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Relativistic all-order many-body calculations of the n = 1 and n = 2 states of
heliumlike ions
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An all-order procedure is used to determine the energies of the n = 1 and n = 2 states of
heliumlike ions with nuclear charges in the range Z =3—100. The Coulomb energies and wave
functions are obtained from a no-pair Hamiltonian by an iterative scheme that sums all orders
of many-body perturbation theory. The Breit energy is determined by taking the expectation
value of the instantaneous Breit Hamiltonian between the Coulomb wave functions. Corrections
for the frequency dependence of the Breit interaction and for two Breit interactions are included.
Quantum-electrodynamic and mass-polarization corrections are taken from Drake s unified method
[Can. J. Phys. BB, 586 (1988)]. The resulting energies are complete through order (Zn) a.u. and
include new terms of order (Za) a.u. Comparisons are made with experiment and with recent
con6guration-interaction calculations.

PACS number(s): 31.10.+z, 31.20.Di, 31.20.Tz, 31.30.Jv

I. INTRODUCTION

The study of spectra of heliumlike ions has proven to
be useful for understanding relativistic and quantum-
electrodynamic (/ED) effects in many-body systems.
Because only two electrons are present, accurate so-
lutions to the nonrelativistic Schrodinger equation are
available. Again because there are only two electrons, it
is possible to treat heliumlike ious in a /ED framework
using the Bethe-Salpeter equation [1], which allows the
calculation of relativistic corrections of order (Zo. )z a.u.
together with /ED corrections of order (Zo.)s a.u. This
approach has been applied to n = 1 and n = 2 states for
the entire helium isoelectronic sequence by Drake [2] in
his unified method.

The unified method is known to be incomplete at
the level of (Zn)4 a.u. There are three sources of
(Zn)4 a.u. terms. The one considered here will be re-
ferred to as a "structure" contribution. This contribution
arises &om the solution to the relativistic version of the
Schrodinger equation (to be defined below). Any such
solution must reproduce the nonrelativistic energy and
the known (Zn)z a.u. corrections, but will also include
corrections of order (Zn)4 a.u. and higher. The second
and third are /ED corrections, the second being the or-
der Zcs corrections to the leading (Zn)s a.u. two-body
/ED correction, and the third being the two-loop Lamb
shift. For very-high-Z ions it is clearly preferable not to
expand in powers of Zn. Such expansions can be avoided
by reevaluating the Feynman diagrams that lead to @ED
corrections using exact electron propagators. While some
progress has been made in such calculations, as discussed
in the conclusion, they are at present incomplete. For this
reason we have chosen to use Drake's /ED values in this
work even for high Z with the understanding that they
should eventually be replaced with more exact calcula-
tions.

There has been considerable theoretical interest in this

problem. In addition to the unified method, there have
been calculations using many-body perturbation theory
(MBPT) [3], the configuration-interaction (CI) method
[4], multiconfiguration Dirac-Fock (MCDF) [5,6], and the
screened 1/Z expansion [7]. The present work is closest
in approach to Refs. [3,4], and good agreement between
the calculations is found.

The quantities calculated in this paper are the ener-
gies of n = 1 and n = 2 states of heliumlike ions in
the range of nuclear charge Z = 3 —100. The relativis-
tic generalization of the Schrodinger Hamiltonian is the
no pair Hainiltoni-an, derived from /ED [8]. We intro-
duce an iterative method for determining the eigenvalues
of this Hamiltonian based on an expansion of the wave
function in terms of products of the positive energy com-
ponents of a relativistic basis set [9]. The instantaneous
Breit interaction is treated as a perturbation. Frequency-
dependent corrections to the Breit energy are included to
first order along with the second-order effect of two Breit
interactions. Finite nuclear size effects are automatically
included in the present calculation by replacing the nu-
clear Coulomb Geld by the field of a distributed nuclear
charge. The nuclear charge distribution is modeled by a
Fermi distribution as described by Johnson and Soff [10].
Reduced mass is accounted for by using the Gnite-mass
Rydberg constant when converting &om atomic units to
cm . Corrections for mass polarization and @ED are
taken from Drake [2].

For triplet states, the numerical accuracy of our cal-
culations is 10 a.u. for Z = 3 —9, 10 a.u. for
Z = 10—28, 10 a.u. for Z = 30 —80, and 10 a.u. for
Z = 82 —100. For singlet states, the numerical accuracy
is the same as for triplet states for Z & 10; however, for
Z = 3 —9, the accuracy is reduced to 10 a.u.

The theory presented in this paper provides us with a
method for determining the "structure" part of the en-
ergy accurately for ions along the helium isoelectronic se-
quence. After including the /ED corrections calculated

1050-2947/94/49(5)/3519(12)/$06. 00 49 3519 1994 The American Physical Society



3520 D. R. PLANTE, W. R. JOHNSON, AND J. SAPIRSTEIN 49

by Drake [2], the only missing corrections to order (Za)4
a.u. are the (Za)4 /ED corrections mentioned above. As
the precision of high-Z experiments improves, the present

calculations should help in determining these as yet un-
calculated terms.

