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Effect of magnetic fine structure and mixing on the radiative lifetimes
and the polarizabilities of excited states of helium
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We have calculated the radiative lifetimes, and the scalar and tensor dipole polarizabilities of
excited levels of helium. Our theory includes fine structure and the mixing of singlet and triplet
sublevels, and gives results that are in excellent agreement with experiment. VVe are able to show
why fine structure and mixing have negligible eHects on the radiative lifetimes, but may contribute
up to 20'Fo of the polarizabilities. The trends of these properties with the quantum numbers n and
I are explicated, and formulas are given which are accurate to a few percent for arbitrary n and
L &2.

PACS number(s): 32.60.+i, 32.70.3z, 35.10.Di

I. INTRODUCTION

The radiative lifetimes and the dipole polarizabilities
of excited levels depend on the same set of matrix ele-
ments and transition energies. Recently, accurate values
for these matrix elements in helium have become avail-
able through the laborious correlated wave function cal-
culations of Kono and Hattori [1,2]. Shortly afterwards,
we had investigated the fine-structure energy levels and
the problem of singlet-triplet mixing in helium [3]. The
time has come for a careful calculation of the lifetimes
and polarizabilities, which includes both the most accu-
rate matrix elements, and a proper accounting of fine
structure and mixing effects. The present work reports
on these results and compares them with those from ear-
lier theories and experiments.

A comprehensive calculation of radiative lifetimes ~
has been carried out in helium for Rydberg levels up
to principal quantum number n=20 and orbital quan-
tum number 1=3 In that. work [4], Theodosiou em-

ployed a model potential and ignored the magnetic fine
structure and the mixing of singlet and triplet levels.
We have calculated the lifetimes of each magnetic sub-
level, and demonstrated that for each set of triplet sub-
levels, their values are well within 0.1% of each other. It
turns out that our elaborate results seldom differ from
Theododiou's by more than one percent. We will explain
why, the inclusion of magnetic fine structure and mixing
does not significantly alter the lifetimes. We will show
that r varies in a predictable way in L as well as in n,
contrary to a statement by Theodosiou. In fact for L &
3, the lifetimes are hydrogenic to an accuracy of a few
percent. Thus, they can be evaluated by a simple for-
mula [5,6], and so extensive compilations [7] are largely
unnecessary.

The tensor polarizability o.t,„of excited levels in he-
lium as well as some lifetimes have been extensively
studied by von Oppen and co-workers [8—ll] and oth-
ers [12,13]. To facilitate comparison with their measure-
ments, they used a theory based upon simple Coulomb
matrix elements in the LS-coupling approximation. We

will show that although the matrix elements important
for the lifetimes may diH'er by more than 10'Fo Rom the
corresponding hydrogenic values, the ones important in
determining cit,„differ by less than 1%. For the D lev-

els, we will explicitly show that mixing is unimportant.
Therefore, their simple theoretical results [8,10] are ac-
curate to almost 1'%%uo. Moreover, the values of nt, „for the
three triplet sublevels are accurately related by the ratios
obtained in IS coupling [14]. In contrast, Aynacioglu et
at. [11] demonstrated that for the 4f iFs sublevel, the
Coulomb value differs from their measured one by 25'Fo.

Using an ad hoc theory, they were able to attribute most
of the discrepancy to mixing. In this work, we derive
from first principles, an expression for the tensor polar-
izabilities of the singlet sublevels which explicitly takes
into account the singlet-triplet mixing. Similar to, but
not the same as theirs, our expression explains why mix-

ing is important for the 4f iFs but not for the 5f iFs
sublevel. In addition to the tensor, we also calculate the
scalar polarizabilities o.„.For circular states, we show
that o;„—o.t,„. However for noncircular states, they
are approximately related by other ratios. Finally, we

discuss the n and L dependence of both polarizabilities,
and give formulas accurate to a few percent for higher
values of n and L.

II. THEORY

The radiative lifetime and the dipole polarizabilities of
atomic excited states share the trait that they depend
on the same dipole matrix elements and energy differ-
ences. Usually the dipole matrix elements and energies
are calculated in the LS-coupling scheme. In this work,
we explore the consequences of the magnetic interactions
that cause the fine-structure splitting of the energy lev-

els and the mixing of certain wave functions. The theory
which accounts for mixing has been explicitly given for
helium in the context of fine-structure line intensities [3].
Following that work, it is straightforward to derive the
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following expressions for the lifetimes and the polariz-
abilities.

A. Radiative lifetime

The radiative lifetime of atomic excited states has been
reviewed by Verolainen and Nikolaich [15]. By definition
it is given by

and

( 5J(2J —1)
(6(2J+ 3)(J+ 1)(2J+1))

x )' ( I) + (~~g~j
I(nLS JIIr IIn'L' S' J')
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where n is the fine-structure constant, and the absorption
oscillator strength is given by

f(~ ~ u) =, l(MLSJ II r II
~'L'S'J') I'. (3)

where u and I stand for the upper and the lower
level, each characterized by a set of quantum num-

bers, (n, L, S, J}. The Einstein A coefficient from u =
(n, L, S, J}to l = (n', L', S', J'} is defined as

where the braces stand for the Racah 6j symbol. In con-
trast to the expression for the lifetime which varies as

o, here o. appears in the denominator rather than in the
numerator. Hence the polarizabilities are dominated by
the resonance terms with n' = n.

C. Matrix elements in the mixed representation

Going beyond the LS representation, states in the
mixed representation are superpositions of wave func-

tions with the same values of L and J. We now focus
on the two-electron system pertinent to helium. In the
mixed representation, the wave functions are designated
by (nLSJ}and are simply described as

The transition frequency is given by 0 =(E„L,sq-
E~ g s J )/(hc), where E„r,sJ stands for the energy of
the sublevel, and h and c are Planck's constant and the
velocity of light. The usual selection rules dictate that
A„i vanishes unless L' = L, L + 1, J' = J, J 6 1, and
S' = S. The bound states of helium are described by
the configuration land, so L = E, thus Laport's Rule ex-
cludes transitions in which L = L'. As discussed later in
Sec. IIC on singlet-triplet mixing, S' may now take on
the values 0 or 1. Note that factors of 0 in the numerator
of A(u ~ l) accentuates the contribution from the low-

est levels permitted by the selection rules. On the other
hand, contributions from the highest levels (with n'=n)
almost vanish especially when L is suKciently large. Con-
sequently, states which are dipolarly connected to the
ground level can be expected to have exceptionally short
lifetimes, such as the 18np P levels of helium.

