —v vz(v;pz)

(21) &=0 Axis

6'( c80 ' ~ EO

& =OAxis

&( a 6'p. 7 —6' g2

Also, cr&' o (g g gp ep E() transforms to
0'„n (v;v, gp, ep e(). It may be noted that the polar axis

g—+ —v and the vector g'~ —v'. Thus gp now is the an-
gle between the vectors —v' and —v and ep is the azimu-
thal angle subtended by the vector —v' with respect to

FICx. 4. Determination of y in the azimuthal plane of Q(r, t).
l~ and OP make angles eI and ep, respectively, with respect to
the e=o axis and y is the angle OP makes with respect to I,
(measured counterclockwise). The definitions of y in the
different ranges e( (eo and e( )Ep are given in the figure. [Note:
The polar axis (along g) points out of the plane of the paper].
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277 dpo. n,(",Xp r )
o ' o 2'

Substituting (26) into (22) gives

(5f/5t)L =uf(r, v, t)N(r, t) fdu'o„n (u;u', Xp)dQp

(26)

(27}
with v

&

& u' & u z and d Qp=2n sin(Xp)dXp. o, n, (u; u', Xp)

in (27) is measured in Q(r, t). In a frame in which the
atoms are at rest, the electrons approach the atoms with

a velocity +v and are scattered off with speed U' at an

angle (n Xp}
—with respect to the original polar axis (the

—v direction). The cross section for the scattering of the
electrons in this frame is identical to the cross section
o„.n (u;u', Xp) given above, for the scattering of the S
particle in Q(r, t). Under a rotation of the polar axis
from the —v direction to the +v direction (in the rest
frame of the atoms) o „„(v;u', Xp) becomes

o' n (v'u Xp)~o' ' n (v'v Xp)=o, . n (v;u', ~—Xp)

tribution of atoms was unpolarized in /. Equation (25)

may therefore be used to define an averaged e as follows:

2 dE(
o ', n (v u Xp} o ', n (v'u Xp ep

(3l)

with 0&u'&(u /2 E, /—m)'~ . We now defin

cr'„"( u;v')= f o',"n (v;u', Xp)dQp

and

crT(u)= fd ucr'„"( u;u')

(32)

with 0&u'&(u2/2 E;/m—)'~. Here cr'„"( uv') is the

singly differential cross section for the secondary electron
to be emitted with speed between u' and u'+dv' (used in

the work of Holstein). o T(u) is the total ionization cross
section with the incoming electron having a speed v.

Analogous to (32) we will have

o'„"(u;u')= f o'„"„(u;u',Xp)dQp

if we had used the reaction e+ A ~S'+e„, for setting

up the loss term. The limits on u' in (30) are deduced
from the inequality (E E—; )/2 & E„,& (E E—, }, b. y set-

ting E„,=m(u') /2 and E =mu /2.
Using (29) in (28) and substituting for cr„n (u;u', Xp)

into (27) yields

(5f/5t), =uf(r, v, t)N(r, t) f dv'o'„"n (u;v', Xp)dQp

(28) and (33)

where go is now the angle made by +v' with respect to
the +v direction. Under this rotation of the polar axis in

the rest frame of the atoms, the element of solid angle
dQp also remains unchanged. It may be noted that this

frame, in which the atoms are at rest, is also the laborato-
ry frame since the atoms have been assumed to be
infinitely heavy and hence immobile both before and after
the collision.

Connection with the ionization problem can be made

by setting

cr T (u ) = f cr",, '(u; v')dv '

with (v l2 E;/m)'—~ &v' &2(v l2 E;/m)'~. —It
may be noted that [2)

(34)

with ut =V2[u /2 E;!m —(v')—/2]' and 0& u'

(u l2 E; /m )' . U—sing the definition in (32) and car-
rying out the integration over all solid angles and U' in

(31) gives

oo' n (v»" Xp) o»' n (v»" Xp) (5f/5t), =uN(r, t)f(r, v, t)o T(v) (35)

1/2
2

for O~U'~
2

(29)
for the loss term.

III. THE GAIN TERM

where o',"„(u;v',Xp) is the doubly differential cross sec-

tion for ionization with the primary electron impinging
with velocity v on the massive immobile atoms and the
secondary electrons being scattered with velocity v' into a
solid angle element d Qp=2n sinXpdXp (Xp is the angle be-
tween the +v and +v' directions). In (27) the limits on
U' were those for the fictitious reaction e+ A ~S+e„„
derived in (21}. In (29) these are replaced by the actual
limits which arise in the ionization problem. These can
be deduced from the inequality 0&E„,&(E E, )'~ by-
setting E„,=m(u') /2 and E =mu /2.