The plan of this paper is as follows. In Sec. II we
give a detailed description of the calculational method
used. In Sec. III, the energies for the seven n = 1 and
n = 2 states, namely the 1 Sp, 2 Sp and 2 P1, 2 S1,
2 Pp, 2 P1 and 2 P2 states, will be given along with a
comparison with results obtained. using the CI, MBPT,
uni6ed, and MCDF methods. Section IV concludes with
a discussion of limitations of the present calculations and
possible directions for future research.

where again the summation is restricted to positive en-

ergy states. Here b;~y~ are two-electron Breit matrix ele-
ments

where

~;,),) = (ijl b).2 lkl), (2.7)

CXy ~ CXg + Ay ~ I'12 Ag ~ @12

2T12
(2.8)

The no-pair Hamiltonian includes all corrections of or-
der (Zn)2 a.u. However, /ED corrections of order (Za)
a.u. arising from negative energy states are omitted; such
corrections must be calculated separately, as discussed in
[»l

A two-electron state vector describing an atomic state
with angular momentum J, M may be written

II. CALCULATION p'~ @'~ & (2.9)

A. Preliminaries

The starting point for relativistic many-body calcula-
tions is the no-pair Hamiltonian discussed by Sucher [8].
For a many-electron system, in atomic units (h = m =
e//47reo ——1), the no-pair Hamiltonian may be written
H = Hp + V + B. Here, Hp is the unperturbed Hamilto-
nian given in second quantized form by

II, =) e, ata, , (2.1)

where e; is an eigenvalue of the Dirac equation

hg; =e;Q, ,

with

h = co( ~ p+ (P —l)c + V„„,(r) .

(2.2)

(2 3)

(2.4)

where the sum is over positive energy states only. This
restriction implements the positive energy projection op-
erators used in Ref. [8]. The quantities g;i~~ in Eq. (2.4)
are two-electron Coulomb matrix elements:

In this equation, V„„,(r) is the Coulomb potential of the
nucleus incorporating the eKect of its Gnite size. The in-
dex i represents the set of one-electron quantum num-
bers: the principal quantum number n, , the angular
momentum quantum number r, [K, = p(j; + 1/2) for

j, = (l; + 1/2)], and the magnetic quantum number m, .
The Coulomb interaction V is given by

where the quantities p,~ are expansion coeKcients and
where the con6guration state vectors 4;~ are defined by

with

c;, =~,, ) (j,m, , j,m, lJM) ata,"lo),
mimj

(2.10)

1 ifigj
1/v2 ifi= j. (2.11)

( 1)j&+j~+J+1@ (2.12)

From this relation it follows that 4,, vanishes unless J is
even. The normalization condition has the form

(@JMl@&M) —) (2.13)

Substituting )I)'zM into the Schrodinger equation (Ho+
V))I)' JM —E@JM one obtains the following set of linear
equations for the expansion coeKcients p;~".

(e, + e, )p;, + ) rl;, V (xg; kl) re i px( = Ep.~ .
A:(L

(2.14)

Here

v (ij ; ai) = ) {—i)"+"+ +
I

i.' ~'
) xl. (ij k 1 )

L jl jk

The quantities p,~, C,~, and g;~ are all independent of
magnetic quantum numbers. Therefore, a particular i is
uniquely determined by n; and K, . To construct a state
of even or odd parity, one must require the sum /, + l~ to
be either even or odd, respectively.

From the symmetry properties of the Clebsch-Gordan
coefBcients, it can be shown that

1
g~I )

—— ij kl
T12

The Breit interaction B is given by

B = — b &y|I Q. G -QtGy,
2

ijkl

(2.5)

(2.6)

+Q( 1)' +j + j' jj
jk

xXr, (ij lk),

where the quantities AL, (ijkl) are given by

(2.15)
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XI (ii k~) = (—1)'(~'II&I.II~~)(~, II&I ll«)RI ('jk&) .

(2.i6)

The quantities (r;l]CI, ]]re) are reduced matrix elements
of normalized spherical harmonics; they are given by

(~']i&I ll~ ) = (—1)"+" [j']Ij~] I

;+i 2

(2.17)xII(t;, t, L),

where [j] = 2j + 1, and where II is a parity factor

1 1f lz + tj + I is even
0 if I;+ lj+ L is odd . (2.ia)

OO OO TL
RI, (ijkl) = dT1dT2 L+1

0 0 T)
x[G, (ri)GI, (ri) + E;(ri)EI (ri)]
x[Gg(&2)G~( 2) + +i(r2)&~( 2)] (2.19)

where G;(r) and I",(r) are the large and small coxnpo-
nents of the radial Dirac wave function, respectively.