40—

I I ~ I I J I I I I J
I r T

where Q„L,o and Q„L,i are the singlet and the triplet
wave functions, respectively in the LS representation.
The ith singlet P; and triplet p; component amplitudes
for the four sublevels (LOL, LlL, L1L —1, LlL +
1} are (P} = (cos 8„r„—si 8n„L„O,0} and (p}
(sin 8„r„cos8„L„1,1}.The mixing angle 8„L, for helium
is found [3] to depend only weakly on n as depicted in

Fig. 1. Typical values are 0.02', 0.5', 30, and 44' for
L=1, 2, 3, and 4, respectively, which imply negligible
mixing for L ( 2, but strong mixing for L & 3. The
squared reduced matrix element for initial and final states
ni and n'i' can then be evaluated as

B. Dipole polarisabilities

In an electric field of strength E' with z component E',
the energy shift due to the quadratic Stark eKect [14] is
given. by

30—

ZO—

3M —J J+1
J(2J+1) 10—

The scalar and tensor polarizabilities of the state (nLSJ}
are de6ned as follows:

A.
I 1k' I ~ ~

10

2e . I(nLSJIIrIIn' ' LJS')
I

3(2J + 1), , s, E~s,sz —Eo L, s ~
FlQ. &. Mixing angles 8 in degrees for helium D (squares),

F (diamonds), and G (crosses) levels.
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= L&(2J+ 1)(2J'+ 1)

P;P, R"„~~ (0)
[(2L+ 1)(2L'+ I)] i

L J 1—p;p; R„"I (1) (8)

As usual L& stands for the greater of (L, L'), and
R„"I (0) and R„"I (1) stand for the relevant radial dipole
matrix elements for the singlet and triplet system, respec-
tively. For the present computations, the fine-structure
energy levels are taken from Chang [3] and Martin [16],
while the radial matrix elements for P-D transitions are
extracted &om the f values of Kono and Hattori [1],
those for D Ftrans-itions come from Theodosiou [7]. For
L & 3, the matrix elements are assumed to be hydrogenic
and are calculated &om expressions given by Bessis et al.
[17]. We have also examined the contribution of the in-
duced dipole moment to the electric dipole operator [18],
and found that the correction is negligible, being typi-
cally only 0.01%.

III. RADIATIVE LIFETIMES FOR HELIUM

A. Results and discussions

1.025

The radiative lifetimes of helium have been calculated
by Theodosiou [4] in the Hartree-Slater approximation
for L = 0, 1,2, and 3 and for n & 20. He has shown
that his f values agree with those from more accurate
calculations in the LS representation to about 1%. In
Fig. 2, we compare his values for the dipole matrix el-
ements, Rz~(0) and Rz~(1) with those from a recent
thousand-term variational calculation by Kono and Hat-
tori [1]. Expressed as ratios to the corresponding hydro-
genic matrix elements, the two sets are seen to agree well

within a fraction of 1%. The singlet ratios decrease from
above to below unity as n increases, while the triplet ra-
tios behave in exactly the opposite manner, with the two
curves crossing around n=5. Ratios for related matrix
elements where 2p is replaced by n'p (n,

' & n) exhibit the
same trend. For S states there is no mixing; for P states
mixing is negligibly small, also the fine-structure split-
ting is small compared with the nS-n'P and the nP-n'S
spacing. Therefore Theodosiou's neglect of these effects
is well justified. However, for levels with L & 3 mixing
angles can be quite large, and it is, in principle, possible
for the lifetimes of the three triplet sublevels to be quite
difFerent &om each other as well as from the value in the
LS representation.

Using the method described in Sec. II, we calculate
the radiative lifetimes of the nd, nf, and ng levels in he-
lium. Some results are shown in Table I along with the
results of Theodosiou and recent measurements. Disap-
pointingly, our calculated values for the triplet sublevels
generally differ from each other by only 0.01%. Further,
our results including fine structure and mixing are virtu-
ally identical to those of Theodosiou who neglected them;
both are in good agreement with experiment. For greater
consistency, when possible we choose to display the re-
sults of von Oppen and collaborators who also measure
tensor polarizabilities (Sec. IV). The minute difFerence
between the two theories is typically an order of mag-
nitude less than the experimental uncertainty. To un-
derstand why these effects do not affect the lifetime sig-
nificantly, we list the individual contributing Einstein A
coefficients for some lifetimes in Table II. For the 3d D2
sublevel, the lifetime is dominated by the transition to
the 2p Pq sublevel, since the other A coefficients are at
least three orders of magnitudes smaller. Similarly the
3d D3 lifetime is dominated by the transition to the
2p P2 sublevel. However, for the 3d D2 sublevel, two A
coefficients are large: the ones to the 2p Pq and 2p P2
sublevels. Nevertheless their sum is essentially the same
as the dominant A coefficient of the 3d D3 sublevel, so
the lifetimes of the two sublevels 3d D2 and 3d D3 are
nearly the same. In fact, the above approximate equality
becomes exact if we neglect the fine-structure splittings

1.000

0.975

TABLE I. Helium radiative lifetimes (nanoseconds).

Level Present work Theodosiou Experiment Eq. (10)

0.950

0.985

0.900

3 4 5 6 7 8
II

FIG. 2. Ratios of the radial matrix elements (2p[r[nd) for
helium to hydrogen. Singlet results are given by KH (crosses)
and by Theodosiou (bars), while the triplet results are given
by KH (diamonds) and by Theodosiou (squares).

183d D
1s3d D
1s4d 'D
1s4d D
1s5d D
185d D
1s4f 'F
1s5f F
1s5g G

15.70
14.14
37.08
32.50
71.84
60.94
72.34
139.8
234.8

Reference [4].
Reference [9].

'Reference [10].
Reference [11].

'Reference [19].

15.69
14.18
36.96
32.07
71.52
60.89
72.31
139.7

15.3 (3.0)
14.25 (0.34)'
38.7 (2.4)'
32.1 (1.3)'
7o (5)'
57.2 (2.3)'
74 (2)
133 (5)'
23o (2o)'

15.7
15.7
37.3
37.3
72.8
72.8
73.1
142.7
235.9
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of both sublevels when compared with the 2p-3d spac-
ing. This can be proven analytically by a well-known
sum rule of the 6j symbols. Similarly for the 3d Dq sub-
level, the three largest A coefficients sum up very closely
to the dominant A coefBcient of the 3d 3D3 sublevel, so
it also has essentially the same lifetime. Thus, the three
triplet lifetimes are all very close to the Hartree-Slater
value because the mixing angles are small, and the fine-
structure splittings are negligibly small as compared with
the 2p P—3d D spacing.

Beginning with the 5d level, transitions to the n f lev-
els also contribute to the lifetime. However, Table II
shows that these A coefficients are typically two orders
of magnitude less than those to the n'p levels. So the
large mixing angle for E levels cannot be expected to
affect the lifetime significantly. Therefore, the previous
discussion of the 3d levels also applies to the 5d or any nd
levels. Actually we have calculated the Einstein A coeffi-
cients for all fine structure sublevels to all other sublevels
allowed by the selection rules for n &10, but have tabu-
lated only a very limited subset in Table II as samples.

