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Stability of the hydrogen and hydrogenlike molecules
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We present a simple proof of the stability of the hydrogen molecule (M+M+m m ). It does
not rely on the proton-to-electron mass ratio M/m being very large, and actually holds for arbitrary
values of M/m. Some asymmetric molecules of the type (m~+m~+ms m4 ) are also stable. Possible
applications to molecules containing antiparticles and to exotic hadrons in the quark model are
brieay outlined.

PACS number(s): 31.15.+q, 36.10.—k

I. INTRODUCTION

The study of the hydrogen molecule is usually carried
out within the framework of the Born-Oppenheimer ap-
proximation [1]. The effective potential between the two
protons exhibits a deep pocket of attraction, and there
is no doubt that stability survives quantum fluctuations
and other corrections due to the proton mass being fi-
nite. A simple and rigorous derivation of the stability is,
however, desirable, as well as a systematic study of other
four-unit-charge systems.

A proof of the stability of the hydrogen molecule was
briefiy outlined in a recent communication [2]. It does
not rely on the proton mass M being very large as
compared to the electron mass m. It is actually based
on a result obtained for the M = m case: Hylleraas
and Ore [3] have shown in 1947 that the positronium
molecule (e+e+e e ) is stable against dissociation into
two positronium atoms. The stability of the hydrogen
molecule, and more generally of any (M+M+m m )
configuration, can be proved using a rescaled version of
the wave function of the positronium molecule.

If one aims at mathematical rigor, one can object
that in the analysis of Refs. [2,3], it is implicitly as-
sumed that the lowest threshold consists of two neutral
atoms. It is also desirable to make a connection with the
usual approach to hydrogen binding, based on the Born-
Oppenheimer limit M/m ~ oo. In a recent letter [4],
the question of the thresholds is seriously addressed, and
an alternative variational wave function was proposed,
which proves stability for M ) 0.144m, and reduces to
the standard Heitler-London wave function in the limit
M/m ~ oo. A more detailed account of this work on
the thresholds and on the stability for M )) m will be
published elsewhere [5].

In the present paper, we explain how stability in
the equal-mass case (e+e+e e ) implies stability for
all hydrogenlike configurations (M+M+m m ). More-
over, &om the calculated binding energy of (e+e+e e )
with respect to its threshold (e+e ) + (e+e ), we pre-
dict a minimal extension of the stability region to-
ward even more asymmetric configurations of the type

II. THE STABILITY PROBLEM

Let us consider four elementary particles, with masses
m;, and unit electric charges q; = (+1,+1,—1, —1).
There are obvious symmetries: an overall charge conju-
gaison, as well as (1 ++ 2) and (3 ++ 4) exchanges, leave
the problem of stability invariant. So one can assume
without loss of generality that

mg) m2, m3&m4,

and that the positive charges are on the average heavier
than the negative ones, if there is any overall asymmetry.

In most cases, instability manifests itself by dissocia-
tion into two neutral atoms. For some values of the mass

m] m2 3 m4
Perhaps the stability of the Coulombic molecule

(pZ+0:- ) with baryon number B = 4 and strangeness
S = 4 will be thought as being of marginal interest. (For
the zoology of charged leptons, mesons, and baryons, we
refer to the Review of Particles Properties [6].) There is,
however, a very general and fundamental concern about
understanding why matter sometimes shows up in large
compounds and sometimes splits into small clusters. We
hope to better penetrate the mechanism of molecular
binding by studying how it is sensitive to the masses of
the constituents which are involved. Moreover, our ap-
proach to hydrogen binding allows for some generaliza-
tions. As briefly outlined in Sec. VIII, exotic molecules
involving a mixture of matter and antimatter might well
be stable, as long as annihilation is neglected. The stabil-
ity problem also exists in other fields. In quark physics,
only the minimal configurations have been seen so far,
namely mesons made out of a quark and an antiquark,
and baryons consisting of three quarks. We shall men-
tion in Sec. IX that the patterns observed in molecular
physics might provide some guidance in quark physics,
or at least in simple quark models, to guess which flavor
configurations are the most likely to host stable multi-
quarks.
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ratios, the lowest threshold consists of a three-body ion
and a charge, for instance, (m1m2ms)+ + m4 . we know
that (m+1m2 ms ) is stable in a wide range of values of
m2/m1 and ms/m1 [7,8]; in particular, every ion with
m1 ——m2 is stable [9]; moreover, if m1, m2, and ms
are large, the binding energy of (m1m2ms)+ might well
exceed (in absolute value) that of every other threshold.
However, a molecule (m1 m2+ms m4 ) would hardly decay
into (m1m2ms)++m4, since the long-range Coulomb at-
traction would keep the ion and the charge together. In
other words, if the lowest threshold is made of a three-
body ion and a charge, the stability of the four-body
molecule is guaranteed. We shall come back to this point
in Sec. VI.