We solve the eigenvalue problem in Eq. (2.14) itera-
tively, as described in the next section. Once the iteration
procedure has converged, the corresponding state vector
is used to determine the correction to the energy &om
the Breit interaction:

(2.20)

where Vg(ij; ki) is given by the formula for V(ij; kt) in
Eq. (2.15) with

The quantity RI.(ijkt) in Eq. (2.16) is a Slater integral
given by

(Ei —E)+ Vii = —).&uccsc,
K)1

(2.24)

and a set of equations for the remaining channels,

(EI —E) cI = VIi —)—VIx cd
K)1

I & i. (2.25)

The iterative solution of these equations follows a pat-
tern similar to Rayleigh-Schrodinger perturbation theory.
In the nth iteration we will have E(") = E1 + AE(
where E1 is the sum of the single-particle energies of the
two electrons of the dominant channel. The iterative so-
lution is begun by dropping the right-hand side of Eq.
(2.24) to obtain E~ ) = E + DEl l where AE~ l = Vii.
We continue the iteration with cI —— VIi/(EI —E—i),
for I & 1, from Eq. (2.25) as a first-order approxima-
tion for the expansion coefI1cients. Generally, in the nth
approximation, we obtain &om Eq. (2.24)

where EI = e, + eI-, and where VI~ = g;~V(ij;kl) rlI, ~

The sum over K includes all positive energy bound and
continu»m states. To bring this equation into a form
suitable for iteration, we separate out one or more "dom-
inant" channels to serve as an initial approximation, or-
dering the channels so that they occur first. Of the seven
n = 1 and n = 2 states considered, five are comprised
of a single dominant channel, namely, 1 S0, 2 S0, 2 S1,
2 P0, and 2 P2 for which a 1s1/2 electron is coupled to
a 1s1/2 2s 1/2 ) 2s1/2 2@1/2 y

and 2p3/2 electron, respec-

tively. The two remaining states, 2 P1 and 2 P1, are
mixed and consist of two dominant channels, with a 1s1/q
electron coupling to both a 2@1/2 and 2@3/2 electron.

We first consider the case of a single dominant channel,
I = 1. We choose c1 ——1 and cI ——0 for I & 1 as a
starting approximation and normalize our state vector
using intermediate normalization [13], so that ci ——1 at
all stages of iteration. The set of equations (2.23) may
be broken up into an equation for the dominant channel,

XI,(ijkl) -+ MI, (ijkl) + NL, (ijkl) + OI, (ijkl), (2.21)

where MI, (ijkt), NI, (ij kt), and OI, (ij kt) are the mag-
netic Slater integrals defined in Ref. [12]. The energy
determined by Eq. (2.20) includes only the contributions
&om a single instantaneous Breit interaction. Correc-
tions for frequency dependence of the Breit interaction
and for multiple Breit interactions are made separately.

B. Iteration procedure

~E( ) gE()+
K)1

and from Eq. (2.25)

cK
(n)

—) V~I.c&",K & 1.

AE "
cK —VK1

1 (~ 1) (~ 1)
K—

(2.26)

(2.27)

@JM = ) cI@I,
I

(2.22)

and the eigenvalue equation (2.14) can be rewritten as

EI CI + ) VIK cK —E CI i

K
(2.23)

For simplicity, we replace the pair of indices ij used
in the preceding subsection by the single channel index
I, and we denote @,j and p,~ by 41 and cI, respectively.
The two-electron state vector may then be rewritten as

This scheme differs somewhat from the Rayleigh-
Schrodinger perturbation expansion, in that terms of nth
order are not proportional to V". Therefore E( ) does
not correspond to the nth-order correction to the en-
ergy as defined by perturbation theory. Nevertheless,
the scheme converges rapidly to give a solution to Eqs.
(2.24) and (2.25). We continue the iteration above until
the energy converges to an accuracy of one decimal place
more than is quoted in the tables. When n is sufI1ciently
large so that this level of convergence has been reached
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we set AE = AE("), and refer to the sum E1 + AE as
the all-order Coulomb energy in the following.

For cases in which there are two dominant channels,
the first two of Eqs. (2.23) corresponding to the domi-
nant channels are written

(Ei E)ci + Vll ci + V12 c2 ) V1KcK i (2 28)
K&2

and

{n)
cK AEl" 'lc~~" —) VKJaj

K 0 J=l,2

—&'" ' ).VKIbJ
J=1,2

—).&iCICI. ")
L&2

(2.35)

(E2 —E)c2 + V21 ci + V22 c2 ———) V2KcK, (2.29)
K&2

while the equations corresponding to the remaining chan-
nels are written

Again, the iteration was continued until the energy con-
verged to one decimal place beyond what is quoted in the
tables. In this case the all-order Coulomb energy is equal
to Ep+ AE.

(EI E)cI + VIl cl + VI2 c2 = —) VIKcK
K&2

I &2.