We recall that F levels have large mixing angles of
about 30', so their lifetimes can be expected to deviate

significantly from the Hartree-Slater values. However,
comparison of our results with those of Theodosiou in
Table I show that this is not the case. As expected, mix-
ing causes the 4f Fs level to have sizeable A coeflicients
for the "forbidden" transitions to the 3d D2 and D3
sublevels, while decreasing the A coeKcient to the "al-
lowed" 3d D2 sublevel. However, their sum is virtually
the same as the single A coeFicient for the only allowed"
4f F4 Sd D— s transition. Once again, whenever the fine-
structure splittings are negligible compared with the 3d-
4f spacing, the 6j symbol sum rule prevails. Further, the
singlet and the triplet radial matrix elements are nearly
equal; both are within half a percent of the hydrogenic
value [17]. Similar results are obtained for the 4f sFs and
the 4f F2 sublevels. Therefore, all 4f sublevels have vir-
tually identical lifetimes, requiring only one value to be
listed in Table I. From the above discussion, it is evident
that lifetimes will be significantly different in the mixed
and the L-S representations only when the mixing angle
and the fine-structure splittings are large simultaneously.
The above condition does not exist in helium since the
low L levels have large splittings but small mixing an-
gles, while the high L levels have large mixing angles but

TABLE II. Calculated radiative lifetimes ~(nsec) and Einstein A coefficients (sec ).
Initial state 3d DQ, r——15.704 3d D1, r=14.142 3d DQ, r=14.143 3d D3) r=14.144

Final state

2p 'P1
2p Pp

2p P1
2p PQ

3p Pp

3p 'PQ

A coeff.

6.366x 10~

1.222 x 10
4.314x 103

2.312
0.805

A coeff.

2.237
3.927x 10
2.946x10
1.964x 10
7.182x 10
5.395x 10
3.597x 10

A coeff.

1.503x 10

5.301x 10
1.767x 10

9.707x 10
3.236 x 10

A coeff.

7.069x 10

1.295 x 10

Initial state 5d DQ, r——71.835 5d D1, r=60.945 5d DQ, r=60.942 5d D3, r=60.941

Final state

2p P1
2p Pp

2p P1
2p 'PQ

3p 'P1
3p Pp
3p P1

4p 'P1

4p Pp

4p P1

4f FB
4f ~j'~
4f F
4f E4

A coeff.

8.984 x 10

8.319x 10Q

2.996x10Q

3.359x10

2.502 x 10
8.988x 10
1.525 x 10

9.148x 10
3.312x 10'

0.114
0.040
3.251x 10
0.578
1.781x 10

A coeff.

0.416
6.443 x10
4.832 x 10
3.221 x 10
0.097
1.932x 10
1.449 x 10
9.663x 10
0.030
7.114 x 10
5.336x 10
3.557x 10
8.438 x 10Q

6.338x 102

4.226 x 10'

5.026 x 10

A coeff.

8.761x 10Q

8.698x 10~

2.899x 10
3.316x 10Q

2.609x 10
8.695 x 10
1.516x 10Q

9.605 x 10
3.201x 10

1.140x 10
3.802 x 10Q

1.576 x 10
5.584 x 10
2.891x 10

A coeff.

1.159x 10

3.478 x 10

1.280 x 10

1.521 x 10
1.449 x 10
1.140x 10Q

2.540 x 10
4.616x 10
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small split tings.
For G and higher L levels, the mixing angles are all

near the maximum value of 45' (see Fig. 1). Neverthe-
less our calculations reveal that the lifetimes of the four
sublevels for a given level nL always agree with each other
to within 0.001%. For example, the lifetimes of all four

5g sublevels are identical to five significant places, and
are clearly all consistent with the measured G4 value

[19] given in Table I. It can be easily verified that for a
given 5g sublevel, the sum of the A coefficients to all 4f
sublevels is invariant, and matches the A coefFicient for
the 5g Gs 4f —F4 transition. This result follows from
the fact that the fine-structure splitting becomes com-
pletely negligible when compared with the Rydberg level

spacing, and so the sum rule may again be applied. Since
the radial matrix elements for higher L are even closer
to the hydrogenic values, we find that the lifetimes for G
and higher L levels are hydrogenic to well within 0.1%.
Some of these hydrogen lifetimes are listed in Table I of
the review Ref. [15].

B. Analytic fits and trends in lifetimes

For the purpose of extrapolation, Theodosiou has fitted
his calculated lifetimes &om n=15 to 20 to the power law:

T —Tp n (9)

TABLE III. Power-law-fitting coefficients for ~(nsec).

Series
D

1D

G

'7

2.8895
2.9650
2.9944
2.9452

Error
0.0083
0.0024
0.0010
0.0017

7Q

0.5886
0.6064
1.2207
2.0561

Error
0.0080
0.0024
0.0010
0.0013

where n* is the effective quantum number. His values for

p are all nearly 3 (within one or two percent) for L &om
0 up to 3, for both S = 0 and 1. We have fitted our entire
series for L & 2, &om the lowest value of n up to n=10
substituting n for n' in Eq. (9). Actually, we have tried
both n and n*, and found that the difference is consider-
ably less than 1%. Therefore, we opt for using n since it is

easier to apply and allows for a direct comparison of the
singlet and the triplet cases. Table III displays the fitted
coefficients with the statistical errors. A comparison of
the lifetimes calculated with Eq. (9) and the parameters
from Table III shows that they agree to within 1% with
our elaborate ones, or Theodosiou's. Thus, they appear
to be sufficiently accurate for comparison with most ex-
periments. (See experimental errors in Table I.)

From Table III, it is evident that the D series has a
longer lifetime than the corresponding D series, since
both p and wp are larger for the singlet case. The main
reason is that the singlet transition energies are about
10'%%uo smaller than the triplet ones, which more than
makes up for the fact that the singlet matrix element
is larger than the triplet for low values of n as depicted
in Fig. 2. On the other hand, the ~I' and 3I levels have
the same lifetimes (as is the case with higher L levels) be-

cause the singlet-triplet splitting (the exchange energy)
becomes negligibly small as I increases. Table III shows
that ~p for the I' series is about twice that of the D se-

ries . Unfortunately, Theodosiou made an error in fitting
his F series, resulting in too small a value for Tp by a
factor of about 20. Consequently the error in his figures
for the lifetimes led him to conclude that their ordering
in magnitude did not follow the value of L.