The difBcult task is thus to compare the four-body
ground state to the thresholds consisting of two neu-
tral atoms. Out of the two possible arrangements,
(1,3) + (2, 4) and (1,4) + (2, 3), the former is more stable,
if one assumes the mass ordering (1). This can be seen
directly from the Bohr formula for the two-body energy,
E2(m,+, m ) = —1/(2u, ~), with n;~ = m, + m be-
ing the inverse reduced mass. This is in fact a rather
general result [10]. If v(r) is a universal potential (inde-
pendent of the masses), the reduced two-body Hamilto-
nian I1 = np2/2 + v(r) depends on the inverse reduced
mass a linearly. Then the ground-state energy E2(n)
is a concave function of n [11], and if (1) is satisfied,
E2(~1s) + E2(~24) ( E2(~14) + E2(~2s)

Some states lying above the threshold are metastable,
since their decay involves painful rearrangements and
tunnelings. %'e shall not consider them.

One should also mention unnatural parity states.
Imagine a molecule carrying orbital angular momentum
and parity J = 1+, besides the intrinsic spins and pari-
ties of its constituents. It cannot decay into two ground-
state atoms j"= 0+ separated by an orbital momentum
8 = 1. Its actual threshold is made of a ground state
(1S) and an orbital excitation (2P). We shall not con-
sider this problem further, but simply mention that some
of the general methods and results presented in this pa-
per can be extended to unnatural-parity con6gurations.

14 = exp ——(r16 + r14 + r26 + r24)
2

x cosh —(r13 r14 r23 + r24).
2

(4)

Explicit integration leads to (a misprint in Ref. [3] is
corrected below)

33 33 —22P2 + 5P
16 16(1 —P2) s

3P' 21 —6P'+ P'
s 2 s(1 —P2)'
19 21 —18P + 5P
6 4(1 —P )

1 5P2

(1 P2) 2

1 7
4P4 8P

(5b)

(1 —P2)4 1

4P6 1 P2
ln (5c)

to be inserted in (2) and (3), leading to a minimum E =
—0.5042 near P2 = 0.48.

It is rather easy to generalize the calculation of Ref.
[3] to a trial wave function of the type

c, exp —a;(r13 + r14 + r23 + r24)
2

x coshb, (rls —r14 —r2s + r24), (6)

but one does not gain much [13]. As analyzed for in-
stance, by Ho [14] and by the authors he quotes, some
explicit ri2 and r34 dependence is needed in the wave
function to improve the accuracy. The last variational
calculation [15] gives an energy one can express as

the exact solution. This extension of the virial theorem
to variational approximations is well known [12].

The frozen-scale wave function of Hylleraas and Ore
contains a single parameter:

E(e+e+e e ) = —(1+x1)/2, z1 ——0.03196, (7)

III. THE EQUAL-MASS CASE

The stability of the positronium molecule was shown
in 1947 by Hylleraas and Ore [6], who used an elegant
variational method. They first got rid of the scale by
noticing that if 4'(r;) is a trial wave function, with norm
and expectation values of the kinetic and potential ener-
gies written as

~ = (@I@) t = (ZITI@') v = (@I&I@) (2)

then the best rescaling of the type P = @(r;/A) yields a
minimum

where xi represents the fraction of additional binding
with respect to the threshold, which is Eqh = —1/2 in
our units.

