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Double ionization of He(ls ) and He(ls 2s 3g by a single high-energy photon
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We have calculated the energy and angular distributions for double ionization of He(1s ) and

He(ls2s S) by one photon, over a range of photon energies up to a few keV. The calculations were

based on using a fairly accurate initial-state wave function, determined so as to exactly satisfy the Kato
cusp conditions, and a final-state wave function which is a product of three Coulomb wave functions
modified by a short-range correction term. There are at least three different mechanisms for double ion-

ization, and each one leaves a mark on the angular distribution. When the energies of the two electrons
are equal, the contribution of each mechanism to the angular asymmetry parameter can be estimated on

theoretical grounds; we compare these estimates with the calculated results to give a further indication
of the roles of the various mechanisms. Concerning the shapes of the energy and angular distributions,
we find significant differences between double ionization of singlet and triplet helium; in particular, the
probability for one high-energy photon to eject two equal-energy electrons from triplet helium nearly
vanishes owing to the Pauli exclusion principle and to interference effects resulting from antisymmetriza-
tion. In two appendixes we present some details of the integration involved in the calculations.

PACS number(s): 32.80.Fb

I. INTRODUCTION

Recently [1] we reported on calculations of the energy
and angular distributions for double ionization of
ground-state He by one photon over a range of energies
from several hundred eV up to a few keV. Our calcula-
tions included electron-electron correlation in both initial
and Snal states. We found various structures in the angu-
lar distributions, and we associated each structure with
one of three different mechanisms for double ionization.
In this paper we describe our method in more detail, and
we present additional results, not only for ground-state
He but also for He initially in the (ls2s) S metastable
state.

The three mechanisms whereby one photon can eject
two electrons are shakeoff, knockout, and photon shar-
ing. (We ignore Rayleigh scattering, which, however,
does become important at photon energies above 3 keV
or so [2,3].) Each of these mechanisms loosely corre-
sponds to a diagram in a many-body perturbation-theory
approach (see, e.g. , Refs [4]—[6]). In shakeoff, one elec-
tron is shaken out of the atom by the sudden change in
the efFective nuclear charge that occurs when the other
electron absorbs a photon and departs rapidly [7].
ShakeofF involves a "soft" collision between the electrons,
prior to the absorption of the photon; were it not for the
swift removal of one of the electrons, the equilibrium of
the atom would be maintained through further soft col-
lisions between the electrons. Since the collision is soft,
shakeofF is only efFective in producing one slow electron
and one fast electron, not two fast electrons. However,
two fast electrons can emerge via the knockout mecha-
nism; as in shakeoff, one of the electrons absorbs the pho-
ton, but on its way out of the atom, this fast electron un-
dergoes a hard binary collision with the other electron
[4]—[6], [8]—[10]. Knockout is often referred to as the

two-step 1 (TS1) process [6]. In both shakeoff and
knockout, the large net momentum carried away by the
electrons must originate from a hard collision with the
nucleus since the photon can impart energy but not
momentum to the electrons (we neglect retardation
throughout). However, if the two electrons share the
photon, they can both leave with high speed without ex-
changing as much momentum with the nucleus as in
knockout. In fact, almost no net momentum need be ex-
changed with the nucleus if the two electrons share the
photon energy almost equally; for they can leave with
nearly (though perhaps not exactly, see below) equal and
opposite momenta.

In shakeoff, the screening of the nucleus by one of the
electrons plays a crucial role, but the correlation between
the electrons plays no role. On the other hand, correla-
tion in the final continuum state plays a crucial role in
knockout, and correlation in the initial bound state plays
a crucial role in photon sharing. In fact, photon sharing
is often referred to simply as bound-state correlation [6].
Proton sharing is somewhat inhibited since two identical
charged particles which are otherwise free cannot absorb
radiation —their electric dipole depends only on their
center-of-mass coordinate, and if there is no external
force, the center of mass, and therefore the dipole, does
not accelerate, and hence cannot absorb radiation. Con-
sequently, while an isolated electron-positron pair can ab-
sorb radiation, two electrons can absorb radiation only in
the presence of a third body —in our case, the nucleus.
Thus the photon can be shared by the electrons only if
they are close to each other and to the nucleus. When
the initial state is a spin-triplet state, photon sharing is
especially inhibited since the Pauli exclusion principle
prevents the two electrons from moving close to each
other. Even when the initial state is spin singlet, the two
electrons cannot emerge with exactly equal and opposite
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momenta, a rule which, as shown in Sec. II, follows from
inversion symmetry. Furthermore, when the initial state
is spin triplet, knockout is ineffective in producing two
equal-energy electrons; as discussed in Sec. III, this is due
to interference effects resulting from antisymmetrization.

As noted above, the different mechanisms leave their
mark on the angular distribution. Furthermore, when
the energy Ej of one of the electrons is equal to that of
the other, the contribution from each mechanism to the
angular asymmetry parameter, 13(E, ), can be estimated
on theoretical grounds. Thus, putting E, =Ef/2, where

Ef is the final total energy of both electrons, we show in
Sec. II B that P(Ef /2 ) = 1 if shakeoff is dominant,
P(Ef /2) = ,' if kn—ockout is dominant, and 13(Ef/2) = —1

(spin singlet) or 2 (spin triplet) if photon sharing is dom-
inant. A comparison of these estimates with the calculat-
ed results reveals further information about the role of
each mechanism, at least near the midpoint of the energy
distribution.

Of course, it is not always possible to physically distin-
guish the different mechanisms. In particular, both
shakeoff and photon sharing are significant near the
boundaries of the energy distribution, where one electron
is moving slowly and the other rapidly. In this energy
region —which contributes the most to the total cross
section —one cannot physically separate photon sharing
from shakeoff since so little energy is given up by the
photon to the slow electron. The relative contributions
of the different mechanisms to the total cross section are
gauge invariant only to the extent that these mechanisms
can be physically distinguished. Indeed, Dalgarno and
Sadeghpour [11] have pointed out that the relative con-
tributions of different diagrams in a many-body
perturbation-theory approach are very different in
different gauges, while the sum of these contributions is
necessarily gauge invariant. This was recently confirmed
by Hino et al. [12] who calculated the relative contribu-
tions of the different diagrams to the total cross section
for double ionization of ground-state helium using the
length, velocity, and acceleration forms of the photon-
atom interaction.