In contrast, we find that the lifetime pattern is well

ordered in L, according to the hydrogenic upper bound
value [5]

7 & ~„(L+1/2) n (L ) 0),
where &„=93.4 ns. It has been shown [5], that the up-

per bound values given by Eq. (10) seldom exceeds the
calculated hydrogenic lifetimes [15) by 10%. In addition,
Eq. (10) has also been derived semiclassically with an es-

timate of its error [6]. In fact, the last column of Table I
shows how well Eq. (10) agrees with the helium lifetimes.
In the case of the helium D lifetimes, the agreement is co-
incidental. Figure 2 reveals that the singlet radial matrix
elements in helium are within 2%%uo of the hydrogenic val-

ues. Similarly, the singlet transition energies are about
2%%uo smaller than the hydrogenic values. Hence the D
lifetimes are nearly hydrogenic. However for the D case,
the frequencies are about 10% larger than the hydrogenic
values, leading to larger A coeKcients and hence shorter
lifetimes. Beginning with the F levels, the helium ma-

trix elements and transition frequencies are always well

within 1% of the corresponding hydrogenic value. There-
fore their lifetimes are hydrogenic for all practical pur-

poses, and may be represented by Eq. (10) to almost the
experimental accuracy of 5—10%%up. Thus, the trend in L of
the helium lifetimes for the same n is clear: 7 m (L+1/2)
for L & 2, and independent of S, with the mild exception
of the sD case noted above. For example, the nf to nd

lifetime ratio is (3.5/2. 5) =1.96, and from Table I we see

that this value is indeed about 2.
We emphasize that Eq. (10) should never be applied to

S levels (even for hydrogen), since its derivation is based

on the assumption that the transitions nL ~ n'L —1

dominate, when they actually vanish for S levels. In fact
Verolainen and Nikolaich [15] have shown that the power

law Eq. (9) fails for S levels, a fit requires p to vary &om

1.42 to 2.81 for diKerent ranges of n values. Similarly for

helium, for both the S and the S levels, log-log plots

of the lifetimes versus n' show considerable curvature

[4]. Indeed, both helium lifetimes are shorter than the

corresponding hydrogenic ones because the larger helium

matrix elements more than make up for departures in

the transition energies &om hydrogen. Nor does Eq. (10)
apply to P levels in helium. Like the S levels, the P
levels are metastable in that they cannot decay to the

ground state. Therefore their lifetimes are much longer

than those for the P levels in hydrogen which are not

metastable. On the other hand, the P levels in helium

are not metastable and have much larger transition fre-

quencies than the corresponding P levels in hydrogen. In

fact the helium transition energies, in excess of 20 eV, are

the highest in any atom. Therefore the helium P life-

times are the shortest of all series and among all atoms.
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IV. SCALAR AND TENSOR POLARIZABILITIES

We recall that in the expressions for the scalar and
the tensorial polarizabilities, Eqs. (5) and (6), the tran-
sition energies occur in the denominator. Since the res-
onance energies where n' = n are typically two orders of
magnitude smaller than the nonresonant ones (n' g n),
the resonance terms totally dominate the sum. Using
the method described in Sec. II, we have calculated the
tensor polarizabilities of helium excited states for which
experimental measurements are available. Displayed in
Table IV are our results in three stages of approximation:
No mix, where only the n' = n terms are included and
the mixing angles are set to zero; one mix, where again
only the n' = n terms are included but with mixing;
and all mix, which includes mixing and all significant n'

terms. For ease in comparison with experiment we have
converted from atomic units to kHz/(V/cm)z [laos

2.4886 x 10 kHz/(V/cm)z]. For most of the levels,
the three approximation stages yield results which are
virtually indistinguishable Rom each other, and all are
in excellent agreement with experiment. This suggests
that neither mixing nor contributions f][.om nonresonance
terms are important. One mild exception is the 3d Ds
level, where the contribution &om terms where n' P n
is about 4%. Experiment clearly favors the all mix re-
sult which is the most complete. Another exception is
the 4f ~Fs level, where the effect of mixing on the ten-
sor polarizability is almost 20%; again experiment favors
the all mix result. To understand the above results for
the tensor polarizability and its relation to the scalar po-
larizability, we review the theory under some simplifying
assumptions.

A. Scalar and tensor polarisabilities in the absence
of mixing

f. LS mph' esentation

We begin with the theoretical expressions in the simple
LS representation. As shown previously [14,20), the sin-
gle particle scalar and tensor polarizabilities are simply

n„(LS) = — P(nL, L —1)
2L

3 2L+1

P(nL, L+ 1),L+1

n„„(LS)= P(nL, L —1)
2L

3 2L+1

+ P(nL, L+ 1)
2L —1

2L+ 3

where
'L' 2

P(nL L') = ) EI.—E I.n'

(lla)

(lib)

(12)

It is understood that the radial matrix elements R„"L
and the energies E„l.both carry the additional designa-
tion of 0 for the singlet and 1 for triplet system. Of
course, the above equations can also be derived from
Eqs. (5)—(8) by uncoupling L from S, and by setting all
mixing angles to zero. As noted previously, the sum in
the expression for P(nL, L') is dominated by the term
n' = n, often contributing close to 99'%%uo. Recall from
Fig. 2 that some helium 2p-nd radial matrix elements
deviate from the hydrogenic value by as much as 10%.
In contrast Fig. 3 shows that the np-nd radial matrix
elements are all within 1'%%uo of the hydrogenic values for
both the singlet and the triplet cases. Needless to say,
the helium radial matrix elements for higher L are even
closer to the hydrogenic values. Therefore the dipole po-
larizabilities in helium may be accurately evaluated using
the Coulomb approximation, which has been widely used
by experimentalists [8,13].

For the circular states where n = L + 1, the dominant
term in P(nL, L + 1) vanishes, and so P(nL, L + 1) &(
P(nL, L —1). Comparison of Eqs. (lla) and (lib) shows
that then a„—o;q,„.In Table V note that this relation
generally holds to a few percent for the circular 3d, 4f,
and 5g levels in both the singlet and the triplet cases. The
somewhat larger discrepancies for the 3d sDs, 4f ~Fs, and
5g 'G4 levels will be discussed in subsection B. Of course,
the above equality does not apply to noncircular states,
since R„"&~+ does not vanish and in fact P(nL, L + 1) is
larger than P(nL, L —1) . Since E„I, is usually ordered

TABLE IV. Tensor polarizabilities in helium [kHz/(V/cm) ].
Level
3d D
3d D3
4d 'D2
4d 'D.
5d 'D,
5d 'D,
4f 'Fs
5f 'Fs

No mix
-13.98
2.798
-0.4246
-0.1848
-2.685
-1.267
0.7233
-3.990

One mix
-13.98
2.798
-0.4250
-0.1849
-2.687
-1.267
0.6071
-3.999

All mix
-14.08
2.681
-0.4252
-0.1855
-2.688
-1.269
0.6064
-4.001

Experiment
-13.9(3), -14.5(6) '

2.68(9)
-0.421(6)', -0.422(3)

-0.187(3)
-2.66(6), -2.74(2)

-1.270(19)
0.576 (9)s
-4.19(12)s

In Hz/(V/cm) .
Reference [9].

'Reference [12].
Reference [10].