(2.30)

I + A(")bl, I = 1, 2. (2.31)

This form is dictated by the intermediate normalization
requirement for the wave function. We set Eo ——(Ei +
E2)/2 and define AE = E —Eo. Then, we have as a first
approximation to the energy, AE( ) = E~ —Ep from Eqs.
(2.28) and (2.29). Similarly, the first approximation to
the expansion coefI1cients is given by

cK
(1) 1 ) VKIaI for K ) 2.

EK —Eo J=1,2
(2.32)

In the nth approximation, inserting Eq. (2.31) into Eqs.
(2.28) and (2.29) and using the orthogonality of the eigen-
vectors a and 6, it follows that

~E~"l = ~E~'l + ) a,v,K '" "
I=1,z
K)2

(2.33)

and

( —1)
E( 1) E / I IK cK

b
K)Z

(2.34)

where

Ignoring the contributions from the subdominant chan-
nels on the right-hand sides of Eqs. (2.28) and (2.29)
leads to a 2 x 2 eigenvalue equation for the expansion co-
efBcients c1 and c2 and the energy E. We designate the
two eigenvalues of this equation by E and EI, and the
corresponding orthonormal eigenvectors by a = (ai, a2)
and b = (bi, b2), respectively.

We may choose either of these two eigenstates to start
our iteration. To be specific, let us start with state a.
We then have as a lowest approximation c1 ——a1 and
c2 ——a2. At each step of the iteration, we expand the
coe%cients c1 and c2 in terms of the eigenvectors a and
6 as

C. Numerical procedure

For our calculations, we begin by using 50 positive en-

ergy basis functions formed &om B splines to obtain our
single-particle orbitals as described in Ref. [9]. We choose
a cavity radius of 60/Z a.u. , and find that small changes
to the size of the cavity produce negligible diH'erences to
the energy at the accuracy desired. We then compute the
energy AE( ) using the procedure described in the pre-
ceding section using the full basis set. The choice of 50
basis functions was the minimum needed to reduce basis
set dependence to below our quoted numerical accuracy.
However, to reduce computing time, a finite basis set
with 40 basis functions was used to iterate the all-order
equations to convergence. We then formed the energy

E+ —QE —AE( ), with the expectation that the ba-
sis set dependence of this quantity is not as sensitive as

the full energy. This was verified by evaluating E+ with
both the larger and smaller basis sets for several cases
and finding negligible differences in the results. The to-
tal Coulomb energy is then obtained by adding AE( )

evaluated with the large basis set to E+ and the lowest-
order energy, E1 or Ep, for the one- or two-channel cases,
respectively.

Even when using the smaller basis set, solving the all-
order equations is still computationally demanding, with
a single iteration taking as long as 10 CPU hours on a
Hewlett-Packard 720 workstation. A variety of approx-
imations were made to reduce computer time. We Gnd,
for example, that channels in which the orbital angular
momentum quantum numbers of the two electrons differ

by two or more, for example, an s1/2 electron coupled to
a d1/2 electron, contribute little to the energy, so these
channels are excluded from our computations. Also, since

only AE( ) and AE are needed in determining E+, we

may greatly decrease the computer time needed by in-

cluding all of the channels to obtain EE( ) but then only
using the erst few channels for the next several iterations.
We then include all of the channels again for the final it-

erations until convergence. Also, in obtaining E+, it is
often found that the contribution from the last five or
ten basis functions is negligible, depending on the state
and value of Z being calculated. For example, for 2 S1
and 2 P2 only 30 of the 40 basis states are needed for Z
= 10—40 while 35 to 40 states are needed for all of the
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singlet states in the same range of Z. For all states, the
full basis set is needed for Z ) 50.

The number of partial waves needed in summing over
L to deterxnine V(ijkl) and Vxx(ijkl) also depends on
the state and the value of Z. Motivated by the work of
Schwartz [14],we assume that the successive terms in the
suxn over angular momentum converge as (L + I/2)
The partial wave summation is carried out by summing
explicitly to a value L „, chosen high enough that the
asymptotic form is taken on, then using that form to
estimate the remainder kom I = I „+1 to L = oo.
For the Coulomb energy, we find that n 5 or 6 for the
triplet states while n = 4 for the singlet states. For the
Breit energy, we find that n 3.5—5 for the triplet states
while n 2—3.5 for the singlet states.

Because the partial wave expansions for singlet states
converge more slowly than those for triplet states, more
partial waves are needed for singlet states. We need L
= 7 for all states in the range 70 & Z & 80, and L
6 for all states in the range 80 & Z ( 100. Moreover, it
is necessary to use L „=7 or 8 for singlet states in the
range 10 & Z & 70, whereas L „=5, 6, or 7 suKces for
triplet states in this same range. For Z & 10, we need
L = 7 or 8 for all states.