Likewise, we could also have set

ou n("&v Xp'}, oU'n("&u &Xp),

2E+E; ~ E (36)

Likewise, for the emerging electron to be a scattered elec-
tron, one must have

We now try to determine the gain term for the elec-
trons at the phase space point (r, v) at time t, due to ioniz-

ing collisions. It was noted in the preceding section that
the emerging electron may either be a secondary electron
or a scattered electron depending on the range in which
the energy of the incoming electron lies. It was seen that
for the emerging electron (energy E=mu /2} to be a
secondary electron, the energy of the incoming primary
electron must lie in the range

1/2

for
2 m

1/2
2

& u'& &2
2 foal

(30)
E+E, ~E ~2E+E; . (37)

Let v; be the velocity of the incoming electron, so that
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Ez=m(v;) /2. The inequalities (36) and (37) then read,
respectively,

1/2

v2 v'+
m

(3g)

for the electron emerging at (r, v) to be a secondary elec-
tron and

1/2
2

v'2 " +
2 m

1/2

&v;&~2 v +
m

(39)

for the electron emerging at (r, v} to be a scattered elec-
tron. Corresponding to (38} and (39} we shall use the
fictitious binary reactions e+ A —+S+e, and
e+ A ~S'+e „respectively, for formulating the gain
term.

To construct the gain term, consider electrons in the
phase-space volume element d rd v; at (r, v, ). The num-
ber of such electrons at time t is f(r, v, , t)d rd v;. Let
these electrons collide with the gas atoms located at r at
time t. Consider gas atoms with velocities in the volume
d V at V, parameter p in the range (p',p'+dp') and the I
vector lying within the solid angle element
dQI =sin(8')d8'dP' (8' and P' are polar and azimuthal
angles subtended by I in a coordinate system in the labo-
ratory frame at r). Here, as before, we have temporarily
assumed the gas atoms to have a finite mass. The spatial
density of such atoms at the space-time point (r, t) is
given by

F(r, V,p', l, t)d Vdp'dQI . (40)

We simplify Fabove, using the assumptions made in writ-
ing (5) in Sec. II. The spatial density of gas atoms in (40}
is then given by

d'Vd 'dQ'
4m I ~ P)-P -P2 (41)

with (p2
—p, )=1 and dQI =sin(8')d8'dy'.

We introduce as before the reference frame Q'(r, t)
with its origin attached to the colliding electrons at (r, t),
moving with a precollision velocity v;. In this reference
frame, atoms with velocity V (in the laboratory frame)
before collision have a relative velocity h=V —v, We
choose the polar axis of Q'(r, t) along h. We also choose
a suitable @=0 axis in the azimuthal plane of Q'(r, t).
Let y'I and eI be, respectively, the polar and azimuthal
angles subtended by I in the frame Q'(r, t) at time t (the
instant its origin coincides with the space point r). In-
voking (4) of Sec. II, we may set dQ& in (41) equal to
sinyldylde'I and introduce yI and eI as the new variables
for describing I.

Of the atoms at (r, t} having a spatial density given by
(41) above, consider those that are incident on the azimu-
thal plane of Q'(r, t) with impact parameters in the range
(b', b '+ db ') and azimuthal angle within (e', E'+d e')
These atoms are all incident along the polar axis of
Q'(r, t) and collide with the electrons at rest at the origin
of Q'(r, t). The number of such atoms that collide within
the time interval (t, t+dt) is equal to the number of these
atoms that are contained within the parallelepiped of

volume hb'db'd e'dt and is given by

F(r, V, t) d Vdp'dQIhb'db'de'dt, p, &p'&p2
4~

(42)

P&-P -P2 (43)

It is assumed that v, ,V,p', l, b', e' are such that the ve-

locity of the electron after collision lies in the volume d3v
about v while that of the S or S' particle lies within the
volume d V' about V'. Thus the postcollision relative ve-
locity of the S (or S') particle in the frame Q'(r, t) (at-
tached to the electrons) is given by h'=(V' —v).