'Reference [8).
Reference [13].

sReference [11].
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I (n„,nt, „) of opposite sign and nearly equal magnitudes.
For the higher n members of the series, the two types of
polarizabilities no longer have nearly equal magnitudes,
and will have signs opposite to those of the circular states.
These expectations based on the LS representation are
well born out in Table V. The only exception is 3d D,
where the 3p P level actually lies above 3d D. The dom-
inant energy denominator (Esd 117 Esp lp) is therefore
negative, unlike all other circular states. Consequently,
both polarizabilities of 3d D have the same signs as all
other nd D levels.

0 ggp I I I I I i I I I I I I I I I I I I I I I I I I I I t I I

3 4 5 6 7 8 2. J-coupled mpmeentation

FIG. 3. Ratios of the radial matrix elements (np[r[nd) for
helium to hydrogen. The same label as in Fig. 2.

in I for the same n, the dominant energy denominator
in Eq. (12), (E„r, —E„I, ), usually changes sign from
L' = L —1 to L+1. In turn this causes the two terms in
both Eqs. (lla) and (lib) to have opposite signs.

In summary for a given LS series, the lowest level
(the circular state) is expected to have polarizabilities

I

The relations between the IS- and the J-coupled po-
larizabilities were first given by Angel and Sandars [14].
We can derive the same relations from Eqs. (5) to (8),
assuming all the 8„1, vanish. The polarizabilities in the
J-coupled representation (without mixing) are related to
those in the LS representation by

n„(I S J) = n„(LS)

and

J(2J —1)(2J+ 1)(L+ 1)(2L+ 1)(2I + 3) J L S
(J+1)(2J+3)I,(2L, —1)

(14)

For a two-electron system, they are explicitly

n,.„(LOL,) = n,.„(I,O),

n,.„(L,1I,+1) = n,.„{L,1),
L'+ L —3

nt, „(L1 L) = nt, „(L1),L L+1
(L —1)(L + 1)(2L —3)(2L + 3)

Lz(2L —1)(2L, + 1)
x n,.„(L1).

(15a)
(15b)

(15c)

(15d)

I

Thus we see that the J-coupled tensor polarizabilities
shown in Table IV do indeed correspond to the LS singlet
and triplet values. Note that in the absence of mixing,
the ratios of the three triplet tensor polarizabilities are
fixed. Specific values of the ratios for each L are given
in parentheses in the last two columns of Table V. We
observe that these ratios are very well satisfied by the
D levels, where the mixing angles are small. However,
significant departures arise for the F and the G levels,
where the mixing angles are large.

TABLE V. Calculated scalar snd tensor polarizabilities [kHz/(V/cm) ] in the "all mix" approximation. Values in ( ) sre in

LS coupling ( ), snd values in [ ] are in the "no mix" approximation.

Level

3d
4d
5d
6d

4f
5f
6f
7f

5g
6g
7g

14.39
1.151
7.643
31.46

-0.6529
16.93
95.27
337.6

-16.64
174.3
883.8

o'sc
3
LL,+1

-2.378
0.7188
4.813
19.74

-0.5293
17.68
98.26
347.1

-16.49
169.8
873.9

~ten

-14.08
-0.4254
-2.688
-10.89

O.6O64[O.722]
-4.001[-3.99]
-26.40 [-27.0]
-97.80[-100]

15.47
-41 ~ 73
-275.9

2.681
-0.1855
-1.269
-5.240

0.5308
-5.304
-32.50
-118.0

16.49
-44.64
-295.0

3I

(o.5)
0.4987
0.5006
G.5005
0.5005
(o.75)
0.9708
0.747G
0.7688
0.7?23
(0.85)
0.9225
0.9019
0.9086

Ratio to nt, „(LSL+ 1)

(0.85)
0.3505
0.3505
0.3505
0.3505

(0.6857)
0.6870
0 6890
0.6888
0.6883

(0.8185)
0.8223
0.8281
0.8262

In Hz/(V/cm) .
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Actually, Eqs. (13) to (15) have been derived ignoring
the magnetic fine structure splittings in comparison with
the electronic energy spacings. For example, for the 3D
level, the ratio of those energies is 0.3:540, and for the
4D level it is 0.02:7 (all energies in cm i). Thus this
approximation is usually valid to 0.1%. For higher values
of L, the fine-structure splitting and the differences in
the electronic energy spacings are known analytically [3].
Since the former is proportional to n L and the latter
proportional to n L, we find that the ratio goes as
L . Specifically, we find that

+nL1L—1 EnL1L+1

EnL+1SJ EnLSJ

(L)(L+1/2)(L+ 2)(L+ 5/2) (16)

where n, = 9/32 a.u. is the scalar polarizability of He
II. Thus for helium, the above ratio is small as long as
L &&14, which is usually the case.

B. Scalar an't tensor polarizabilities:
eFects of mixing

The efFect of singlet-triplet mixing on the tensor po-
larizability has been considered by Aynacioglu et al. [11]
for the 4f iF and 5f iI" levels of helium. They use the
Coulomb approximation, and ignore the magnetic fine-
structure splittings, both of which we have shown to be
valid to within 1%. In addition they invoke a simple
scheme of directly mixing the singlet and the triplet po-
larizabilities. With this procedure, mixing can be ex-
pected to alter the value of the polarizabilities since the
singlet and the corresponding triplet values may differ by
an order of magnitude as well as in sign, as is evident for
the 3d level in the first 2 rows of Table IV or the first row
of Table V. In Appendix A, we deduce from our theory
the appropriate expression for the tensor polarizability
using the same approximations. The result is somewhat
more complicated than their simple expression, involving
three mixing angles, not just one. In the case of the I'
levels where their scheme has been applied, we obtain
their result plus an additional term, which contributes
7.5% to ag in the 4f iFs sublevel. This point will be
elaborated further, as we now elucidate our polarizability
results for D, F, and G levels next in turn.

Po/avisabi/ities of D /eve/s

We recall that the mixing angles for P and D levels
are very small. Hence mixing cannot significantly af-
fect the values of the D polarizabilities, so their results
can be easily understood &om the viewpoint of the IS
representation. In Table IV, the columns "no mix" and
"one mix" are nearly equal, well within 0.1% of each
other for all D levels. For that matter, there is little dif-
ference between columns "one mix" (n' = n only) and
"all mix. " The greatest difFerence (4%%uo) resides with the
3d D3 level. Examination of the composite terms of this
tensor polarizability reveals that this difI'erence arises pri-

marily &om the contribution of the 4f level to the "all
mix" value. The 4f sF 3d—sD spacing, instead of being
typically two orders of magnitude larger because of the
change in principal quantum number, is only ten times
the 3d D—3p P spacing. So for this circular state, the
second terin in Eq. (lib), P(3D, I"), is only one order
of magnitude smaller than the first term P(3D, P), and
hence, its contribution is not entirely negligible.