IV. FROM THE POSITRONIUM
TO THE HYDROGEN MOLECULE

Once the stability of (e+e+e e ) is established, it is
extremely simple to derive that of every (M+M+m m )
configuration [2,4]. Let us, indeed, rewrite the Hamilto-
nian as

V2

4tn

which corresponds to (/[TIP) = —(/IVI/)/2, i.e. , the
same sharing of the kinetic and potential energies as for

H =Hg+H~,

M+ I (P1+P2+Ps+P4)+I'
g4M 4m)
(1

HA —
I 4M

—
4 I (Pl + P2 P3 P4) ~i4M 4 )

(8a)

(sb)

(sc)
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where Hp is even under charge conjugaison, and H~
odd. One notices that H and Hg have the same dissoci-
ation threshold, namely, —(M i + m i) i in our units.
Now, Hg is stable by simple rescaling of the positronium-
molecule case, and the ground state of H is lower than
that of Hg. This latter result comes &om the variational
principle, with the ground state of Hs, @(Ks), used as
a trial wave function for H:

E(H) & (e(Hs)~Hs+ H/~e(Hs)) = E(H5) (9)

+ +H(M+m+M m ) = —(pi + p~ + ps + p~)

+&+
2 ( Pi +P2 PS+ P4) .

(12)

The reasoning is the same as in Sec. IV. The last term,
antisymmetric under simultaneous (1 e+ 2) and (3 ++ 4)
exchanges, lowers the ground-state energy. Then from
Eq. (7),

E(y) & Eqg(0)(1+ zi). (13)
since (4'(Hs)]H~]4(Hs)) vanishes, by symmetry consid-
erations.

It is amazing that every exotic molecule with the
same structure as hydrogen is stable. An example is
D+D+0 0, with charm | = 2 and strangeness S =
—6.

Previously, Abdel-Raouf [16] and Rebane [17] stressed
the regularity of the binding energy as a function of
the mass ratio M/m, but missed the fact that stabil-
ity in the positronium case implies stability for other
(M+M+m m ) configurations.

If one fixes, for instance, the scale by m = 1, one can
study the lowest energy E of (M+M+m m ) as a func-
tion of s = 1/M, or equivalently the fraction z(s) defined
as the positronium case as

Meanwhile the threshold becomes

1 1

4(1 —y) 4(1 + y)

Ee~(0)
1 —y~

(14)

Thus stability remains at least as long as y & 1 —(1+zi), i.e., for

mq &m~, m3 &m4, m~ +m~ =2M

0.70 & —& 1.43 .M
m

Now, if one starts &om (M+m+M m ), and introduce
four difFerent masses m; such that

E(M+M+m m ) =—
1+8 (10)

—1 —1 —1
m~ + m4 ——2m

then one can rewrite the Hamiltonian as

(16)

1+s1iz(s) &
2 1+xg

1 —8+ 2(1+ zp)

V. ASYMMETRIC MOLECULES

E&h = —1/(1+ s) being the threshold energy. The f'rac-

tion z(s) takes the values zi ——0.0303 in the positronium
case (s = 1), and zo ——0.1745 for s = 0, the limit of hy-
drogen with infinitely massive protons. The values are
taken &om the compilation by Rebane [17]. This means
the inequality (9), E(H) & E(Hs), is actually observed.

Since s enters the Hamiltonian linearly, E(s) is a con-
cave function of s [11]. On can also combine convexity
and scaling and deduce that 1/E(s) is also —concave, and
this provides a stronger constraint [11].The concavity of

1/E leads to a—n upper bound on z(s) for intermediate
configurations

H(mi+mz+ms mz ) = H(M+m+M m )
1

y —(mi
' —ms )(pi ps)

1+-(m. ' —m. ')(P2 p4) (17)

and, again, the two last terms cannot do anything but
lower the ground-state energy, while the threshold does
not change. Hence stability is improved.

For instance, (0 Z+:- p) is stable, as long as strong
interactions are neglected, since the constituent masses
are here 1.67, 1.20, 1.32 and 0.94GeV/c~, which fulfill

(15) and (16). We are not too surprised to learn that
the positronium hydride (pe+e e ) is stable, by a small
margin [18]: it corresponds to M/m = 2, not too far
outside our minimal range (15), and benefits &om the
large asymmetry between particles 1 and 3.

The role of symmetries should be emphasized. Con-
sider, for instance, the stability of (1+,1+,1,m ),
whose threshold is

Let us go by steps toward (m+im~+ms m~ ), which de-
notes the most general case. Consider first a di8'erent
arrangement of only two masses, (M+m+M m ). We
saw that it is stable for M = m. In the case of a large
asymmetry M )& m, it seems to become unstable: the
hydrogen-antihydrogen system, for instance, hardly sur-
vives its decay into (pp) + (e+e ).

