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Level statistics for continuous energy spectra with application to the hydrogen atom
in crossed electric and magnetic fields
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The statistical analysis of energy levels, a powerful tool in the study of quantum systems, is ap-
plicable to discrete spectra. Here we propose an approach to carry level statistics over to continuous
energy spectra, paradoxical as this may sound at first. The approach proceeds in three steps, first a
discretization of the spectrum by cutouts, then a statistical analysis of the resulting discrete spectra,
and finally a determination of the limit distributions as the cuto6s are removed. In this way the
notions of Wigner and Poisson distributions for nearest-neighbor spacing (NNS), usually associated
with quantum chaos and regularity, can be carried over to systems with a purely continuous en-

ergy spectrum. The approach is demonstrated for the hydrogen atom in perpendicular electric and
magnetic fields. This system has a purely continuous energy spectrum from —oo to oo. Depending
on the field parameters, we find for the NNS a Poisson or a Wigner distribution or a transitional
behavior. We also outline how to determine physically relevant resonances in our approach by a
stabilization method.

PACS number(s): 32.60.+i, 05.45.+b

I. INTRODUCTION

Statistical properties of the distribution of energy lev-
els have long been recognized as important aspects of
quantum systems, in particular for complex nuclei [1,2].
More recently the statistics of nearest-neighbor spacings
of energy levels (NNS) has been related to regular and
chaotic behavior of trajectories of the corresponding clas-
sical system [3]. To allow a statistical comparison of
different level spectra these have first to be "rectified"
or "unfolded, " with normalization to an average of one
level per unit interval. It has turned out that for a large
number of examples the nearest-neighbor spacings follow
a Poisson distribution for classically regular systems and
a Wigner distribution for classically chaotic systems. It
has therefore been proposed to regard this behavior of
the NNS as a tentative criterion for "quantum chaos, "
whatever sense may be given to this notion, and even
regard it as synonymous for it [4].

As a realistic physical system the hydrogen atom in a
strong magnetic field has attracted considerable atten-
tion and the above ideas have been verified with great
numerical accuracy [5,6]. For this system it has also
been possible to study the transition between Poisson
and Wigner statistics under variation of the field param-
eter, first in Refs. [7,8] and then in Refs. [9,10), in Ref.
[10] with particularly high resolution. In the transition
region an interesting resonancelike structure was discov-
ered [9,10], which is associated to a rational value of the
classical winding number.

Statistical analysis of energy levels presupposes a dis-
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crete or partially discrete level spectrum. It does not
apply to a purely continuous energy spectrum, at least
not at first sight. We will, however, propose in this pa-
per an approach to carry the statistical analysis over to
continuous energy spectra. This at first seemingly para-
doxical proposal is based on the following steps.

(i) Initial discretization of spectrum by cutoffs.

(ii) Statistical distributions for the cutofF-dependent
discrete spectra.

(iii) Transition to continuous spectrum by removal of
cutoff, determination of limit form of distributions.

For such a proposal to work it is essential that the
discrete spectra belonging to different cutoffs are rectified
in order to treat them on the same footing. Otherwise
the limit distributions would just become degenerate.

A simple way of discretizing the energy spectrum con-
sists in replacing the Hilbert space 'R of the system by a
finite-dimensional subspace 'RN, of dimension DN, and
to restrict the Hamiltonian H to this subspace. Denoting
by P~ the projection operator onto 'RN this means that
one has to diagonalize

HN = INIIIN ~

This becomes effectively a matrix diagonalization. For
the eigenvalues of HN one can, after rectification, deter-
mine, for example, the NNS distribution. Then one can
increase the cutoff dimension and study the limit behav-
ior of the distributions.

This proposal will now be applied to a hydrogen atom
in a magnetic and an electric field which are very strong,
constant, and perpendicular to each other. This is a
physical system of independent interest. We take the
magnetic field B along the xs axis, B = (0, 0, B), and the
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electric field F along the xi axis, F = (F, 0, 0). Atomic
units are used throughout, so that B and F are measured
in multiples of

parameters, " where

1 4c~= —qB) cp=gF.
8

(5)

Bo ——2.35 x 10' T,
Fp ——5.144 x 10 kV/cm,

respectively. These reference fields are very strong com-
pared to available laboratory fields, for which B,F (& 1.