III. RESULTS

In Table I, we present a detailed breakdown of our re-
sults for the ionization energies of the seven n = 1 and

n = 2 states for heliumlike ions with Z = 10, 20, 30,
..., 100. The third column gives the all-order Coulomb
energy, and the fourth column gives the all-order Breit
energy deterxnined from Eq. (2.20). The correction for
kequency dependence of the Breit interaction, DB& ) is
given in the fifth column. In the sixth colum~. the efFect

of two instantaneous Breit interactions B x B] is pre-
sented. For the single-channel cases, AB ~ is calculated
as described in Ref. [16], and [B x B] is evaluated in a
manner similar to that used to evaluate E~ ), with the
Coulomb matrix elements g;zgi replaced with Breit ma-
trix elements 6;~pi. The seventh and eighth columns show
the mass polarization and QED effects, respectively, as
tabulated by Drake [2], where the QED value for singlet
states has been modified in a way described below. Re-
duced mass is not included in the tables, but rather is
incorporated in the conversion to cm ~ or eV.

In the two-channel case, b,B( ) and [B x B] require
further discussion. We recall that in lowest order the
Coulomb energy is obtained by diagonalizing a 2 x 2
matrix. The ofF-diagonal matrix elements determine how

strongly the two channels are mixed. In order to treat
&equency dependence of the Breit interaction for the two-
channel case we first construct a 2 x 2 Breit matrix anal-
ogous to that for the Coulomb interaction. The lowest-
order instantaneous Breit energies for the two channels
are given by B = atBa and Bp ——btBb, where B is the
2 x 2 instantaneous Breit matrix, and where a = (ax, a2)
and b = (bx, b2) are the lowest-order Coulomb eigenvec-
tors in the respective channels. When the generalized

TABLE I. Ionization energies (in a.u. ) for n = 1 and n = 2 singlet and triplet states of heliumlike ions. Coulomb and Breit

energies are all-order values, b,Bi l is the first-order correction for frequency dependence to the Breit energy, [B x B] is the

second-order correction for two Breit interactions, MP is mass polarization as taken from Drake [2], and /ED is also from Ref.

[2] with (oZ) corrections already accounted for in the structure part of the energy subtracted.

Z State Coulomb Breit [B x B] MP /ED Total

10 2 Sg
2 Pp
2'R
2 P2
1 Sp
2'Sp
2 P

-10.685610
-10.332144
-10.328202
-10.319959
-43.961664
-10.310434
-10.062304

-0.000009
0.003962
0.001387
0.000223
0.010708
0.001906

-0.000406

0.000000
0.000000

-0.000002
-0.000004
0.000000
0.000000
0.000003

0.000000
-0.000005
-0.000004
0.000000

-0.000048
-0.000011
0.000000

0.000003
-0.000176
-0.000176
-0.000176
0.000033
0.000003
0.000169

0.000599
-0.000051
-0.000047
-0.000029
0.004610
0.000543
0.000004

-10.685017
-10.328414
-10.327044
-10.319945
-43.946361
-10.307993
-10.062534

20 2 S
2 Pp
2 Px
2 P2
1'Sp
2'Sp
2 'Pi

-46.593321
-45.843221
-45.782897
-45.611682

-188.635728
-45.764903
-45.Q72511

-0.000045
0.035760
0.010383
0.002042
0.096696
0.018240

-0.001142

0.000005
-O.OQ0013
-0.000057
-0.000129
0.000000
0.000014
O.OQ0105

-0.000002
-0.000077
-0.000130
-0.000002
-0.000433
-0.000100

Q.000092

0.000003
-0.000390
-0.000368
-0.000390
0.000035
0.000003
Q.Q00363

0.007396
-0.000409
-0.000353
0.000040
Q.Q549Q5

0.007072
Q.000189

-46.585964
-45.8Q8350
-45.773422
-45.610121

-188.484525
-45.?39674
-45.072904

30 2 Sx
2 Pp
2 Pg
2 Pg
1'Sp
2 'Sp
2'P,

-108.52615
-107.34636
-107.14754
-106.09106
-436.59161
-107.21557
-105.35310

-0.00015
0.12707
0.02262
0.00726
0.34170
0.06589
0.01020

0.00004
-0.00009
-0.00031
-0.00098
0.00000
0.00011
0.00068

-0.00001
-0.00039
-0.00086
-0.00001
-0.00161
-0.00039
O.Q0070

0.00000
-0.00057
-0.00041
-0.00057
0.00003
0.00000
Q.QOQ41

0.03068
-0.00127
-0.00118
0.00110
0.22029
0.02986
0.00154

-108.49559
-107.22161
-10?.12768
-106.08426
-436.03120
-107.12010
-105.33957
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TABLE I. (Continued).