The azimuthal angle e' in (43) is measured with respect
to the arbitrarily chosen e=O axis. As before, we may
transform it to a new variable a', measured with respect
to I~ [the projection of I onto the aximuthal plane of
Q (r, t )], by following the recipe given in (7). Noting that
we will have da'=de', (43) may be written as

dN, =f(r, v, , t )
' ' d v;d3rd Vdp'dQ&hb'db'da'dt,F(r, V, t)

P&-P -P2

Following the procedure outlined in Eqs. (10)—(15), we
may introduce the collision cross section into (44). This
gives

dN, =f(r v t} ' ' d v d rd VdQ'thdt
F(r,U, t)

Xcri, „(h;h', yv, p')dh'dQ' (45)

with h, & h &h2 and dQ'=si (ny )dc' dvP'. Here
oz, „.(h;h', yv, P') is the doubly difFerential cross section
introduced earlier; yv and P' are the polar and azimuthal
angles (the latter being measured with respect to I~) sub-
tended by h' in the frame Q'(r, t}. The limits (h „h2) of h
are deduced from the analog of (12), i.e.,

p' =p'(h; h '),
which may be solved for h to yield the analog of (15):

h =h(p', h') .

(46)

(47)

Corresponding to the range (p„p2) in which p' can vary,
one obtains from (47)

or

h, (p„h')&h &h2(p2, h')

(48)

h )(pq, h') & h & hq(p), h') .

Unlike the situation described by (14} where g' could
vary for fixed g, we let h vary here for fixed h '. Thus (48)
specifies the limits on h in (45).

To transform P' in (45) to angles measured with respect
to the @=0 axis, we let the aximuthal angle made by b.'

with respect to the a =0 axis be ev. P' and eo will be relat-

with h = ~h~. The total number of collisions (labeled dN,
below) is therefore given by

dN,=f(r, v, , t) ' ' d v, d rd3Vdp'dQIhb'db'de'dt,F(r, V, t)
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ed by equations identical to that for P and ep, given in the
second set of (7). When using the first of these (i.e.,
P'=ep+2TT e—'1 for ep(e'i), we invoke the Periodicity of
0 (P')[ = 0 &. &.(h;h', gp, P')] in P' and write

a(P') =o(P' 2—1T)=a(up+2m. e',—2—n ) =a{op e—', ),

(the subscript v,. indicates a fixed value of v;) we have [on
integrating (52) and using (53)]

(5f/»); „d rd vdt

=u f{r,v, , t)N(r, t)d v, d-3rdto, (u;;u, yp)dudQp
U, Qp

(h 'h yo ~o et )dh d Qp
0

(49)

with hl (h (h2 and dQp=sin(yp)dgpdep. We now in-

voke the limit of infinite mass for the gas atoms A and
the S/S' particles. In this limit both (V~ and

~

V'~ ~0 so
that h~u, , h'~u, and F(r, V, t)~N(r, t)5 {V), where

N(r, t) is the density of gas atoms at (r, t) and 5 (V) is the
three-dimensional Dirac 5 function in the velocity V.
Further (46) and (47) becoine in this limit

As a result, P' in (45) may be replaced by ep —e'1 and using

dI3'=dip, (45) becomes

dN, =f(r, v, , t) ' ' d v, d rd VdQihdt
F{r,V, t }

with u;, (u; (v;2 and dQp=2n. sin(yp)dip. a, (u,.;v, yp)
U, QO

in (54) is measured in Q'(r, t). In a frame of reference at
rest with the atoms the electrons approach the atoms
with a velocity +v; and are scattered off with a velocity
+v, making an angle (m —

yp} with respect to the v; direc-
tion (the polar axis). The cross section for the scattering
of electrons in this frame is identical to the cross section
o. „,(v, ;u, yp) for the scattering of the S/S' particles in

U, QO

Q'(r, t). Under a rotation of the polar axis from the —v;
direction to the +v; direction (in the rest frame of the
atoms) 0 „,(u;;u, yp) becomes

U, QO

a „,(u;;u, yp) o' „,(u;;u, yp)=a „,(u;;V, TT
—yp),

U, Qp U, Qp U, QO

p'=p'(v, ;u), u, =u, (p', v)

so that (48) reads

Vi1(P 1 ~V ) —Ui —Ui2(P2~U )

or

Uil(P2&U ) —Ui —Vi2(P1iU )

(50)

(51)