Clearly the above discussion on the tensor polarizabil-
ity also applies to the scalar polarizability. Actually the
contribution from the 4f level to the 3d Ds scalar po-
larizability is considerably larger than that to the ten-
sor polarizability, as the coefficient of the second term,
P(nL, L + 1), is larger in Eq. (lla) than in Eq. (lib).
Since this contribution is opposite in sign to the first
term, it reduces the numerical value of the scalar rela-
tive to the tensor polarizability by 12%. Table V shows
that for the 3d D2 level, the two polarizability values
agree to 2%%uo. Of course, the fact that the same terms in
Eqs. (lla) and (lib) dominates the sum, explains why
the scalar and the tensor polarizabilities are always oppo-
site in sign for any level. We can also compare the singlet
with the triplet value of each polarizability in the same
level. For the 3d level, they are opposite in sign, unlike
all other levels. As noted previously, the 3p P actually
lies above the 3d 1D level unlike the 3p 3P which lies
below the 3d D level as expected. Therefore the energy
denominator of the dominant term in Eq. (12) is opposite
in sign for the singlet and for the triplet cases. In fact
the ratio of the singlet to the triplet energy denominator
is about —1:5,which is in accord with the corresponding
ratio of the two polarizabilities shown in Table V. Also
displayed in the last two columns are the tensor polar-
izabilities of the other two sublevels, expressed as ratios
to the J = L+ 1 sublevel in Column 5. Due to the min-
imal mixing of the D levels, these ratios are practically
the same as the theoretical LS coupled ratios shown in
parentheses.

For the noncircular nD levels, which begin with n=4,
the second term in Eqs. (lla) and (lib) becomes the
dominant contributor. In fact using this term alone pre-
dicts that the quotient n„/nq, „———7/2 for L=2. From
Table V our calculated ratios are —2.7, —2.8, and —2.9 in
the D series, and —3.9, —3.8, and —3.8 in the D series,
for n=4, 5, and 6, respectively. Further had we kept only
the dominant term, with the (E„rp —E„~) denominator,
the singlet and the triplet polarizabilities would be in-
versely related by the corresponding energy denominator
ratios, which turn out to be about 1.4 for all values of
n & 4 . The actual ratios of singlet to triplet o.„are 1.6
for all n calculated, and ratios of singlet to triplet o.q „
are 2.3, 2.1, and 2.1 for n=4, 5, and 6. So it is clear that
the first term in Eqs. (lla) and (lib) are far &om neg-
ligible for the noncircular states. Finally the noncircular
tensor polarizabilities for each spin system are plotted on
a semilog scale in Fig. 4. Their trend obviously suggests
a power law in n, which will be explored in Sec. IV C.

2. Po/arigabi/ities of E /eve/s

Although the mixing angles for F levels are consider-
able, we still find it convenient to approach their polariz-
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FIG. 4. Tensor polarizabilities in kHz/(V/cm) of noncir-
cular states (absolute value) in a log-log plot against n. The
D3 values are shown as diamonds, Dq as squares, F3 as

crosses, and G4 as bars.

abilities from the simple IS representation. Along with
other circular states, the second term in Eqs. (1la) and
(lib) is negligible for the 4f level, so that a„(4FS)
—nt, „(4FS) for both S=O and l. As in the 3D case,
we expect the singlet to triplet polarizability ratio to
be inversely proportional to the energy denominator
(E4F E4D) rati—o. Indeed the singlet at,„(4F0)= 0.7233
under "no mix" in Table IV and the triplet nt, ,„(4F1)
a„„(4f F4)= 0.5308 in Column 5 of Table V reflect
the above energy ratio. However, when mixing is taken
into account in "one mix" of Table IV, the singlet 4F
value decreases by some 20% to 0.6071. As shown in
Appendix A, the treatment of Aynacioglu et al. [11] in
mixing a„„(4F0) and n„„(4F1) is not consistent with
theory. Indeed, the difference between theirs and our re-
sult is given by Eq. (A7), which is about 8% for the 4f
level. Comparison with their calculated value of 0.601
for at,„(4F0) is complicated by their using 84~ = 41.8'
rather than our value of 37.1, which is consistent with
their later measurement [21] . In fact, the next column
"all mix", including many terms in the sum of Eq. (12),
gives essentially the same result. Unfortunately, this
value is still more than three standard deviations from
experiment. Our analysis leaves no room for theoretical
errors, and indeed in all other cases, Table IV shows that
our theory agrees closely with experiment . Thus we can
only attribute the discrepancy in the 4f Fs nt, „ to ex-
perimental errors, e.g. , the deconvolution with the signal
from the 4f Fs sublevel may be incomplete. Similarly,
mixing also affects the scalar polarizability for the 4f Fs
sublevel changing its value from —0.7209 to —0.6529.

On the other hand, neither of the polarizabilities
of the 4f F4 sublevel is significantly affected by mix-
ing. Table V shows that a„(4f sF4)= —0.5293 and
at, „(4f F4)=0.5309 (which are identical to the no mix
results). As anticipated, they are opposite in sign and es-
sentially equal numerically. Similar results are obtained
for the 4f Fz sublevel, whose ratio of nt, „ to that of
the 4f F4 sublevel is virtually the same as the LS value
of 0.6857 in Column 7. However, unlike the other two

sublevels, the 4f Fs sublevel is strongly mixed with the
4f iFsqi thereby increasing its aq, „, and hence its ratio
in Column 6 is substantially larger than the LS value of
0.75.

The rest of the nF levels are noncircular, and so be-
have analogously to the noncircular nD levels. Account-
ing only for the dominant second term in Eqs. (1la) and
(lib) implies the quotient a„/at, „———12/5 in both the
singlet and in the triplet system. Examination of Ta-
ble V reveals that the values of these ratios are substan-
tially different, typically —3 to —4. As I increases, the
energy denominators in Eq. (12) are accurately given by
the polarization formula (see Ref. [3]), and so the first
term becomes more comparable to the second. As a mat-
ter of fact, the polarization formula does not distinguish
between the singlet and the triplet systems, and we ob-
serve that the singlet and triplet values for n„are indeed
within a few percent of each other for n=5, 6, and 7.
However values for the o;~,„are further apart, reflecting
the greater role played by the first term in Eq. (lib). As
we recall, the smaller singlet denominator (E„D —E„y )
enhances its partial cancellation with the second term,
and thus reducing the numerical value of the singlet more
than the triplet ot,„.