State Coulomb Breit [BxB] QED Total

40 2 Sl
2 PQ

2 Pl
2 P2
1 'Sp
2 'SQ

2 'Pl

-197.83315
-196.16979
-195.81552
-192.00077
-792.12605
-195.99379
-191.08410

-0.00042
0.31372
0.03169
0.01781
0.83482
0.16352
0.04780

0.00015
-0.00033
-0.00076
-0.00412
0.00000
0.00044
0.00232

-0.00003
-0.00121
-0.00196
-0.00003
-0.00409
-0.00104
0.00155

0.00000
-0.00073
-0.00039
-0.00073
0.00003
0.00000
0.00038

0.08355
-0.00222
-0.00214
0.00518
0.57860
0.08204
0.00611

-197.74990
-195.86056
-195.78908
-191.98266
-790.71669
-195.74883
-191.02594

50 2 Sl
2 3P
2 Pl
2 P2
1 1S
2'Sp
2 P

-316.58?64
-314.36275
-313.86372
-303.69226

-1261.80395
-314.14992
-302.59145

-0.00106
0.63869
0.04100
0.03586
1.67421
0.33279
0.11536

0.00044
-0.00085
-0.00134
-0.01259
0.00000
0.00132
0.00619

-0.00008
-0.00296
-0.00317
-0.00006
-0.00846
-0.00222
0.00228

0.00000
-0.00086
-0.00037
-0.00086
0.00003
0.00000
0.00037

0.18264
-0.00139
-0.00130
0.01583
1.21558
0.18036
0.01742

-316.40570
313.73012

-313.82890
-303.65408

-1258.92259
-313.63767
-302.44983

60 2 Sl
2 Pp
2 Pl
2 P2
1'Sp

1S
2 'Pl

-467.80924
-464.91678
-464.28074
-441.63266

-1855.11862
-464.67248
-440.34795

-0.00247
1.15655
0.05257
0.06388
2.97236
0.60029
0.21708

0.00108
-0.00155
-0.00201
-0.03133
0.00000
0.00323
0.01434

-0.00015
-0.00622
-0.00460
-0.00012
-0.01528
-0.00414
0.00289

0.00000
-0.0O1O5
-0.00041
-0.00105
0.00003
0.00000
0.00040

0.35005
0.00582
0.00592
0.03863
2.22984
0.34699
0.04109

-467.46073
-463.76323
-464.22927
-441.56265

-1849.93167
-463.72611
-440.07215

70 2 Sl
2 Pp
2 Pl
2 P2
1 Sp

1S
2 'Pl

-655.82894
-652.14022
-651.37055
-606.41466

-2585.54043
-651.84714
-604.95462

-0.00531
1.94032
0.06608
0.10467
4.86393
1.00042
0.35771

0.00228
-0.00178
-0.00252
-0.06770
0.00000
0.00683
0.02989

-0.00029
-0.01180
-0.00633
-0.00021
-0.02523
-0.0070?
0.00340

0.00000
-0.00118
-0.00042
-0.00118
0.00003
0.00000
0.00042

0.61626
0.02875
0.02885
0.08161
3.74008
0.61254
0.08524

-655.21600
-650.18591
-651.28489
-606.29747

-2576.96162
-650.23442
-604.47796

80 2 Sl
2 Pp
2 Pl
2'P2
1'Sp

1S
2 'Pl

-886.91950
-882.30941
-881.40698
-798.76963

-3472.33934
-881.87824
-797.15101

-0.01069
3.09356
0.07918
0.16140
7.51789
1.58028
0 ~ 54102

0.00431
0.00044

-0.00219
-0.13189
0.00000
0.01294
0.05723

-0.00049
-0.02088
-0.00840
-0.00035
-0.03914
-0.01139
0.00369

0.00001
-0.00133
-0.00046
-0.00133
0.00003
0.00001
0.00046

1.02469
0.08501
0.08512
0.15572
5.89519
1.02052
0.16087

-885.90167
-879.15261
-881.25373
-798.58608

-3458.96537
-879.27588
-796.38774

90 2 Sl
2 Pp
2 Pl
2 P2
1 'S(
2 Sp

-1170.3770
-1164.8609
-1163.8255
-1019.5847
-4543.5514
-1163.9506
-1017.8336

-0.0205
4.7728
0.0864
0.2376

11.1581
2.4084
0.7685

0.0075
0.0099
0.0006

-0.2371
0.0000
Q.0224
0.1022

-0.0008
-0.0353
-0.0108
-0.0006
-0.0580
-0.0176
0.0038

0.0000
-0.0015
-0.0005
-0,0015
0.0000
0.0000
0.0005

1.6372
0.2070
0.2072
0.2752
8.8826
1.6329
0.2824

-1168.7536
-1159.9080
-1163.5426
-1019.3111
-4523.5687
-1159.9045
-1016.6762

100 2 Sl
2 Pp
2 'Pl
2 P2
1'Sp
2 Sp

-1520.5421
-1514.7521
-1513.5830
-1269.9244
-5841.4994
-1512.2125
-1268.0793

-0.0377
7.2338
0.0759
0.3366

16.0999
3.5914
1.0375

0.0120
0.0368
0.0094

-0.3996
0.0000
0.0361
0.1721

-0.0013
-0.0581
-0.0141
-0.0009
-0.0836
-0.0268
0.0035

0.0000
-0.0017
-0.0006
-0.0017
0.0000
0.0000
0.0006

2.5473
0.4530
0.4532
0.4576

12.9704
2.5433
0.4673

-1518.0218
-1507.0883
-1513.0592
-1269.5324
-5812.5127
-1506.0685
-1266.3983

Ref. [2j.
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TABLE II. Total ionization energies (in a.u.) for n = 1 and n = 2 singlet and triplet states of heliurolike ions.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
26
28
30
32
34
36
38
40
42
44
46
47
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100