A minimal domain of stability around M = m can be
derived &om the variational principle. One can fix the
scale by setting M = 1 —y and m = 1+y. Then

Egg(m) = E,h(1)
1y b/4
1yh 2' (18)

H(m) = H(1) g —p~,
b

(19)

and say that the ground state should lie below the first-

where b = m —1 measures the departure &om the
symmetric case of the positronium molecule. One can
first split the Hamiltonian into
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~(m) & ~(1) I
1 ——h)

4
(20)

leading to a suKcient condition for stability

1+ b/4

(1 —b/4)(1 + 8/2) 8
(21)

order estimate. The expectation value of p4 is easily
estimated &om the virial theorem and the symmetries of
the unperturbed wave function. Then

and a charge, as is the case for every mz m2 m3 ion with
mq ——mz [9,7]. The electron is bound around this ion,
but the electronic energy is negligible.

We expect interesting properties in the transition re-
gion where a threshold consisting of a three-body ion and
a charge becomes equal to the lowest threshold made of
two neutral atoms. The competing thresholds are likely
to generate some attraction in the whole four-body sys-
tem, and make it stable. This particular situation de-
serves some specific investigations.

If one instead splits the Hamiltonian into pieces of well-
identified behavior under permutations

VII. TENTATIVE GRAPHICAL SUMMARY

1+
4 l ).P; + v + —(-P~+P2 —Ps+ P4)

2 2 2 2 2

+-, (-Pz + P4), (22)

one gets

E(m) & E(1)
1

1+8 4' (23)

corresponding to a wider range of stability

(1 + b/4)'
1 + —+ . & 1 + zg.1+b/2 16

(24)

VI. VERY ASYMMETRIC MOLECULES

We already mentioned that some configurations are
qualitatively different from the positronium molecule,
since their lowest threshold does not consist of two neu-
tral atoms These configurations cannot be studied by
starting from (e+e+e e ), and implementing more and
more asymmetry.

Consider, for instance, the molecule (A+ A+ 0 e ),
with charmed hyperons, or any similar case where three
particles are much heavier than the fourth one, and form
a stable ion. Its stability results from the (4+4+0 )
ion lying below its dissociation threshold into an atom

Thanks to the scaling properties of the Coulomb inter-
action, the study of a system of N given charges requires
only (X —1) independent variables to scan all possible
mass distributions.

In the case of three unit charges q; = +(—1, 1, 1), one
could intro duce two independent mass ratios. It was
however found more convenient to use three barycentric
coordinates a, , with 0 & a, ( 1, and a normalization

g cr; = l. Each case corresponds to a point inside an
equilateral triangle, in which a stability frontier sepa-
rates the stability from the instability areas. One can
choose the masses as barycentric coordinates, as in Fig.
1. The inverse masses of Fig. 2 prove more suited for the
mathematical analysis of the observed convex behavior
of the frontier [8].

The generalization to N = 4 charges corresponds the
inner volume of a regular tetrahedron, so that the sta-
bility frontier keeps the symmetries of the problem. We
shall summarize our results and our guesses both with
the masses m, as variables (P m; = 1), or the inverse
masses n; oc m, (P a, = 1), restricting ourselves to
very schematic drawings of the unfolded tetrahedrons.
Future theoretical and numerical works will hopefully
make it possible to determine the frontier more accu-
rat ely.

Consider first the representation in terms of the
masses, in a regular tetrahedron (ABCD) of unit height,
so that P m; = 1, with mr being the distance to the face

(BCD), etc. This corresponds to Fig. 3.
The summit A, stands for the masses m; = (1,0, 0, 0),

Ay

A3 A2

FIG. 1. Graphical representation of the stability domain for three-unit charges q, = +(—1, 1, 1) with normalized masses m, ,

pen; = 1. The stability domain includes the symmetry axis (dotted line) where m3 = m3.
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Ay Ay

A3 A2 A3 A2

FIG. 2. Graphical representation of the stability domain for three-unit charges q, = +(—1, 1, 1) with normalized inverse
masses a, = 1/m;, g o., = 1. The stability domain includes the symmetry axis (dotted line) where o.2 ——a3.

i.e., the limit of a positronium hybride (pe+e e ) with
an in6nitely massive proton. It is stable, at least for
mz ——ms ——m4 [18]. This means the stability domain
reaches A, at least along the symmetry axis. A similar
situation is, of course, observed near B, C, and D. To
our knowledge, there is no result available on how stabil-
ity survives when the light masses m2, m3, and m4 are
di8'erent, in particular, for mq » m3 m4 » m2, corre-
sponding to the trace of the stability border on the face
(ACD). For mi &) ms = m4 » mz, we have a heavy
stable (1,3,4) ion which attracts the charge m2, a stable
situation according to the discussion in Sec. VI.