It is well known [13,11] that cross sections for electron
ejection by high-energy photons are sensitive to the de-
gree of accuracy to which the initial bound-state wave
function satisfies the Kato cusp conditions [14]. In our
previous work [1] we determined the bound-state wave
function from the minimization of the bound-state ener-

gy, without additional constraints; the Kato cusp condi-
tions were satisfied to within a few percent. However,
now we determine the bound-state wave function by im-
posing constraints that guarantee the Kato cusp condi-
tions are satisfied exactly —fortunately, the previous re-
sults are not greatly changed. As before, we use a final
continuum-state wave function which has the proper
asymptotic form, namely, a product of three Coulomb
wave functions [15,16], which we modify by the inclusion
of a term which partly corrects for the error in the inner
region.

In Sec. II we outline the method we used to perform
our calculations, and we derive various properties of the
asymmetry parameter. In Sec. III we present our results.

The integration involved in the calculations is rather ar-
duous, and in Appendixes A and B we describe some as-
pects of this integration.

II. METHOD

Unless specified otherwise, we use atomic units. We
neglect the spin-orbit interaction, and factor out the spin
variables from the wave function. The atomic Hamiltoni-
an is

2 2
Pi P2

a
Z Z 1+
T) T2 f3

~here r, and r2 are the electron coordinates and
i 3 I z

—
r& their relative coordinate, with r, =

~ r,
rz = /rzl, and r3 = Ir3I.

where ~%, ) and %z z ) represent the initial and final

states of the atomic system. Let 8, and 8z be the angles
which k, and k2 make with the z axis, and let O&2 be the
angle between k& and k2. Since the atom absorbs only
one unit of angular momentum and is initially in a spheri-
cally symmetric state, the ionization amplitude has the
form

f (k„kz) =g(k, , kz, cos8,z)cos8,

+g (kz, k „cos8,z)cos8z,

where k, =~k,
~

and kz=~kz~, where the function

g (k&, kz, cos8&z) is to be determined and where the sign is

plus (minus) if the atom is initially in a spin-singlet (trip-
let) state. Note that Eq. (3) implies that if the initial state
is spin singlet, we have f (k, —k) =0, a consequence of in-
version symmetry (and antisymmetrization); hence the
two electrons cannot emerge with equal and opposite ve-

locity.
In principle, g(k„kz, cos8,z) can be calculated by

evaluating f (ki, kz) for k, in the xz plane and kz along
the x axis, so that cosO2=0 and cosO, =sinO, 2, thus, with
reference to the Cartesian system (x,y, z), if we choose

k, =k', = (cos8,z, 0, sin8, z )

and kz=kz =—kz(1, 0, 0), we have

g (k, , kz, cos8, z) =f(k', ,kz)/sin8, z . (4)

However, we found it more expedient to explicitly identi-
fy g (k, , kz, cos8, z) as the coefficient of cos8, in the com-
puted expression for f (k, ,kz).

A. Ionization amplitude

We assume that the light is linearly polarized (along
the z axis) and we work in the velocity gauge. Let k& and
k2 be the final rnomenta of the two electrons, with

E,

=if�/2

and Ez—:kz/2 their final energies. The total
final energy is Ef ——E, +E2. The amplitude for double
ionization by one photon is

d d

dzi dzi
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B. Differential cross section

The differential cross section for the atom to absorb
one photon, of frequency co, and for the two electrons to
emerge nto sohd angle d Qi and d Q2 s

u (k, ,k2, I) and v(k„k2, I) would vanish for 1%0 .
Hence, if correlation were weak, we would have

2u (k, ,k~, O)
P(E))=

u(k, , k2, 0)+u(kz, k„O) '

do
dE)d Q)d Q2

(5) and at the midpoint Ef /2, where k, =kz, we would have

[I+P(E&)P2(cosH&)] . (6)

The energy distribution do /dE, and the angular asym-

metry parameter p(E& ) can be expressed in terms of the
auxiliary functions

Integrating the right-hand side of Eq. (5} over all direc-
tions of k2, using Eq. (3), gives the well-known result [17]

p(Ef /2) =1 . (12)

Thus any departure from p(Ef/2)=1 is a measure of
correlation, albeit only at the midpoint of the energy dis-
tribution. Since

v (k, k, l) =2u (k, k, I),
the exact expression for the asymmetry parameter at the
midpoint is (with k =Ef )

u (k„k2,1)= f dp~g (k»k2, p) ~ PI(p),
21 +1 2 (7)

[15u (k, k, O)+3u (k, k, 2)+10u (k, k, 1 )]
5[3u (k, k, 0)ku (k, k, 1)]

(13)

u(k„k2, l)=2 J dp, Re[g(k„k2,p}
2l+1

Xg'(kz, k„p)]PI(p) . (8}

After some algebra we find that

If knockout were to dominate, the two electrons would
emerge with a relative angle of m /2 (see Sec. III). To as-
sess the influence of knockout on the value of p(Ef /2),
we suppose the angular probability distribution to be a
Gaussian peaked at 8,2

=m /2, i.e.,

64m k, k~
[u (k„k~,O)+u (k2, k„0)

dEi 3coc
~g(k, k, cos8,2)~ ~exp

(cosH&z —cosn /2)
2

Op

P(E()=

k —,'u (k„k2, 1)],
2[15u (k), k2, 0)+3u (kq, k), 2)+5u(k(, k2, 1)]

15[u (k„kz,O)+u (k2, k„O)k—,'u(k„k~, 1)]

(9)

(10)

—0.5 & P2(cosH, ) ~ 1

and since der l(dE, d 0, ) is positive, we have

—1~P(E, )~2 .