2 Sg

-0.6107986
-1.2974536
-2.2346975
-3.4225604
-4.8612263
-6.5509613
-8.4920953
-10.685017
-13.130165
-15.828034
-18.779174
-21.984185
-25.443719
-29.158486
-33.129248
-37.356821
-41.842085
-46.585964
-51.589448
-56.853580
-62.379507
-68.168286
-80.539636
-93.978220
-108.49559
-124.10447
-140.81872
-158.65330
-177.62453
-197.74990
-219.04827
-241.54027
-265.24780
-277.56472
-290.19440
-316.40570
-343.90838
-372.73282
-402.91012
-434.47392
-467.46073
-501.90862
-537.86132
-575.36492
-614.46612
-655.21600
-697.67541
-741.90323
-787.96979
-835.94321
-885.90167
-937.9599
-992.1313

-1G48.5837
-1107.4216
-1168.7536
-1232.7146
-1299.4507
-1369.1323
-1441.9265
-1518.0218

2 Pp

-0.5277241
-1' 1750420
-2.0734244
-3.2225342
-4.6223725
-6.2731130
-8.1750086
-10.328414
-12.733687
-15.391312
-18.301761
-21.465625
-24.883485
-28.556044
-32.483990
-36.668101
-41.109281
-45.808350
-50.766235
-55.984001
-61.4627?1
-67.203442
-79.475864
-92.811520
-107.22161
-122.71846
-139.31554
-157.02749
-175.87011
-195.86056
-217.01728
-239.36028
-262.91108
-275.14655
-287.69270
-313.73012
-341.05000
-369.68122
-399.65455
-431.00333
-463.76323
-497.97269
-533.67325
-570.90957
-609.72981
-650.18591
-692.33437
-736.23610
-781.95744
-829.57017
-879.15261
-930.7906
-984.5774

-1040.6146
-1099.0172
-1159.9080
-1223.4249
-1289.7206
-1358.9663
-1431.3506
-1507.0883

2 Pz

-0.5277479
-1.1750946
-2.0734983
-3.2225911
-4.6223327
-6.2728452
-8.1743193
-10.327044
-12.731304
-15.387516
-18.296079
-21.457531
-24.872403
-28.541370
-32.465106
-36.644409
-41.080218
-45.773422
-50.725046
-55.936255
-61.407918
-67.142247
-79.401745
-92.726141
-107.12768
-122.61957
-139.21593
-156.93192
-175.78380
-195.78908
-216.96658
-239.33664
-262.92109
-275 ~ 17600
-287.74342
-313.82890
-341.20466
-369.90002
-399.94626
-431.37724
-464.22927
-498.54136
-534.35574
-571.71785
-610.67661
-651.28489
-693.60008
-737.68419
-783.60474
-831.43468
-881.25373
-933.1492
-987.2162

-1043.5582
-1102.2920
-1163.5426
-1227.4511
-1294.1727
-1363.8820
-1436.7719
-1513.0592

2 P2

-0.5277383
-1.1750270
-2.0732582
-3.2219723
-4.6210068
-6.2703318
-8.1699548
-10.319945
-12.720336
-15.371240
-18.272720
-21.424918
-24.827916
-28.481877
-32.386907
-36.543159
-40.950863
-45.610121
-50.521094
-55.684033
-61.099123
-66.766592
-78.859506
-91.964718
-106.08426
-121.22040
-137.37562
-154.55253
-172.75389
-191.98266
-212.24196
-233.53514
-255.86575
-267.42122
-279.23740
-303.65408
-329.11982
-355.63899
-383.21597
-411.85556
-441.56265
-472.34450
-504.19993
-537.14109
-571.17160
-606.29747
-642.52501
-679.86075
-718.31140
-757.88408
-798 58608
-840.4250
-883.4085
-927.5451
-972.8430

-1019.3111
-1066.9583
-1115.7940
-1165.8282
-1217.0707
-1269.5324

1'So
-2.779961
-5.655943
-9.532325

-14.409738
-20.288915
-27.170717
-35.056151
-43.946361
-53.842700
-64.746633
-76.659815
-89.584050

-103.521316
-118.473770
-134.443729
-151.433691
-169.446344
-188.484525
-208.551266
-229.649770
-251.783499
-274.955995
-324.432617
-378.112524
-436.03120
-498.22835
-564.74687
-635.63339
-710.93857
-790.71669
-875.02561
-963.93030