For general vector and scalar potentials the Hamilto-
nian is, without spin and relativistic effects, of the form

=1 1
H = —(p+ A) ——+ 4.

2 r (2)

In the symmetric gauge this becomes

H = —p + BLs —+ B(z,—+ z2) ——+ Fzi, (3)=12 1

2 2 8 r

il—:1jQ—2E

and in terms of quantities c~ and cF, which we call "field

where L3 is the third component of angular momentum.
For both B and F nonzero the only remaining symmetry
of H is the reflection vr3 with respect to the xq-x2 plane,
i.e., the reHection (zi, z2, zs): (zi, z2, —zs).

For the Zeeman effect, i.e. , F = 0 and B P 0, the
Hamiltonian in Eq. (3) has infinitely many discrete eigen-
values plus a continuous spectrum [11]. For the Stark
effect, i.e. , B = 0 and F P 0, the eigenvalue spectrum
is purely continuous and extends from —oo to oo [11].
Of more direct physical significance for spectroscopy are
the resonances [12],which are complex poles in the resol-
vent, or Green's function. For electric and magnetic Geld

both parallel to the zs axis [15] there is rotational sym-

metry around this axis. The last term in the Hamiltonian
in Eq. (3) becomes Fzs which commutes with the mag-
netic field contribution, and therefore one has again the
same situation as for the Stark effect with a continuous
spectrum from —oo to oo.

If B and F are perpendicular the term B2z2i/8 in Eq.
(3) dominates Fzi when considered as classical poten-
tials, and this might seem to indicate that, as in the
Zeeman case, there is both a discrete and a continuous
spectrum. This, however, is not so due to the presence of
the L3 term which no longer commutes with the Hamil-
tonian. One can in fact show rigorously that for both B
and F nonzero the Hamiltonian of Eq. (3) has a purely
continuous spectrum from —oo to oo [16]. The presence
of the B2z2i/8 term has, however, a beneficial effect in the
numerical treatment, and for this reason we concentrate
on the case of perpendicular fields. Also for numerical
reasons we confine ourselves to negative energies. The
treatment is purely quantum mechanical. It is not the
purpose of this paper to present a classical study of this
system nor to attempt a comparison with a conceivable
semiclassical approach, interesting as this may be. A re-
cent study of this system has been presented in Ref. [17].

In Sec. II we slightly reformulate the eigenvalue prob-
lem and explain the analytical setup for the numerical
evaluation. The analysis is in terms of the quantity

We employ a technically advantageous algebraic ap-
proach which has been used by us before [10]. For a
particular sequence of finite-dimensional subspaces 'R~
and in a judiciously chosen basis the corresponding re-
stricted Hamiltonians H~ become narrow-band matrices
whose dimension and number of eigenvalues grow with
¹ When the 'R~'s approach 'R, the projection opera-
tors PN converge strongly to 1 and therefore one expects
P~HP~ to converge to H in some way. This conver-

gence, and in particular an expected convergence of the
discrete spectra to a continuous one, is neither trivial nor
obvious. Therefore this question is investigated numeri-

cally.
In Sec. III it is demonstrated numerically that prior

to rectification of the spectra the number of eigenvalues

per unit interval increases with ¹ The spectra become
denser and denser, indicating that they do indeed ap-
proach the continuum. This is just what we had expected
and it also verifies the continuity of the original spectrum
of H.

In Sec. IV the NNS distributions of the rectified spec-
tra are calculated for various cutoffs and for various Geld

parameters. It is shown that for sufficiently high cutoff
dimensions the NNS distributions have effectively con-
verged. In this way the limiting NNS distributions are
found, and they can be thought of as the NNS distribu-
tions for the continuous spectrum. Now one can perform
the above mentioned tests for quantum chaos or regu-
larity by looking for Wigner or Poisson distributions or
for transition regions. To do this we make a best fit to
one of the distributions proposed by Brody [18] for inter-

polation between Poisson and Wigner distribution and
determine the Brody parameter q. This parameter can
vary between 0 and 1, corresponding to a Poisson and
Wigner distribution, respectively, and we exhibit field

parameters for either of them as well as for the transi-
tion region. For the corresponding classical system one
would expect only chaotic, or only regular trajectories, or
a mixture of both, respectively. It would be interesting,
but outside the scope of this paper, to check this point
for the classical system.