If shakeoff were the only mechanism for double ioniza-
tion, we would need to take into account only the screen-
ing of the nucleus by one electron, and not the correla-
tion between the electrons. In this case the initial and
final states would each be represented by a (symmetrized
or antisymmetrized) product of one-particle wave func-
tions, and g (k2, k „p}would be independent of p, so that

Note that u (k„kz, I) is symmetric in k, and k2 but that
u(k„k2, l) is not. Hence, do IdE, is symmetric about
the midpoint Ef /2, where Ef E&+E2, whi——le P(E, ) is
asymmetric. The reason that do IdE& is symmetric
about Ef /2 is that if one electron emerges with energy
E„the other electron must emerge with energy Ef E, . —
However, P(E, ) is asymmetric because it characterizes
an electron of energy E& moving in a particular direction;
the angles of the other electron, moving with energy
Ef E„have been i—ntegrated over.

We briefly note here some other properties of the
asymmetry parameter. Since

this gives, for both spin-singlet and -triplet states,

P(Efl2)= ,'+ ,'op . —— (14)

If the probability distribution were infinitely sharp
(crp=O), we would have p(Ef/2)=1/2. On the other
hand, to assess the influence of photon sharing on the
value of p(Ef /2), we suppose the angular probability dis-
tribution to be a Gaussian peaked at 8,2=m, i.e.,

( COSH i2 cos'r )
~g(k, k, cos8,2)~ ~exp

0'0

this gives, for the spin-singlet case,

p(Ef /2) = —1+
4

and for the spin-triplet case,

3cTp
p(Ef /2) =2

2 Tr

(15)

(16)

If the probability distribution were infinitely sharp, we
would have p(Ef /2) = —1 for the singlet case, which ac-
cording to Eq. (6), with P2( —1)=1, implies that the dou-
bly differential cross section vanishes at the midpoint
E& =E2 =SfI2; this is consistent with the fact that, for a
spin-singlet state, the triply differential cross section van-
ishes when k&= —k2. Although the energy region near
the double-ionization threshold, where the Wannier
mechanism [18] is relevant, is not addressed in this paper,
we note that the behavior of the cross section near
threshold has been examined [19,20] under the assump-
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tion that the two electrons recede along the Wannier
ridge with equal energies (Ef /2) and in opposite direc-
tions, with an angular probability distribution that is
Gaussian [21].

mate 2.14, compared to the highly accurate Pekeris esti-
mate 2.175 229 378 a.u. When the Kato cusp constraints
are removed, so all of the parameters are free, consider-
ably more accurate binding energies are obtained [1].

C. Initial state D. Final state

We took the initial-state wave function 4;(r„rz) to
have the form

The final-state wave function has the asymptotic form
[15,16,22]

i+j+k~N
i j k

ctJkr 1r2r3 yI, g (rt, r~)=N(k], k3)e

The coeScients satisfy c;il, =+c,,l„where the plus (minus}
sign is chosen to guarantee that the wave function is sym-
metric (antisymmetric). Note, that A, 3 may be positive or
negative, as long as A, , +A,3 )0. The integer N was chosen
to be 2 or 3, and the two nonlinear parameters A, , and A, 3

and the linear parameters c; I, were chosen to minimize
the initial energy E; of the atom —subject, however, to
the constraints of the Kato cusp conditions, which are
[14]

X P,F, (iyj, 1, ik—r, ik—r, ),
j=1-3

(20)

k3= —,'(k~ —k, ),
and where the normalization factor N (k, k~, ) is

(21)

where k1+k2 is the momentum of the center of mass of
the two electrons, where k3 is the momentum of the "par-
ticle" with reduced mass —,':

B+;(r&,r3) = —Z%;(0(,r3),
rl r) =0

(18) N(k&, k&)—:g e ' F(1 iy —),
—~./2

j=1-3
(22)

84, (r„rz)
Br3 r3 =0

(19)

with

y, = —Z/k, , (23)

where the average is taken on a sphere of fixed radius-
r, in Eq. (18) and r3 in Eq. (19). The first condition per-
tains to the confluence of one electron and the nucleus,
and the second condition pertains to the confluence of the
two electrons. The main contribution to the binding en-

ergy lE; l
comes from a spatial region whose distance

from the nucleus is of the order of the characteristic
binding radius, but it is the region much nearer to the nu-

cleus that is most relevant to photoejection. Therefore,
the Kato cusp conditions are a more relevant measure
[13,11] of the accuracy of 4;(r&, rz). The number of free
parameters that can be varied to minimize E, is reduced

by the Kato constraints. As an example of the accuracy
of the binding energy lE; l, when the wave functions are
constrained to satisfy the Kato cusp conditions, the 8-
parameter (N=2) and 14-parameter (N=3) wave func-
tions yield for He(ls ) the energy estimates 2.87 and
2.902, respectively, compared to the highly accurate Pek-
eris estimate 2.903 724 374 a.u. , while for He(ls2s S), the
14-parameter (N= 3) wave function yields the energy esti-

y3= —Z/k3, (24)

y3 1 /(2k3 ) (25)

(26)

where the residual term on the right-hand side is

Maulbetsch and Briggs [22] and more recently Hino [23]
have calculate the double-photoionization cross section
using a final-state wave function that is approximated by

gI, z (r„rz}. Also, Anderson and Burgdorfer [3] have

calculated cross sections for single ionization with simul-
taneous excitation using a generalization of yI, I, (r„r3}

17 2

to describe states of He in which one electron is in the
continuum while the other is in an excited bound state;
by summing over all bound-state probabilities and sub-
tracting from unity, they deduced the ratio of cross sec-
tions for double to single photoionization.