The middle between A and C corresponds to masses
m; oc (1,0, 1,0), i.e., a configuration (pe pe ), which
seems unstable. We suspect there is no stability at all
along AC, and similarly along AD, BC, and BD. This
guess has, of course, to be checked.

On the other hand, the middle between A and B
describes the hydrogen molecule (ppe e ) with m,
(1, 1, 0, 0). This is a region of confortable stability.
We guess that stability holds all the way along AB.
There is no doubt (pp'e e ) is stable as long as both
m(p) » m(e) and m(p')» m(e), since the Born-

Oppenheimer approximation holds in such a case. Sta-
bility should remain, in our opinion, for m(p) &) m(e)
and m(p') & m(e), as long as the equality ms ——m4 is
kept. This, indeed, suffices to make the two thresholds
(1,3)+(2,4) and (1,4)+(2,3) degenerate, and again, it is

a general, though empirical, observation that competing
thresholds often generate attraction; one could also say
that the (pe ) and (p'e ) atoms have comparable Bohr
radii, and their overlap might lead to some favorable ex-
change forces between them.

The face (BDC) corresponds to mi = 0. As discussed
in Sec. VI, the stability domain is generally dictated
by the stability of the three-body system (mz+ms m4 ),
which is described in Fig. 1. Exceptions are found near
the edges of (BCD), where we have more than one light
particle. The situation is, of course, identical on the other
faces.

Consider now the tetrahedron (ABCD) with normal-
ized inverse distances, in Fig. 4. The summit A cor-

A

FIG. 3. Schematic picture of the stability domain for four
unit charges q; = (—1, —1, 1, 1). The stability frontier is
shown by its trace on the unfolded faces of the tetrahedron
(ABCD) of normalized masses m;, Pm, = 1.

FIG. 4. Schematic picture of the stability domain for four
unit charges q, = (—1, —1, 1, 1). The stability frontier is
shown by its trace on the unfolded faces of the tetrahedron
(ABCD) of inverse masses a; = 1/m;, with normalization

g n; = 1. The trace of the stability domain in the section
(bcd) below the summit A looks like the 3-body domain of
Fig. 2.
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responds to the (e+ppp), when one goes to A along the
symmetry axis. This is a stable protonium ion surronded
by an electron, i.e. , a stable four-body configuration. The
shape of the stability domain near A is more precisely
seen on a cross-section (bcd) parallel to (BCD) and close
to A: the trace on (bcd) looks exactly as the stability plot
of Fig. 2, because we are in the regime of Sec. VI where
one of the masses is much lighter than of the others.

The sides AB and CD correspond to inverse masses
(0, 0, z, 1 —z), with 0 & z & 1, i.e. , to configurations
(ppee') with m(e) « m(p) and m(e') « m(p), but the
ratio of m(e) to m(e') arbitrary. We believe they are
stable.

The sides AC, AD, BC, and BD have inverse masses
of the type (z, 0, 1 —z, 0), i.e. (e+pe'p), for which disso-
ciation seems likely to occur spontaneously.

These speculations suggest; the topology schematically
drawn in Fig. 4. Note that with these variables, a
face such as (BCD) describes situations of the type
[pe+(e') (e") ], where (with obvious notations) m, m',
and I" are much lighter than M. It is stable for
m = m' = m", with little excess binding [18]. We thus
expect the stability band to be rather narrow near the
center of (BCD).

VIII. LARGER MOLECULES

can address the question for pions, sr+ and m, which
are bosons. The lowest threshold is (m+m+m m ) +
(m+m ), so one has to show that the lowest energy F
decreases faster than —N, already for small ¹ For large
%, a behavior E oc —K"~s has been identified [23].

IX. APPLICATIONS
TO HADRON SPECTROSCOPY

A simple, but phenomenologically successful, descrip-
tion of the hadron spectrum is the nonrelativistic quark
model. Mesons are quark-antiquark bound states, and
baryons consist of three quarks. An interesting property
is flavor independence At f.irst approximation, i.e. , with-
out spin forces and relativistic corrections, the potential
is the same whatever quarks, u, d, 8, c, or b, are bound
together. This is reminiscent from atomic physics, where
the very same —r potential acts in hydrogen, positro-
nium, protonium, etc.