In Sec. V the different, though related, problem of
resonances is addressed. In the case of a continuous en-

ergy spectrum they are of direct physical significance for
spectroscopic measurements and for scattering. For ex-
tremely small field parameters they can be calculated
by perturbation theory. A semiclassical approach has
been investigated by Wintgen [12]. The complex rota-
tion method has recently been used by Main and Wunner

[13]; the field parameters considered there are, however,
orders of magnitude smaller than those in this paper. To
extract information for resonances from our calculations
of the discretized spectrum we use a stabilization method

[14] which we adapt to our approach. It is interesting and
remarkable that this method also seems to work for our
extremely high field parameters. Our results may be of
practical interest for strong stellar fields.
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II. HYDROGEN ATOM IN CROSSED PIELDS

As for the pure magnetic field [10] we find it advanta-
geous also for perpendicular magnetic and electric field
to reformulate the Schrodinger equation

duces spectra not for constant electric and magnetic 6elds
but on curves in the (B,F, E) space as in Fig. 1, given
by the relations

B =4v 2cB
I
@

I
F = cF(2 I

E I)s 2.

for E ( 0. To this end we introduce the scaling operator
Uq defined on wave functions by

(U&4)(x) = A(4x).

U(xU( ' ——(x,

UqpU& ——( p.
(8)

With

we de6ne

Because of the factor (, instead of (si2, this opera-
tor is not unitary in the usual space of square-inte-
grable functions L2(Ks, dsz), but unitary in the space
L2(Ks, dsz/r), with a correspondingly modified scalar
product. This will be convenient later. We note that

The operators in Eq. (12) can now be expressed by the
operators L p kom the Appendix, which are self-adjoint
on the Hilbert space L (K, d z/r), i.e. , on functions
square integrable with respect to dsz/r and with corre-
sponding scalar product. A convenient basis {~ m, l, n ))
in this space is obtained &om the usual hydrogen wave
functions Q„ i, by scaling,

~
m, l, n )= nU„ (14)

where U„ is the Uq in Eq. (7) with ( = n
A discretization of the spectrum is now achieved by

cutting the basis {~ m, l, n )) off at some main quan-
tum number ¹ The ~3 symmetry of the Hamiltonian
splits the basis into two nonmixing parts. We will use
the vr3

——1 part only, because a factor of 2 in the amount
of data gives no great improvement in the statistics com-
putations. To minimize the computational effort we use
a particular ordering of the basis elements to obtain a
band matrix, with the band of nonzero entries as narrow
as possible. We 6rst order with respect to m, then to
l, and finally with respect to n. The dimension DN and
bandwidth W~ of the resulting matrix to be diagonalized
are

Multiplying the Schrodinger equation (6) by r and ap-
plying U„one obtains by means of Eq. (8)

{-,rp + 2r+ 2' BrL,1 2 1 1 2

+-,'q'B' (*', + *',) + rl'F *,—g)y„= 0. (10)

Because of the appearance of higher powers of q(E) this
equation looks at 6rst sight more complicated than the
original Schrodinger equation. The numerical advantage,
however, is that all operators in this equation are express-
ible in terms of certain operators L g most of whose ma-
trix elements vanish. These operators represent the Lie
algebra of a so-called dynamical group and are explicitly
given in the Appendix.

To transform Eq. (10) to a standard eigenvalue prob-
lem we introduce "field parameters" c~ and c~ defined
by

where the square brackets denote the integral part.
One numerical improvement can still be made for the

computations. We can transform Eq. (12) with Uq for
some constant (. This does not change the exact spec-

cg=sg B, cg=g F.