One can show that

Z i(k&.r&+k& r&)
pz z (r&,r3)= ——N(k&,kz)e, F, (1+iy3, 2, —ik3r3 —ik3 13)

z

X [)F)(iy), 1, ik(r) —i—k).r) ) }qF(1 i+y3, 2, —ik3r3 —ikq. rq)(r~+k3} (r3+k3)

+ &F&(iy3, 1, —ikzrz —ikz. rz)

X,F,(1+iy, , 2, ik, r, ik, r, )(—r—, +k. , ).(r3+ k3) I (27)
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From the asymptotic behavior of the hypergeometric
function, i.e.,

(F,(1+iy, 2, —ik r —ik r. )

1
,F, (iy , 1., ik—r —. i.k. .r ),

J I

we have

i—b (k(.r(+ kz.rz), (

= g aj [E&(1 b—) E—
J ]O'J (r, , rz )

+ib g (zi[k( V(%'i(r( rz}+kz Vzqlj(r( rz}] .

(32)

(rz+kz} (r, +k, ) (rz+kz)+
kzrz

XXk, , I,,(r„rz), (28)

Defining K =+2—E& and

Kd (r„rz) —=i[k, V, ln(P. (r„rz)+kz.Vzlnqlj(r„rz)],

(33)

showing that the correction to the asymptotic form falls
off as the inverse square of the distance. Note, however,
that due to the appearance of the momenta in the denom-
inators on the right-hand side of Eq. (28), the asymptotic
form does not become valid until very large distances
when any one of these momenta becomes small. Conse-
quently, the asymptotic form becomes less useful as the
total final energy E& decreases. Indeed, the normaliza-
tion factor N(k„kz) is erroneously small when EI is
small; it decreases exponentially as E& approaches zero.

We write the exact final-state vector ~VI, I, & as
1' 2

(29)

where ~4I, (', & is the correction to the asymptotic-state

vector. Now by combining Eqs. (26}and (29), and requir-
ing that

we can rewrite Eq. (32) as

g a [EI(1 b} —E +—bK .d (r„rz)]VJ(r(,rz)

1' 2

For E& large —the case of interest in this paper —the
term E&(1 b) d—ominates the other terms in the square
brackets on the left-hand side of Eq. (34), unless b =1.
Hence, unless we were to choose b =1, the coeScients a.
in the sum on the left-hand side of Eq. (34) would each be
multiplied by roughly the same (large) number, and there-
fore these coeScients would be of comparable magnitude.
Since we need to truncate the sum in practice, we would
like to arrange that those coeScients aJ corresponding to
eigenfunctions whose eigenvalues E lie high up in the
continuum are relatively small. To this end, we choose

(H, —EI ) ~VI, g & =0, b =+co/E&', (35)

we have

(30)

note that since E&=E;+co, we have b =1 if Ef ))~E
Consequently, Eq. (34) becomes

g (z [bE;, +bK d (r„rz)]VJ(r„rz)
j

We expect the correction 4I, I, (r„rz) to have the form of
1' 2

the plane-wave term

exp[i(k, r, +kz rz)]

multiplied by a "short"-range function which does not
oscillate as rapidly as the plane-wave term. This leads us
to expand the short-range factor in terms of the eigen-
functions qI (r„rz) of the atomic Hamiltonian, with

%0(r„rz)=(p;(r„rz) .

Thus we write

ib (k1.r1+k2-r2 }
4(, (, (r(, rz)=ae q(;(r„rz), (37)

where b is defined by Eq. (35) and where (z is deternuned
by imposing the orthogonality of the final state with the
initial state:

1' 2

~here hE,"=E;—E . We expect u to be relatively small
if E is large (since ~b,E;J~ is large). Hence it seems
reasonable to truncate the sum. However, we now make
a drastic approximation —we truncate the sum to one
term only, in order to avoid intractable computation.
Thus we approximate Eq. (31)by

ib (k1-r 1
+k2-r2 }

N(, (, (r„rz)=e ga. %.(r(,rz},
J

&x', ,l, ~q, &

& ql, ~exp[ib (k, .r, +kz.rz)] ~%'; &

(38)

where we have introduced a factor b into the exponent of
the p1ane-wave term in order to retain flexibility, antici-
pating that the "optimal" value of b will be close to unity.
By substituting Eq. (31) into Eq. (30) and denoting the ei-
genvalues of II, as E (with Eo =E; ), we obtain

Hence, we take as the final-state vector

( —) ( —) ib (k l.r 1
+k2.r2)

(p(, „(r(,rz)=y(, g (r(, rz)+Qe e;(r(, rz) .

(39)
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Despite this rather severe approximation, the comparison
of our results with experimental data [27] appears to
confirm that the inclusion of the second term on the
right-hand side of Eq. (39) does lead to more meaningful
results at energies Ef lo~er than would otherwise have
been possible (see Fig. 5 of Ref. [1]). Nevertheless, this
correction does not alter the normalization factor and the
spurious exponential decrease of the normalization factor
means that the estimated absolute cross section will de-
crease far too rapidly as Ef approaches zero. [Moreover,
the parameter b becomes infinite as Ef approaches zero;
see Eq. (35).]

HI. RESULTS

~
—HI

2.00,

1.50

71. —tIII

I I

—8g 27' —812
I I I

El ——10 eV

....... Eg ——10 6eV

Rather, it acquires this energy via the knockout mecha-
nism, and the peaks correspond to the fact that when two
particles of equal mass undergo a binary collision, with
one of the particles at rest before the collision, they
emerge with a relative angle of ~/2 (or 3m/2). When

E& =50 eV, the minima once again occur close to where
the fast electron emerges perpendicular to the electric
field, but now the left and right peaks are shifted some-
what closer to m/2 and 3m /2, respectively, due to
knockout being the more efficient mechanism for ejection