In quark models with Bavor independence, one expects
some of patterns observed in atomic physics, those which
are due to the universality of the potential, and indepen-
dent of its particular Coulombic shape. For instance, the
convexity property mentioned in Sec. II for the two-body
energies is satisfied, and the inequality

An obvious extension of the present study consists of
considering N = N++N ) 4 unit charges. The problem
is, in general, rather complex, due, in particular, to the
proliferation of competing thresholds, but one can retain
from the study in the N = 4 case that simplifications
occur when very difFerent masses are involved.

Consider, for instance, N = 5, with masses and
charges (M+M+M m m ), and M )) m. The heavy
core (M+M+M ) is stable, by simple rescaling of the
positronium-ion case (e+e e ). It acts as a localized
positive charge, and should bind two electrons, with
a wave function very similar to that of the familiar
H (pe e ) ion. A similar reasoning was applied to
molecular complexes involving muons and electrons [19].
If (M+M+M m m ) is stable for large M/m, a cooled
antiproton could be trapped in a hydrogen molecule, be-
fore annihilating. According to the current analysis [20],
when a p is captured in hydrogen, it quickly expels the
electrons by Auger emission; a protonium atom (pp) is
formed in a highly excited state, and it rapidly decays
toward states of low orbital momentum, where its anni-
hilates. Recently some events with delayed annihilation
have been reported, stimulating some theoretical stud-
ies [21,22]: some metastable states with an antiproton,
a nucleus, and some electrons might be formed in rare
occasions. The above (pppe e ) compound is another
new possibility.

Similarly, for N = 6, and N+ ——N = 3, the state
(ppe+Pe e ) is probably stable, due to the combined
stability of the (ppp) ion and of the positronium hybride
(pe+e e ).

The symmetric case of N = 6, (m+m+m+m m m ),
is much more delicate. Stability seems excluded for
actual electrons, due to the Pauli principle, but one

QQ+ W & 2Qe

has indeed been noticed [10], and observed in the exper-
imental spectrum [6].

We have seen that among the four-body molecules,

(ppe e ) was the most stable. It is not surprising that
explicit four-quark calculations [2,24] have led to the pre-
diction that the exotic configuration (QQqq) becomes
stable if the mass ratio m(Q)/m(q) is large enough,
whereas the equal-mass case QQQQ seems unbound. In
this field, one calls "exotic" a state whose quantum num-

bers, in particular fIavor, cannot be matched by ordinary
quark-antiquark or three-quark structures. Other mul-

tiquarks are predicted on the basis of spin-dependent
forces, but this is out of the scope of this paper. It
is hoped that double-charm, or charm-and-beauty spec-
troscopy will reveal some good surprises.

X. CONCLUSIONS

Let us summarize our results about four-unit-charge
systems, which bear a sharply decreasing degree of rigor.

We first recalled the proof by Hylleraas and Ore of
the stability of the positronium molecule [3]. It can be
supplemented by a rigorous study of the ordering of the
various possible thresholds [4,5].

Once the stability of (e+e+e e ) is established, that
of the hydrogenlike molecules (M+M+m m ) follows

rigorously [2,4]. This is essentially a consequence of the
variational principle.

Now, one can prove a minimal extension of the stability
domain toward other directions like (M+m+M m ) or

(mi m2 ms m4 ), if one takes for granted a nonrigorous
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input, namely, the actual binding energy of (e+e+e e ),
which results from numerical variational calculations.

The above results are far from covering all possible
configurations. To picture how the stability domain could
look like, we have substituted some missing results by
simple guesses, which have to be checked. For instance,
we feel that the asymmetric hydrogen molecule (pp'e e )
remains stable whatever mass is given to p', as long as
m(p) )) m(e). We have also assumed without proof that
(pe+@'e ) immediately breaks into (pp~)+(e+e ), except
near the limit m(p') m m(e)

We also presented some plausible but nonrigorous ex-
tensions to larger molecules and to multiquark systems
in the quark model.

In spite of its weaknesses, this study illustrates once

more how quantum binding energies have a simple and
well-controlled behavior when one varies the constituent
masses without changing the potential. It is hoped it
will stimulate some interest for the investigations which
remain to be done.
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