(55)

where yo is the angle made by +v with respect to the
+v; direction. Under the rotation of the polar axis in
the rest frame of the atoms, the element of the solid angle
d Qo also remains unchanged. Noting that the rest frame
of the atoms is also the laboratory frame and that

and

d O'I

dN, =v, f(r, v, , t)N(r, t)5 (V)d'v, d'rd V dt

0'h, & (h ' h, gp EpE1} 'transforms to
0

0 n ( v;; v, gp, Ep Ei ). Again, as before, the Polar axis
U1 QP

h~ —v, and the vector h'~ —v. Thus yo is now the an-

gle between the vectors —v and —v; and eo is the azimu-

thal angle subtended by —v (with respect to the @=0
axis}. Equation (49) now reads

d v=v dudQp, dQp=2m sin(yp)dip, (56)

we have on substituting for o,(v;;u, yp) from (55} into
U, QO

(54) and using (56)

(5f/5t); „= '
v, f(r, v, , t)0' „,(v, ;u, yp)d v, . (57)

To obtain the total gain term we sum over all v;. This
gives

Xa g(uiIv&gp|Ep Ei )dvdQp
U, Qp

(52)

with u;1 ~u; (u,.2, dQp=sin(yp)dypdep, and the limits v;,
and u, 2 being given by (51).

Equation (52) gives the contribution to the gain term
for fixed v;, V, and I at the phase-space point (r, v) at time
t. To obtain the contribution for all V and I we integrate
(52) over V and a11 possible orientations of I (i.e., gI and
ei). The integral over v yields unity, while the integral
over y'I is also straightforward. Finally, the integral over

et may be handled as in Sec. II (see Fig. 4) and Eqs.
(23)—(25). Analogously to (26) we define an averaged a as
follows:

2E;a', (v,-;v,yp)=0 for 0(v;( v +
U~QO I

1/2

(59)

V.
t

N(r, t ) d v, f(r, v, , t)u, o' „,(u;;v, gp),
U 0

Ui1 —Ui —Ui2 (58)

where yo is the angle between v,. and the fixed vector v.
Correspondence with the ionization problem is made by
setting

2 d ~'s

a i(ui;V, gp) — O' Oi(u;;V, gp, Ep Ei )
, Q '

0 UO. 2~
(53)

Integrating (52) over V and all possible orientations of I
yields the gain term at (r, v) at time t for a fixed value of
v,-. Denoting this part gain term by Sf /5t )ord rd v dt

U, QO U, Qp

for u +
1/2

(u;(&2 u +
m

' „(;;,gp)= "'„(u;;u,yp)
U, Qp U, QO

(60)
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1/2

for &2 v'+ (U. & 00 (61)

uN(r, t—)f(r, v, t)o z(v), (62)

with yo being the angle between v; and v (a fixed vector),
o' „,(v;;v, go) given by Eqs. (59) to (61), and o r(v) given

U, Qp

by (32) or (33).
It is easy to show that for an electron distribution func-

tion that is isotropic in the velocity, the form of the col-
lision integral derived by Holstein [1,2] is recovered.

IV. CONCLUSION

In conclusion, we have in this paper, derived a collision
integral corresponding to ionizing collisions made by
electrons. The form derived is more general than previ-
ous ones [1) in that it is not restricted to isotropic elec-

The litnits on u; in (60) and (61) are obtained from the
inequalities (39) and (38) discussed earlier. The total col-
lision term is obtained by combining the gain term in (58)
with the loss term given by (35). Thus

(5f /5t), (r, v, t)

N(r, t)
d v, f(r, v, , t)u, o' „,(u, ;u, yo)

U
I& l IJ Q l&

tron distribution functions and is based on doubly
differential cross sections rather than singly differential
cross sections for ionization by electron impact. This is
the most detailed description feasible today because there
is already suSciently complete and detailed DDCS data,
both analytical and experimental, available for several
target gases. On the other hand, the data on triply
differential cross sections, which would provide an even
more detailed description of electron-impact ionization,
are incomplete even for the simplest target gases, so that
the construction of a collision integral based on TDCS
would not be of much practical significance today.

This work represents a step towards a more realistic
modeling of partially ionized gases in which electron-
impact ionization plays a dominant role and the electron
distribution functions are distinctly nonisotropic. In par-
ticular, this is the case for rf or microwave discharge
plasmas confined in magnetic mirror fields, to which we
intend to apply the present result.
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