We begin by showing results for double ionization of
ground-state He based on the 8-parameter bound-state
wave function and the final-state wave function of Eq.
(39). In Fig. 1 we show a slice of the angular distribution,
do /dE, dQ, d Qz, in one plane for a photon energy of 2.8
keV. We showed this figure previously [1]but we include
it here, and we repeat part of our earlier discussion, for
clarification of, and comparison with, our new results.
We have fixed the momentum k, of one electron—
electron 1, say —to be at an angle

a$

1..00
CD

0.50

1.50—

Ey ——50eV

....... Eg ——50eV

81=cos '(I/v 3)=54.73'

with the z axis, and we have allowed the momentum kz of
the other electron —electron 2, say —to vary in the plane
of k, and the electric field (z) axis. Our choice of 8, im-

plies Pz(cos8, )=0, and hence fdQi(do/dE, dQ, dQi)
is, from Eq. (6), the energy distribution do /dE, (reduced

by I/4m). We show our slice of the angular distribution
versus 8&z for four different partitionings of the energy Ef
(=2.721 keV). We first focus on the case where one elec-
tron carries away almost all the energy, i.e., either E, or

Ez equal to 10 eV. When Ez=10 eV, we see a peak
centered where 8,z=m. This peak corresponds to
shakeofF': Electron 1 absorbs the photon and soars out of
the atom, after tickling electron 2. Since electron 2 does
not experience the photon, the only direction relevant to
this slow electron is the direction of emission of electron
1, and since the electrons repel each other electron 2

prefers to move in the direction opposite to electron 1,
i.e., 8,~=~ is preferred. When Ej =10 eV, we see two
minima and two peaks. The minima, which are almost
zeroes, occur at 0&v z

m 8i and Oiz

sponding to the unlikely emission of the fast electron-
now electron 2—perpendicular to the electric-field axis.
The fast electron would prefer to emerge along the
electric-field axis, i.e., where O, z=m —

I9& or 0&&=2m —0&,

but in fact the peaks are shifted somewhat closer to m

since we have fixed the angle 0, of the slow electron, and

shakeoff is maximum when L9,z=m. Now consider the
case Ei or Ez equal to 50 eV. When Ez =50 eV, we see

two peaks, one centered close to 8,z=m/2, the other
close to 0&&=3m/2. While the energy, 50 eV, of the
slower electron is not large, it is an appreciable fraction
of the initial total binding energy, and the slower electron
cannot easily acquire 50 eV via the shakeoff mechanism.

C$

I 1.00—

b

0.75—

Ej. ——300eV

....... Fg ——300eV

0.50—
cD

0.25—

0.75—

cC)

0.50—

I,

54 7'

I

I I

Eg ——900eV

....... Eq ——900eV

0.25—

0.00
0

FIG. l. Angular distribution for double-ionization of He(ls )

in the plane formed by the electric Seld (i.e., the z axis) and the
momentum k& of one of the electrons, with k& 6xed at an angle

54.73 with the z axis. The photon energy is 2.8 keV. The thick-

er tick marks on the 0&& axis correspond to values indicated on

the upper 0&z axis.
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of the slower electron (whose angle 8, is fixed). Looking
now at the case E, or Ez equal to 300 eV, where even the
slower electron is moving fast, knockout dominates, and
all peaks are centered not far from where H, z=n./2 or
3n/2 . Note that the peaks near 3n/2. are more pro-
nounced than those near ~/2, a feature which may be un-
derstood as follows: The electron which absorbs the pho-
ton prefers to be ejected along the electric-field axis, i.e.,
the positive or negative z axis. Furthermore, this fast
electron is defiected through a relatively small angle in
the knockout collision. Now, the second electron cannot
be knocked out at a large angle (i.e., )90') relative to the
direction of incidence of the first electron. Hence, after
the knockout collision the two electrons are most likely
to emerge within a 90' cone that includes either the nega-
tive or, as in our case (since 8,=54.73'), the positive z
axis; therefore, H, z=3m/2 is preferred. Finally we con-
sider the case E, or Ez equal to 900 eV, where both elec-
trons are moving very fast and with not very different
speeds (note Ef/2=1360 eV). Knockout at H, z=n /2 is
now almost insignificant, while the knockout peaks at
H, z=3n/2 are almost independent of which electron is
fastest. More interestingly, we see a new peak not far
from H, z=m. This new peak arises from the photon-
sharing mechanism, i.e., the two electrons simultaneously
share the photon and leave in nearly opposite directions,
carrying away almost no net momentum. The minimum
close to H, z

=n' is a vestige of the inversion-symmetry
zero off (ki, kz) which occurs when k, = —kz.

In Fig. 2 we show the asymmetry parameter P(E, ),
again for ground-state He, for two different photon ener-

gies, 625 eV and 2.8 keV. We see that when E& is small,

P(E, ) is very small. This can be understood after recal-
ling that the slow electron 1 is produced by shakeoff, and
it "falls" out of the zero-angular-momentum component
of 4;(r&, rz) without any change in angular momentum;
electron 1 therefore emerges nearly isotropically if it is

u = 625ev

~ = 2.8KeV

—1
p 0.25 0.5

Eg/Ef

1.0

FIG. 2. Asymmetry parameter for double ionization of
He(ls ) at photon energies of 625 eV and 2.8 keV.

not detected with reference to the fast electron 2, and
hence P(Ei ) =0 for E, =0. As Ei increases, P(E, ) be-

comes negative and remains negative as long as E,
remains well below Ez. Over this range the slower elec-
tron 1 is moving too fast to be produced by shakeoff, and
is instead produced primarily by knockout; electron 1

therefore emerges nearly perpendicularly to the fast elec-
tron 2. To understand why P(E, ) is negative, we first
note that immediately after absorbing the photon, the
fast electron 2 most likely moves along a direction close
to the electric-field axis, and as long as it does not give up
a lot of energy during the knockout collision, it will not
be deflected far from this axis. In this case electron 1 will
most likely emerge nearly perpendicularly to the
electric-field axis. Inserting

Pz(cos8, )= (3 cos 8i —1)/2

into Eq. (6) gives

do/(dEidQi) ~1+P(Ei )[3cos(28&)+1]/4 .