Then Eq. (10) becomes

{2rp+ 2r + /-2cgyrL, —

+CBF(z] + z2) + CFrzl —'l7)lp„= 0. (12)

Keeping c~ and c~ fixed this becomes a standard eigen-
value problem for g, and therefore this equation now pro-

FIG. 1. Curve in B-F-E space corresponding to constant
cg and cp.



3534 GERHARD C. HEGERFELDT AND RALPH HENNEBERG

tra because of the unitarity of Uq. But the effect on
the eigenvalues of the matrices is clearly visible. To de-
cide which ( to take one could use the mini-max theo-
rem if the Hamiltonian were bounded &om below. This
theorem states that the highest eigenvalue of the matrix( g; [ H

~
@~ ), for (Q, ) orthonormal in an n-dimensional

subspace of 'R, is greater than or equal to the nth eigen-
value of the Hamiltonian. One would therefore call (
optimal if the highest matrix eigenvalue has a minimum
at (. Of course this cannot be applied to the case of
an electrical field because of the unboundedness of the
Hamiltonian from below. But our experience shows that
there always exists a value of ( where many of the matrix
eigenvalues go through a minimum as a function of (. So
the use of this ( as optimal in the computations seems
to be justified.

For our computations we have used field parameters c~
and c~ in the range 0.1—1.6 and basis dimensions up to
D~ ——4060, corresponding to N = 28. For convergence
control we have also calculated some particular spectra
for D~ ——5984, or N = 32.

40-

30—

cq=0.1 cg=0.1
DN

818
40
OQ

60

10—

l

25
I

50
1

100

FIG. 2. The eigenvalue density p(iv) is seen to increase for
increasing cutoffs (cs = 0.1, cp = 0.4).

III. LEVEL DENSITY:
TRANSITION TO CONTINUUM

In this section we determine the behavior of the den-
sity of eigenvalues for increasing basis cutoffs N, i.e., for
increasing subspace dimension. We intend to verify the
expectation that this density increases with dimension.
We choose rl = i/ —2E instead of E as variable. Picking
some interval 6, small but still sufBciently greater than
the mean level spacings, we define the level density p(rl)
as

p(iI) = (No. of eigenvalues in [q —4/2, rl + 6/2]) /E.

We have calculated this level density and have studied
how p(q) depends on the matrix dimension. We find that
indeed for cs g 0 the level density becomes larger and
larger over the whole range of the spectrum for increasing
matrix dimension, indicating that in the limit one obtains
a continuum and thus verifying the expectation of the
Introduction. A typical example is shown in Fig. 2. Here
the field parameters are c~ ——c~ ——0.1 and the four
curves for p(q) belong to matrix dimensions 816, 1540,
2600, and 4060, corresponding to N = 16,20,24,28. The
density is clearly seen to grow with dimension. The speed
of this depends on g, and it is slow for small q, or large
negative energies.

The particular way the level spectra are filled depends
strongly on the field parameters. The level densities have
a maximum at some value of g and then decrease to 0 for
large g, as in Fig. 2. The latter behavior is due to the
finiteness of the matrix used for diagonalization. On the
other hand, for constant basis dimension the width and
position of the maximum depends on the field parame-
ters. Since in Eq. (12) the term quadratic in B is positive
an increase of c~ will move the maximum to higher g val-
ues and broaden it, as seen in Fig. 3. Increasing t-~ has

30- DN=2600 Cg Cy

20—

10—

l

50
I

75
1

100

FIG. 3. Eigenvalue density for various values of cs (fixed
cutoff; ci; = 0.1).

the main effect of moving the maximum to lower g values.
This is seen in Fig. 4 where the appearance of negative g's
for high cF values is a numerical artifact resulting from
the cutoff, and it diminishes for higher cutoff dimensions.

The accuracy of our computations can be checked for
very small values of c~ and c~, corresponding to labora-
tory fields, by comparison with a second-order perturba-
tion theory developed by Solov'ev [19]. The agreement
is excellent (as far as perturbation theory can reliably be
applied) for cutoff dimensions for which the filling of the
spectra does not yet show up.