Unlike the 4f Fs case where mixing changes at,„by
20%, Table IV shows that mixing affects the 5f Fs value

by less than 1%. Similarly, Table V shows that mixing
has a small effect on the triplet 5F sublevels, since the
ratios agree well with the IS-coupling values. So how
can mixing be important for the 4F but unimportant
for F levels with n & 5, when Fig. 1 shows that 0„~
depends only mildly on n? The answer is provided in

Eq. (A8) in Appendix A, which shows that the mixed
and the unmixed polarizabilities differ by

sin 0„~ [(3/4)n~, „(F1)—a~,„(FO)]. (17)

The unmixed polarizabilities in the IS representation
for the F levels may be obtained from Table V, using

aq«( LI,+i) for the unmixed triplet, and the quantities
in brackets for the unmixed singlet. It can be seen that
the quantity in the square brackets in Eq. (17) coinci-
dentally almost vanishes for the 5F level. For higher nF
levels, the square bracket remains small but not negligi-
bly so, and mixing affects these values by a few percent.

8. Polorisabilities of V levels

As far as we know, there has been no measurement of
the polarizabilities of any G level. Table V shows our
calculated values for the 5G, 6G, and 7G levels. As ex-
pected, the singlet and the triplet values are rather sim-
ilar especially for n„. For the circular 5G level, the an-
ticipated o.„—o.t,„ is very well satisfied in the triplet
but not so well in the singlet case. Column 6 shows that
in the LS representation, the nt, ratio for the G4 sub-
level is 0.85. Hence mixing reduces the numerical value
of the G4 sublevel while it increases that of the !e 4 sub-
level, causing the triplet o.t,„ratio to rise significantly
above the LS value in parentheses. The above discus-
sions apply to the noncircular nG levels, except for the
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near equality of the two polarizabilities. Here the ra-
tios of those two polarizabilities are more like —4 rather
than a„/ni, „———55/28 as Eqs. (lla) and (lib) would

suggest, assuming the second term dominates in both.
We will see what the trends are and how to evaluate the
polarizabilities of higher L levels in the next subsection.

C. Analytic Bts and trends in the polarisabilities

Series
SD
1D
1~
1g

Tv

-2.38x10
-4.89x 10
-1.64 x 10
-7.75 x 10

T5

1.66 x 10
3.41 x10
2.66x 10
1.94 x 10

TABLE VI. Power-law coefEcients for aq,„[in
kHz/(V/cm) ].

We have just seen that the polarizabilities in the mixed
J-coupled representation can always be approximately
expressed in terms of those in the LS representation.
Further, we recall that the relevant matrix elements
(those with n' = n) are accurately given by the hy-
drogenic expressions. With the supposition of an n-
independent quantum defect pL, , we find that

ni,„(nLS) = —t"Ln (n —pL)

(2L —l)[n —(L+ 1) ](n —pL~i)
X

p~+ (n —p+)

(2L+ 3)(n2 —L')(n —pL i)'
V~(n-~:) (18)

where CL = 3L/[2(2L+ 1)(2L + 3)], and pd ——pL
O'L I d PL PL+1 and Po (PL+i + PL)/2.+

Circa)a~ states

For circular states (n = L+1), we observe that the first
term in Eq. (18) vanishes, which leads to the now familiar
result a„—ai,„.Further, for sufficiently high L (& 3
for helium), the quantum defect is well approximated by
the polarization formula,

3n' —L,(L + 1)
4n2(L —1/2) L(L + 1/2) (L + 1)(L + 3 2)

where o.,=9/32 (in ao) is the scalar polarizability of the
helium core. With these considerations, we find

ni, „(L) = (L —3/2)(L —1)(L —1/2)
xL(I, + I/2)n'/(2n. ), (n = I, +1).

Thus we see that o.i,„(and also n„) is inversely pro-
protional to the core polarizability o. , and it varies as n
as will be demonstrated for noncircular states, where n
and L are independent.

2. Noncircular states

If in Eq. (18) we take an p &( n, we can rewrite it as a
series in decreasing powers of n where the leading term
is n . In Appendix B, we give the first few coefBcients
for both o.t,„and o.„.It is interesting to observe that
both coefficients of n depend on the ratios p /pg while
the other coeKcients depend on the inverse of pg. When
L is sufBciently high so that the quantum defects are
small, the former becomes negligible. Even for L as low

as 2, we find that the coeKcients of n are three orders
of magnitudes less than those of n . Thus it is sufBcient
to include just the odd power terms in the series, and
in fact we found that only two terms are necessary to
represent the polarizabilities to an accuracy of a few per-
cent. The coeKcients for at,„are given in Table VI for
the n D2, n Ds, n Iis, and the ng '64 series W.hen I
is sufficiently large (L & 4), we find

Tr = —2.49x10 sL(L —1/2)
x(8L + 12L —5L —9/2)/o. „

Ts = 4.98x10 s(L —1/2)L(L + 1/2)
x(48L + 96L + 16L —32L —9)/o;, .

(21a)

(21b)

For example, Eq. (21a) yields a value of Tr = —8.42
x10 4 for L=4. Then Eq. (A4) implies that the lead-

ing coefficient of at, ( G4)=—7.70 x10, which is in

good agreement with the value —7.75 x10 in Table VI.
Thus we see that the polarizabilities are proportional to
Lsn7/n, in the high n and L limits .

However, it should be emphasized that the above for-
mulas for both circular and noncircular states are valid
for high L as long as L &( 14 for helium. (See Sec. IV
A2. ) For example, the error is estimated to be about
2 6%%uo for L=7. Thus for L & 8, it is probably advis-
able to return to Eqs. (5) to (8), and explicitly account
for the fine structure. Finally for suKciently high values
of L, n, and E', nondegenerate perturbation theory fails,
and one must diagonalize the full Hamiltonian. Indeed,
the Stark effect becomes linear in the extreme limit.

V. CONCLUSIONS

We have calculated the radiative lifetimes and the
scalar and tensor polarizabilities of excited levels of he-
lium. Our computation is the most complete to date
in that it utilizes the best available dipole matrix ele-
ments, transitions to all fine-structure sublevels, and the
mixing of singlet and triplet levels. The results are in
excellent agreement with experiment, with the exception
of the ai,,„(4f I"), where the discrepancy is three stan-
dard deviations and a plausible explanation is offered.
However, it should also be said that the present results
have not changed significantly from previous simpler the-
ories. What we have gained are insights as to why the
additional effects are generally unimportant, except for
mixing in the calculation of polarizabilities when L &
3. In addition, we have found approximate relations be-
tween various polarizabilities considered here, and given
predictions of their values at higher n and L.

Since electronic correlation in an excited helium atom
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is weak, the matrix elements in Theodosiou's model po-
tential usually come within 1% of the accurate results
of Kono and Hattori. (The largest discrepancy of 1.5%
resides in the 2S-3P triplet matrix element, thereby re-
ducing Theodosiou's lifetime for the 3p P level from [7]
98.15 to 94.82 ns. ) For the polarizabilities, which depend
primarily on the matrix elements of the resonance transi-
tion, even the simple hydrogenic approximation is shown
to be adequate. The magnetic fine-structure splitting is
seen to be unimportant as it is typically three orders of
magnitude lower than the electronic energy. For L &
2, mixing is unimportant because the mixing angles are
too small. For I" levels, we confirm the importance of
mixing as discussed by Aynacioglu et aI,. However, their
scheme to account for mixing is shown to be inadequate.
We have derived the corresponding expression &om first
principles, using the same approximations. The result
is their expression plus an additional term, which in the
4f rFs case contributes 7.5%. Further we give expres-
sions for easy calculation of lifetimes and polarizabilities
for higher n and L values.