Since

1+P(E, )[3cos(28, )+1]/4

varies from 1+P(E, ) at 8,=0 to 1 P(E, ) /2—at 8, =n/2,
our bias towards H, =n/2 implies that a large negative
value of P(E, ) is favored (but note that the largest nega-
tive value allowed is —1) Turning now to the region
where E& approaches Ez, i.e., the region of the midpoint
Ef/2, we see that P(E, ) becomes positive and remains
positive for all higher energies. Recall that at the mid-
point the asymmetry parameter would be unity if correla-
tion were negligible, but evidently P(Ef /2) is
significantly different from unity. In Sec. II B we argued
that if knockout were to dominate, we would have
P(Ef/2) =—,', while if photon sharing were to dominate,
we would have P(Ef /2) = —1. Since knockout contrib-
utes significantly more than photon sharing in the region
of the midpoint, it is reasonable to expect P(Ef /2) to be
slightly less than —,', which appears to be true in Fig. 2.
At energies well above the midpoint, P(E, ) becomes
more positive, and in fact we see that P(E, ) approaches 2
as E& approaches Ef, which can be understood as follows
[22,1]: Electron 1 absorbs the photon from the zero-
angular-momentum component of V, (r&, rz), and there-
fore acquires one unit of angular momentum. Since
E& &)Ez, the collision with electron 2 hardly disturbs
electron 1, and hence electron 1 emerges with a cos (8, )

angular distribution (if it is not detected with reference to
electron 2), which requires that P(Ef ) =2.

We now examine the relative importance of the
different mechanisms for double ionization of ground-
state He. To assess the importance of knockout, we note
that this mechanism involves strong electron-electron
correlation in the final state. Hence, knockout cannot be
described by a final-state wave function that is simply a
product of two Coulomb wave functions (that would
represent the two electrons moving independently in the
presence of a single center of force). Therefore, by ap-
proximating the final-state wave function as
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—~a. /2
X g e ' I(1—ia )

j=1-2

X,E,(ia, 1, ik—rj i—ki.rJ ),
(40)

we exclude knockout. While a wave function of this form
does not explicitly incorporate the electron-electron in-
teraction in the final state, it does so implicitly if we
choose ai = —Z/ki and a2= —(Z —1)/ki, thereby tak-
ing into account the screening of the nucleus by the slow
electron 1 from the fast electron 2. We attribute the
cross section calculated by using the final-state wave
function of Eq. (40), with full screening by the slow elec-
tron, to shakeoff and photon sharing. We can exclude
both knockout and photon sharing by ignoring electron-
electron correlation in both the final and initial states.
The ground-state wave function

3 eff 1 24;(r„rz)=(Zcff /~)e (41)

10

1O-'

10

10-'

1P-10
~ = 2.8Kev

10—»

1P
—12

0
I

1/8 1/4

Et /Eg

3/8 1/2

FIG. 3. Estimates of the energy distribution for double ion-

ization of He(ls ) at photon energies of 625 eV and 2.8 keV, in

three different approximations: solid line, correlation in initial

and final states; dotted line, correlation in initial state only; dot-

dashed line, no correlation, in either the initial or final state.

with Z,z
=—'„', takes screening but not correlation into ac-

count. In Fig. 3 we show three different estimates of the
energy distribution der /dEi versus Ei, for the two pho-
ton energies 625 eV and 2.8 keV. (Since the energy distri-
bution is symmetric about the midpoint Ef /2, we show
only the half for E, &Ef/2. ) One estimate is based on
using the "exact" 8-parameter initial-state wave function
and a final-state wave function that is yI, i', (r„r2) of Eq.

(20); correlation is included in both initial and final states.
A second estimate is based on using the same 8-
parameter initial-state wave function and the final-state
wave function of Eq. (40); correlation is included in the

initial state but not in the final state. A third estimate is
based on using the initial-state wave function of Eq. (41)
and the final-state wave function of Eq. (40); correlation
is not included in either the initial state or final state.
The first estimate includes the contributions from shak-
eoff, knockout, and photon sharing; the second estimate
excludes knockout; and the third estimate includes only
shakeoff. Integrating the results of Fig. 3 over E„we
find that shakeoff contributes only about 30% (even less
at lower photon energies) of the total double-ionization
cross section integrated over energy and angles; this is in
accordance with the statements of others [7,11].
Knockout contributes roughly 10% or 20%, depending
on the photon energy. Of course, we must emphasize
again that the relative contributions of the different
mechanisms are gauge invariant only to the extent that
these mechanisms can be physically distinguished. How-
ever, as we see from Fig. 1, it is often not possible to dis-
tinguish the different mechanisms unambiguously, and in
particular photon sharing is only clearly delineated when
both electrons are moving very fast —by the peak in the
angular distribution for Oi2 near m [24].

We have recalculated the ratio of the cross sections for
double and single ionization from ground-state helium by
a photon of energy 2.8 keV. To calculate the single-
ionization cross section, we multiplied the theoretical re-
sults of Ishihara, Hino, and McGuire [6] by a factor
which takes into account the contribution from simul-
taneous excitation; this factor was chosen so as to match
the measured data of Samson [25,26] at a photon energy
of 4SO eV. Using 8- and 14-parameter ground-state wave
functions, constrained to satisfy the Kato cusp condi-
tions, and using the final-state wave function of Eq. (39),
we calculated the ratio of double- and single-ionization
cross sections at 2.8 keV to be 1.53% (8 parameter) and
1.78% (14 parameter), in reasonable agreement with oth-
er theoretical results [27,8, 13,5,6, 11,3,12,23] and with the
measured [28] result, 1.6%. We note again that at higher
photon energies (above about 3 keV), Rayleigh scattering
becomes an important rnechanisrn for both single- and
double-ionization [2,3].