The main conclusion to be drawn Rom the results of
this section is that one can indeed see a transition &om a
discrete towards a continuous spectrum when increasing
the cutoff dimension.
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FIG. 5. Convergence of NNS distributions for increasing
cutoK The limit is close to a Poisson distribution.
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FIG. 4. Eigenvalue density for various values of c& (fixed
cutoÃ; cs = 0.1).

IV. NNS STATISTICS IN THE LIMIT
OF CONTINUOUS SPECTRUM

N(g) = ) O(g —g;),

is interpolated by a smooth function, N(g) say. With it
one can get rid of the global behavior by choosing as new
variables e; instead of g;, with

e; =—N(g;). (17)

This section will establish numerical support for our
proposal of how to obtain statistical information about a
continuous energy spectrum, in particular for NNS statis-
tics. To this end we compute the NNS distributions for
the discrete spectra resulting &om finite cutofFs and study
their behavior as the cutofF becomes larger and larger.
Again the analysis will be performed in terms of the g s,
g;=g 2E;. —

One first has to rectify the discrete spectra in order to
compare distributions for difFerent cutofFs. This is done
in the usual way [20]. The counting function N(g) which
counts the number of eigenvalues less than g,

f sp(s)ds = 1.
0

We have determined the nearest-neighbor distribution
p(s) for various field parameters c~ and cs and have
studied its dependence on the cutofF dimension. In Figs.
5 and 6 we have plotted p(s) for the cutofF dimensions
1540, 2600, and 4060, corresponding to N = 20, 24, and
28. The full, dotted, and dashed curves are correspond-
ing fits to Brody distributions [21]. It immediately strikes
the eye that the curves are hardly distinguishable &om
each other. The small variation of q by about +0.05 has
practically no noticeable efFect. Thus for these cutofF di-
mensions the NNS distributions have already essentially
converged.

The distribution in Fig. 5 is very close to a Poisson dis-
tribution, while the one in Fig. 6 is practically a Wigner
distribution, usually associated with quantum chaos.

In principle the Brody parameter q might depend on
the spectral window chosen for the statistics. However,
the computations show that for a wide range of eigenval-
ues, which include up to 70% of the spectrum, the Brody
parameter is independent of the particular window. The
remaining eigenvalues have to be discarded anyway be-
cause of boundary efFects in the matrix resulting &om
the finite cutoff dimension.

There exist field parameters representing the whole
transition between Poisson and Wigner distribution. In
Fig. 7 we have plotted the Brody parameter q as a func-
tion of c~ and c~. For small c~ values q is very small and

For the resulting spectrum of the e s the average num-
ber of levels per unit interval is 1. The nearest-neighbor
spacings 8; are defined as

s' =e+y —e

and their distribution p(s) is defined through

e+Ae
Prob{some s; in [s, s+ b,s]) = p(s)ds. (18)

e

0.8-

o.e-

04

0.2-/

0.0

q D

0.94 1540
0.95 8800
0.94 4060

I

a.o
1

2.0

cg= 0.10 cy= 0.90

By definition p(s) is normalized and, because the average
number of levels per unit interval is 1, the distribution
p(s) has mean 1, i.e. ,

FIG. 6. Convergence of NNS distribution for increasing
cutoK The limit here is close to a signer distribution.
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0

0

filled up with increasing cutoff dimension. Moreover, not
only do eigenvalue levels appear but the previous ones
may change their position. It is a natural question to
ask if there are a sort of "stable" eigenvalues which do
not change their position or, if so, very little. Because
of the increasing eigenvalue density it is impossible to
keep track of an individual eigenvalue without some ad-
ditional label. Such a label can indeed be obtained by
not only considering eigenvalues but also eigenvectors.
However, with increasing cutoff the eigenvectors lie in
different subspaces 'R~, and so in turn their identifica-
tion is not quite trivial. To achieve this we introduce a
distance of two normalized vectors by

FEG. 7. The Brody parameter q for various values of c~ and
cs. For cs large the Brody parameter is close to 1 (Wigner
distribution).