Finally, we discuss what our findings in helium por-
tends for other atoms. For high values of L (L ) 4 for
elements up to copper), most of this work is applica-
ble. We must of course use the appropriate core polar-
izability, which is usually much larger than in helium,
e.g. , its value is two orders of magnitude larger in mag-

I

nesium [22]. When the core is not in a S state, elec-
tric quadrupole interactions further complicate the level
structure and the polarizabilities, and have been dealt
with in neon [23] and in iron [24], disregarding mixing.
For some of these cases, mixing can now be included,
following the semiempirical approach of Curtis [25].
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APPENDIX A: SIMPLIFIED SINGLET TENSOR
POLARIZABILITIES WITH MIXING

From Eqs. (5) to (8), we now make the approxima-
tions that the magnetic fine structure is negligibly small
and that only the resonance terms (n' = n) need to be
included. Under these circumstances, it is possible to
express the polarizabilities in the mixed J-coupled rep-
resentation in terms of the simple LS-coupled ones. We
focus on the singlet tensor polarizability, where measure-
ments are more abundant. Adopting the shorthand nota-
tion cL——cos O„L and 8L——sin O„L for the singlet and triplet
component amplitudes, we specifically find

2L ( 3 2't ((2L+3)[R„"L ']2 (2L —1)[R„" L+]
2

t

cry, „(nLOL) =
/

1— sL
I I3(2I + 1)(2L+ 3) ( L(L+ 1) j I E~L,o —E~L—r, o EnL+r, o E~L,o )

(2L+3)[B„"L ']2 ( ~ 2 (2L —1)
+(for' —1) "

I [
—cLsL r + sLcL rg'1 —L ]

— 2, sL
E~L,O

—E~L r,o-
L+r,L (2L —1)[&."L"]' & (2L+ 3)

(fro+ ' ——1) "
( [ cLsL+r +—sLcL+rgl —(L+1) 2] —,sL

)E L+a,o —E r. ,o
(A1)

where

L,L 1EnL,O EnL— l,o—
01

+nL, p @nL—1,1

E~L+r,o —E~L,o
10

EnL+1, 1 EnL, O

When L is suKciently low so that all three mixing angles
(HL r, OL, and HL+r) are negligibly small, we recover the
LS result given by Eq. (lib), with the singlet energy
denominators.

For L=2, Fig. 1 shows that the first two angles are neg-
ligibly small, but not the third, 0„~ 30 . Neglecting
those two angles reduces Eq. (Al) to

(„d,D) 7 [ . ] 3 [ ".D]'
105 E~D p

—E~p p E~I,p —E~Q,p

x[1+sin 8 F(1 —fro' )]

We recognize that the first two terms simply give the
singlet LS-coupled iraq „(nDO). In the last term,

F D EnF 0 EnD, O

10
EmF, 1 En, D, O

(A3)

5 [~nG'] 2

Ec —EFo( 4

has a typical value of 1.004. Thus, the third term yields a
negligible contribution, which is only 0.1% of the second
term. So we have demonstrated that mixing does not
aH'ect o.q,„ for D levels significantly.

For L=3, the situation is quite diH'erent since we have
only one negligible angle, 8 D with the other two angles
being large. Further, the G levels (and to a lesser ex-
tent the I" levels) are nearly degenerate so that E ~ o

E & r E &, and hence the last line of Eq. (Al) van-
ishes. Under these circumstances, we find

9[~nD] 2

n„„(nf rFs) =—
63 E„y p

—E„Dp

F,D~
x

~

cos 8„F+ —sin 8~Ffor
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where

F,D @nE,O EnD, O

01 @nI",0 EnD, 1
(A5)

Our derived approximate equation resembles, but is not
the same as the expression postulated by Aynacioglu et
al. [11]. Since the exchange energy of the F levels is
neglectable in comparison to the nD —nF spacing, we
may recast their expression in our notation as

APPENDIX B:ANALYTIC COEFFICIENTS
FOR POLARIZABILITY POWER SERIES

2L —1 2L+ 3~7= L
Pg Pg

(Bla)

In Eq. (18) if we collect equal powers of n, we find
that it forms a descending series where the leading term
is T~n . Explicitly, the 6rst few coefBcients are

9 gnD]2
Aynac( f 1F )

[ nP]
63 EnF p

—EnD, p

x(cos 8„~+sin 8„~foi' )

5[gnG]2

E a —E s;p
(A6)

+
rs =4C. (2I —1)";—(2L+3)',

pg Pg.
2L —1 + 2L+3

Ts — L
Pd, Pg

(Blb)

(Blc)

In fact we Gnd that the two difFer by

Eq. (A6) —Eq. (A4)= (sin 8„~/4)at, n(nf F4). (A7)

where B+ = [(L+ 1) —4(p+) —2pL, IJL,+1] and B
[L —4(p, ) —2pL, ipse, ]. Similarly, the coefficients for
the scalar polarizability are found to be

Alternatively, we can express the mixed J-coupled ten-
sor polarizability Eq. (A4) in terms of the unmixed LS
quantity Eq. (lib),

a„„(nf 'Fs) = at, (FO) + sin 8„~
x [(3/4)at, (F1) —at,„(FO)]. (A8)

For L=4 and higher values, the distinction between
singlet and triplet energies vanishes. Thus the last two
lines in Eq. (Al) become negligible, and we obtain the
simple result

a&,„(n LL,) = 1 — »n 8„r, at, (nL). (A9)

Since 8„r, = ir/2 —[6(2L+ 1)] 1 45', the bracket in
Eq. (A9) is approximately (1 —3[2L(L + 1)] 1). Thus
the singlet tensor polarizability is smaller than the cor-
responding LS value by 7.5/o for G, and 5% for H lev-
els. Simultaneously, at,„(n sLs) increases by the same
amount.

L+1 L
Sg ——Dl.

Pg Pg
p+

So ———4DI, (I + 1)
pg

L+1 +S5 ———DL, + g+
Pg

Lla
Pg.

L B
Ijg

(B2a)

(B2b)

(B2c)

where Dl, = 3/[2(2L+ 1)].
It is interesting to observe that both coefficients of n

depend on the ratios p /pg while the other coefficients
depend on the inverse of pg. For nonpenetrating states
where the quantum defects are small, the former becomes
negligible. Then the series has only the odd-power terms,
as found for D and higher L levels of helium. On the
other hand for penetrating states, the quantum defects
can be comparable to n, so the coefBcients of n may be
sizable, as found for the D series of rubidium [26].
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