We now turn to double ionization of He in the metasta-
ble 1s2s S state. All of our results are based on the 8-
parameter bound-state wave function and the final-state
wave function of Eq. (39). In Fig. 4 we show a slice of the
angular distribution for the same geometry as in Fig. 1

but for a photon energy of 2.0 keV. For E& =10 eV,
the angular distribution is symmetric about ~ in 0&2, as it
should be if shakeoff prevails, but, in contrast to Fig. 1,
the angular distribution is suppressed (somewhat) in the
neighborhood of m. For E, =50 eV, and also for E2 =50
eV, there are, in contrast to Fig. 1, additional minima.
We do not know the sources of these differences, but ap-
parently interference effects arise, perhaps due to the
different (ls and 2s) orbits in which the two initially
bound electrons move, or to the antisymmetrization of
the wave function. For higher energies, e.g., E& equal to
300 eV, knockout peaks clearly develop, as in Fig. 1.
However, at still higher values of E& we do not see a
photon-sharing peak developing at 0,2 near ~/2, and yet,
since the joint state is spin triplet, spatial symmetries do
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FIG. 4. Angular distribution for double ionization of
He(ls2s 'S) for the same geometry as in Fig. 1. The photon en-

ergy is 2.0 keV.

not preclude the two electrons from emerging with equal
and opposite velocities (in contrast to double ionization
of ground-state helium}. In fact, photon sharing is
strongly suppressed by the Pauli exclusion principle,
which prevents the two electrons from moving close to-
gether in a triplet state; only if the two electrons are very
close can they share, in comparable proportions, a high-
energy photon. In other words, knockout is easily the
dominant mechanism in producing two fast electrons in a
triplet state (except when the electrons have equal speeds;
see below). Of course, photon sharing is still an effective
mechanism in producing one slow and one fast electron,
since in that case the photon need hardly be shared at all.

In Fig. 5 we show the energy distribution for double
ionization of He in the metastable state, for a photon en-
ergy of 2.0 keV. The salient difference from Fig. 3 is that
the energy distribution dips near the midpoint energy
Ef /2. (Again, we only show half the energy distribution,
in the range E, ~Ef/2. ) Although not seen in Fig. 4,
knockout is strongly suppressed when E, =E2( =Ef /2),
since if two fermions are in a triplet state, and one is ini-

FIG. 5. Energy distribution for double ionization of
He(ls2s 'S) by a photon of energy 2.0 keV.

~ = 2000eV

—1
0 0.25 0.5

E,/Eg

0.75 1.0

FIG. 6. Asymmetry parameter for double ionization of
He(ls2s S) by a photon of energy 2.0 keV.

tially at rest, the cross section for a collision to result in
the two fermions emerging with equal energies vanishes
due to the destructive interference resulting from an-
tisymmetrization [29]. Therefore, since shakeoff is
ineffective in producing two fast electrons, and since pho-
ton sharing is strongly suppressed, the cross section for
producing two electrons of equal energies is extremely
small; this is why the energy distribution dips near the
midpoint.

In Fig. 6 we show the asymmetry parameter for double
ionization of metastable He by a photon of energy 2.0
keV. As in Fig. 2, and for the same reasons, p(E, ) is
very small when E, is small, it is negative for E& well
below E2, and it is close to 2 when E& is near its max-
imum value Ef. However, we see that p(E& } varies very
rapidly when E& is in the neighborhood of the midpoint

Ef /2. This rapid variation is presumably due to the van-

ishing of the knockout contribution (due to the interfer-
ence discussed in the preceding paragraph) at the mid-
point. At the midpoint, photon sharing, while a weak
mechanism, provides the only significant contribution,
and as argued in Sec. IIB, we have P(Ef/2)=2 (for
spin-triplet states) when photon sharing is dominant.
Not too far from the midpoint, we expect p(E, )=—,', to
the extent that knockout dominates.
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where

Ao=(yl, ]', (r],r2)li(V]+V2)l po(r] r2)) . (Al)

APPENDIX A: REDUCTION OF INTEGRAL

Substitution of the asymptotic wave function, from Eq.
(20), into Eq. (2), gives the ionization amplitude z Ao,

When we include the correction to the asymptotic wave
function, i.e., Eq. (39), we obtain the amplitude z A,
where

A= y„„(r„r,) ((V, +V, )+—(k, +k, ) O'D(r„r, )) .i
b

(A2)

We define a utility function U( j],„A2,13;p„p2) as

dr dr
U(~] )]2 ~3 p],p2)= f f g](iy], 1, —]k]r] —ik] r])g ](ly2, 1, —ik2r2 —lk2 r2) ]F](iy3, 1, —ik3r3 —lk3 r3)

P1 T2

XexP[i(P] r]+P2 r2) —k]r] —A2r2
—X3r3] (A3)

and express the amplitudes as

Ao= X(k] k2)
i+j+k+N

c(i,j,k)

X
1

a
ax3

a
'i —

1 J+1

a
aA2

and

x U(~ ~]~2t~3&p]~p2)lp ~t]p2 tlk, ]~p, k],~p, k]~p] (A4)

A= A(l+ —(k, +k2)N(k„k2)
b

0 2 1

i+j+k&N
c(i,j,k)

l

'j+I ' 'k

BA2 M3

X U(A, ]~A2~A3yp]&P2)lp ~g, p ~k, k —+p k ~p il. ~p (A5)

Following, Brauner, Briggs, and Klar [15],we can reduce
the six-dimensional integral U(j],„j]2,A3;p„p2) to a two-
dimensional integral. During the course of this reduc-
tion, we encounter the Lewis three-denominator integral,
which we discuss in Appendix B.

APPENDIX B: LEWIS INTEGRAL

In this appendix we reanalyze the Lewis three-
denominator integral. The original derivation of the in-
tegral can be found in Lewis's paper [30], where the ap-
plication is to a case when all parameters are real. For a
general application when, as in our case, the parameters
are complex, we need to choose the integration contour
judiciously.