If the distance is 0 the vectors differ only by a phase
factor; if it is 1 they are orthogonal and "far apart. " So
if we have an eigenvalue with eigenvector y, ' for cutoff
Ni we would, for a higher cutoff, associate it with an
eigenvalue whose eigenvector is closest to p, '. Thus we

have to know all eigenvectors p, ' and &p
' and compute

their mutual distances

(2o)

determines a distribution very close to a Poissonian. At
first sight this might seem to contradict the fact that
in the pure magnetic field case there is known to be
quantum chaos, i.e., q = 1. The explanation for this
"paradox" is very simple and as follows. For small elec-
tric fields the problem is almost symmetric around the
x3 axis, and there fore the magnetic quant um numb er is

approximately a conserved quantity. As a consequence
the spectrum consists of a superposition of nearly in-
dependent spectra for the various values of m. Such a
superposition, however, results in an essentially uniform
eigenvalue distribution and hence a Poissonian NNS.

Scaling properties of the classical Hamiltonian [22]
would suggest consideration of eigenvalues not on the
curves in Fig. 1 for constant c~ and c~ but on curves
for which

E=EB F = FB-'~'

are constant. This will not be done here because the
numerical effort for this is much larger and because we

do not expect any qualitatively different results.

V. IDENTIFICATION OF RESONANCES

For systems with purely continuous energy eigenvalues
the spectrum has in general no direct physical signifi-
cance but rather the resonances which are associated with
poles in the resolvent (Green's operator) and S matrix
and with experimentally observed optical spectra [11,23].
In this section we adapt the stabilization method [14] to
determine such resonances from our discretized spectra
of hydrogen in strong crossed electric and magnetic fields.

As demonstrated in Sec. III the discretized spectra are

where PN, just projects &om 'R~, to AN, . Thus upon
increase of the cutoff the eigenvector p, ' turns into an

eigenvector y - ' for which

Our computations have shown that such an association
is possible for nearly all eigenvectors. But calculation of
eigenvectors requires much more computer time, and so
we have restricted ourselves to lower values of the cutoff
N.

In Fig. 8 we have drawn narrow vertical columns for
various cutoff dimensions and have indicated the corre-
sponding eigenvalues as short horizontal lines in these
columns. Between the columns we have connected the
eigenvalues by straight lines according to the association
outlined above. What immediately strikes the eye is the
appearance of quite a number of horizontal straight lines

goirig through the figure. These are the "stable" eigen-
values we have been looking for.

From the study of model systems it has been suggested

[14] to identify the "stable" eigenvalues with resonances,
or rather with their real parts. In our case we can check
this for small fields by comparison with perturbation the-
ory. For the Stark effect it is known that perturbation
theory actually yields resonances [11]. For very small
field parameters and not too high cutoff dimension all
eigenvalues are "stable" in the above sense and agree with
the results of perturbation theory. Hence the identifica-
tion with resonances is justified in this regime.

With this identification of "stable" eigenvalues as reso-
nances we now discuss their qualitative behavior for var-

ious field parameters c~ and. c~. Here one has to distin-
guish the cases of dominating magnetic versus dominat-
ing electric field parameter. If c~ is small compared to
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distribution is generally regarded as a sign for "quantum
chaos. " If one accepts carrying this identi6cation over to a
continuous spectrum then we have demonstrated the ex-
istence of quantum chaos for hydrogen in perpendicular
magnetic and electric fields for certain field parameters.
It would be interesting to investigate the corresponding
classical system and check whether the trajectories be-
come chaotic for these field parameters. But such an
investigation is beyond the scope of this paper.

Finally, we have investigated "stable" eigenvalues in a
continuous spectrum and, following the ideas of the sta-
bilization method, have identi6ed them as resonances. If
correct this would allow a determination of resonances for
very strong fields when perturbation theory is not appli-
cable. This might be interesting for strong stellar fields.
It might also be used for resonance statistics, as opposed
to statistics of energy levels. It is presently not clear
what the connection between the two is, if there is any.
The above approach might contribute to a clari6cation
of this point. In this context it should be borne in mind
that in spectroscopic experiments one usually determines
resonances when the energy spectrum is continuous. For
the laboratory fields available until now this distinction
usually is, and can be, disregarded, since perturbation
theory is applicable, and not surprisingly only Poisson
statistics has been found for these relatively low 6elds
[24].