The three-denominator integral is defined as

1(V0 S»V»qo q] q2)

0 +I 0 q —
q1 '+I 1 q —

q2 +I 2

(Bl)

where the parameters ]M; (i=0,1,2) are, in general, com-
plex, while the q s (i=0,1,2) are real vectors. Note that
the integrand of Eq. (B1) is undefined when any of the p,
is pure imaginary, and therefore the integral representa-
tion of

I(P0I 1 P2qo ''ql 'q2')

is valid only for the p; in one half-plane. We define

I (Po~]L]] ]L]2~ qo~ ql~ q2)

by the integral representation when the p, 's have positive
real parts, i.e., when the p s are in the right-hand half-

plane, and when any p; is in the left-hand half-plane, we

obtain

I(po ]M] ]]]2 qo q] q2)

by analytic continuation. Although the integrand is even
in each of the p s, this does not imply that

I(P0 Pl P2 lo 'ql 'q2)
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is an even function of the p s. A simple illustration of
this is given by the function 1rlp, which is odd in p but
has the integral representation

permutation symmetry, we generalize to a full range of
equivalent contours.

We begin by setting qp=o:

7T ~ dq

IM
—~q +p

(B2) I(PO Pl P2 0 'ql 'q2}

note that the integrand is undefined for p on the imagi-
nary axis, but n/p .is analytic for all p, with a pole at
p=0. However, as Lewis observed,

I(PO, V, „V2,'qo, q„q, )

does have the following symmetries.
(1) Symmetry by translation. Any translation of the

q, 's siinultaneously by a vector Q preserves the value of

q'+Vo (q —qi}'+pi (q —q»'+V2
'

where Re(V o,p„p2) & 0. By the following identity

1 X

ab o [ax+b(1 —x)]
we obtain

(B4)

I(po, pl, P2, qo, ql, q2) .

(2) Symmetry by permutation. Any permutation
among the pairs (po, qo), (p„q, ), and (p2, q2) preserves
the value of

with

1 1 & x

(q —qi)'+Pi (q —q2}'+V2 ' [(q—Q)'+~']'

(B5)

I (Po Pl V'2 qo 'ql 'q2}

Following Lewis, we convert I(vo, p„p2, qo, ql, q2) into
a one-dimensional integral via a series of fractional trans-
formations. We first derive a special contour in the case
where qp=0. Using the translation symmetry, we then
generalize the contour for arbitrary qp. Finally, using the

Q=xq, +(1—x)q2,

4 =x(1—x)(ql —q2} +xpl+(1 —x)p2,

arg(pl, p2) n/2 .

It follows that

q2dq 1 2nd cos8
o q 2+V o2

—i (q 2+ Q2 —2qQ cos8+ b )

ldx ~ qdq m

o Q — q2+po (q —Q) +b,

1 dx 7T'

& po2+x (q, +p, }+(1—x }(q2+p2)+26 po

d 3

I( '0 )= dx
(1 q2+p2 [(q Q)2++2]2 11q +op

(B6)

where

q2+ (Po+P»'
Z2

P2( Qz 1 +~z2 ) 9 —Qz2

q)+p+p1

21M&P

with Re(po, h) &0.
Now we use the following three-step fractional trans-

formation [30]:

Pi xZ-
P2 1 —x

' 1/2
Z+Z2

Z +Z$

After this transformation, we obtain
dtI (po pl V'2 0 'ql, q2) =2&f

&t Opt +2bpt +cp

where g, is a contour along (0, 00 )e ' and

ao =(qi —q2}'+(pi+P2}',

~o =vo[(qi —q2} +(P1+P2}']

+Vi(q2+ po+ p2)+ p2(qi+ pa+ pi»
co=[qi+(po+pl} 1[qz+(po+p2) ] .

The angle of the contour g', is

v2[q2+(po+v»']
P, =arg

(qi —q2)'+(pi+ p2}'

(B9)

(Blo)

Z2=
Z]

—
[ [(qi —q2)'+Pi+P2]' —4pip2]

(B7)

We obtain

I(po, pl, p2, qo, qi, q2)

from translational symmetry:
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where, introducing

=27T2 dv

"acv +2bv + 1

I (po, }tt„}uq,qo, qt, qq) =I (po, }M„}u~;0,q, —
qo, %—qo)

(811)
P, =arg P2

m (0, 1)m (1,2)
(814)

Note that we have made a variable transformation t =cv.
ip

The contour g„ is (0, 0o )e ", with

m(i, j)=(q,. —q ) +()Lt, +}tt.) (812)

we have

a =m(1, 2),
b =}ttom (1,2)+}tttm (2,0)+}ttzm (0, 1)—4putt&}ttz, (813)

c=m(0, 1)m(2, 0) .

In arriving at Eq. (Bl1), we assumed that Re(}M;)&0 for
i=0,1,2. However, we can analytically continue the in-
tegral on the right-hand side of Eq. (811) to Re(p;) &0
provided that a path can be chosen such that, as p; is
varied from Re(}Lt; ) )0 to Re(}tt; ) & 0, no singularity of the
integrand crosses the contour g„.

By exhausting all permutations of the indices 1, 2, and
3, we find six possible correct contours whose angles are

Po Po Pi Pt P2 P2

m (0, 1)m (1,2) '
m (1,2)m (2,0) '

m (1,2)m (2,0) '
m (2,0)m (0, 1)

'
m (0, 1)m (1,2) '

m (2,0)m (0, 1)

(815)

For a given application, we choose a specific contour, either from the above six contours, or from a combination of
them, by noting the property that between any two of the six contours there is no singularity in the integrand of Eq.
(811).

Finally, by a variable transformation U =s/c, we obtain

dsI iLto }ttt pz'qo qt qz 2'tr
f&~s Qs +26$ +c

ip,
with the contour g, being (O, ac )e *, where

P, =P„+arg[m(0, 1)m(2, 0)] .

(816)

(817)

If the }u; s are real and positive, as in Lewis s application, we have P, =0, that is, the contour g, is the positive real axis.
It is important to note, however, that, in general, a branch point may lie between g, and the positive real axis so that g,
cannot be rotated into the positive real axis.
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