We suggest applying our approach also to other sys-
tems with a continuous energy spectrum, to check if it
works just as well as it does for the hydrogen atom in
crossed 6elds, and to study the connection between sta-
tistical properties of continuous eigenvalues with classical
trajectories. In this sense our paper poses more questions
than it answers, but hopefully it will stimulate further re-
search.

APPENDIX

The unperturbed hydrogen atom can be treated by
purely algebraic methods, based on the Lie algebra of
the dynamical group so(4,2) [25]. The basis elements of
the Lie algebra can be arranged as elements L g of a 6x6
antisymmetric matrix,

which obey the commutation relations

[L g, Ls, ] = iesL, , (A2)

j =rxp,
and the A s are defined by

1 1A:= —rp —p(r p) ——r.
2 2

'

A can be related to the quantum mechanical Runge-Lenz
vector. The six operators L;, A; form a basis for the Lie
algebra so(4) and describe the degeneracy of the unper-
turbed hydrogen energy levels.

The three operators T, are

Tg .= -(rp —r), T2.= r p —.i, Ts .= -(rp + r),~ = 1 2 .= . = 1 2

2
' ' '

2

(A4)

which obey the commutation relations of an so(2, 1) al-

gebra,

[Tg, T2] = —iTs, [T2, Ts] = i', [Ts, Tg] = iT2. (A5)

The commutation relations in Eq. (A2) then lead to

=1 2 1B = —rp —p(r p) + —r,
2 2

' (A6)

Not all of these operators are Hermitian in the usual
Hilbert space L2(Ks, dsz) of square-integrable functions,
but they become Hermitian in the space L2(Ks, dsz/r)
with the measure dszjr instead of the usual dsz. An
orthonormal basis in this space is

~
m, l, n) = 1V„~e "(2r) L„'+& ~(2r)Yj (8, $). (A7)

where (es) = (—1, —1, —1, —1, +1,+1). All remaining
commutators vanish. The L s are the components of
quantum mechanical angular momentum,

(L-s) =

( 0 Ls
-L, 0

-Ag -A2
—Bi -B2

( —Fg —F2

(A1)

L2 Ag Bg F—g )
Lg A2 B2 I'2
0 A3 B3 I'3

—A3 0 T2 Tg
—B3 T2 0 T3
-Fs Tg T3 0 )--

These can be obtained &om the usual hydrogen eigen-
functions by a scale transformation nU„where U„ is
given by Eq. (7). The labeling quantum numbers are
thus in the range m = —l, . . . , l, l = 0, . . . , n —1, and
n = 1, 2, . . . . The actions of some of the so(4,2) opera-
tors on these basis vectors are given by

L.
~

nl, )m

L
[

ln, )m

Ly (n, l, m)
Ts [n, l, m)
T'

[
ln, m)

T~ fn, l, m)

a. [n, l, m)

Ag /n, l, m)

= m ~n, l, m),
= l(l + 1)

~
n, l, m),

= gl(l + 1) —m(m+ 1)
~
n, l, m+ 1),

=n~ l, n),m
= l(l+ 1) ]n, l, m),
= Qn(n 6 1) —l (l + 1)

~

n + 1, l, m),
= c„~gl2 —m2 ~ n, l —l, m) —c„~+qg(l + 1)2 —m2

~
n, l + 1,m),

= +c~ ~y (l + m)(l ~ m —1)
~
n, l —1,m 6 1) + c~ ~+qg(l + m+ 1)(l + m+ 2)

~
n, l + 1,m+ 1),
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where c 0 ——0 and

n2 —l2

4l2 —1

These operators also allow the calculation of matrix elements for various combinations of space and momentum
operators by using their definitions and commutation relations. In particular one has

X5 B2, Ai 1 T T3 Tg P rP = Tq + T31 (AS)

and from this one finds rLs. The action of r(Xi2 + zzz) and rzi on a basis vector, needed in Eq. (7), yields linear
combinations of 21 and 20 basis vectors, respectively. These combinations can be calculated by the computer language
REDUGE to avoid misprints &equently occurring in the literature.
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