-1057.49844
-1106.05415
-1155.80244
-1258.92259
-1366.93888
-1479.94933
-1598.04815
-1721.33798
-1849.93167
-1983.94179
-2123.50855
-2268.77497
-2419.87609
-2576.96162
-2740.22939
-2909.84877
-3086.04309
-3269.00407
-3458.96537
-3656.2039
-3860.9789
-4073.5338
-4294.3025
-4523.5687
-4761.7311
-5009.2119
-5266.5222
-5533.9779
-5812.5127

2 'So
-0.540908
-1.185020
-2.078995
-3.223173
-4.617846
-6.263310
-8.159902

-10.307993
-12.708008
-15.360422
-18.265756
-21.424583
-24.837528
-28.505270
-32.428542
-36.608128
-41.044873
-45.739674
-50.693484
-55.907329
-61.382247
-67.119401
-79.385200
-92.715019
-107.12010
-122.61289
-139.20685
-156.91668
-175.75828
-195.74883
-216.90675
-239.25228
-262.80688
-275.04479
-287.59364
-313.63767
-340.96521
-369.60598
-399.59056
-430.95196
-463.72611
-497.95003
-533.66699
-570.92210
-609.76122
-650.23442
-692.40143
-736.32000
-782.05910
-829.68551
-879.27588
-930.9176
-984.6988

-1040.7093
-1099.0756
-1159.9045
-1223.3279
-1289.4886
-1358.5532
-1430.6851
-1506.0685

2 'Pi

-4.460516
-6.077303
-7.944584

-10.062534
-12.431376
-15.051280
-17.922486
-21.045164
-24.419541
-28.045?81
-31.924093
-36.054640
-40.437518
-45.072904
-49.960959
-55.101732
-60.495525
-66.141860
-78.194158
-91.259614
-105.33957
-120.43566
-136.54984
-153.68449
-171.84225
-191.02594
-211.23875
-232.48394
-254.76501
-266.29516
-278.08570
-302.44983
-327.86154
-354.32503
-381.84486
-410.42559
-440.0?215
-470.78968
-502.58336
-535.45877
-569.42164
-604.47796
-640.63398
-677.89610
-716.27108
-755.76588
-796.38774
-838.1441
-881.0431
-925.0922
-970.3004

-1016.6762
-1064.2287
-1112.9674
-1162.9017
-1214.0419
-1266.3983
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Breit interaction [16] is used to include frequency depen-
dence, there is an ambiguity as to which frequency to
use for the off-diagonal elements. The general Breit op-
erator, bq2(w), used in place of the instantaneous Breit
operator, Eq. (2.8), leads to a 2 x 2 Breit matrix whose
off-diagonal elements depend on the energy differences
of the 2pqg2 and 2p3g2 electrons with the 1szg2 electron,
which we refer to as ~q and cu2. We resolve this ambi-
guity by using the formulation suggested by Mittleman
[17]:

1
I 12(~) ~ [t 12(~1) + b12(~2)] ~

2
(3.1)

) ~ +I IK KJ+J
Eo —Ez

K&2

(3 2)

where Br~ = Vg(ij; kl) with VJs(ij; kl) defined as for Eq.
(2.20). The eigenvalues Eo and E~ and the eigenvectors
a = (aq, a2) are the same as for Eqs. (2.32) and (2.33).

In calculating [8 x 8] for one-channel cases, I = 1
and J = 1 in Eq. (3.2) and K ranges over values K ) 1.

We use the transformation given above for the instan-
taneous Breit interaction to obtain 8 (~) and Bs(u),
and we subtract the instantaneous contributions to ob-
tain AB~ ~.

For the [8 x 8] contribution, we refer to Eqs. (2.32)
and (2.33). Replacing the Coulomb matrix elements with
Breit matrix elements in these equations and neglecting
AE~ ~, we obtain the leading approximation for two Breit
interactions, namely,

For one-channel cases, all leading-order contributions are
given by Eq. (3.2). However, for two-channel cases, con-
tributions to the [8 x 8] energy from states with K ( 2
are not included in Eq. (3.2) and must be calculated
separately. These contributions are obtained by includ-
ing the Breit potential in Eqs. (2.28) and (2.29) when
solving the 2 x 2 eigenvalue problem. The difference in en-

ergy obtained using the complete no-pair Hamiltonian in
this 2 x 2 problem, and that obtained using the Coulomb
interaction and treating the Breit interaction as a pertur-
bation, gives the [8 x 8] contributions from states with
K & 2. These corrections have been included along with
those from Eq. (3.2) in the tabulated values of [8 x 8].

While the numerical value of the [8 x 8] term is small,
its partial wave expansion converges too slowly to per-
mit reliable estimates of remainders for the 1 So and the
2 Pq states at low values of Z. To overcome this diK-
culty we use the fact that the dominant contributions to
these energies are of order (Zo.) and (Za)4. Prom the
[8 x 8] energies computed at higher values of Z we de-
termine the coeKcients of these dominant contributions
using a least-squares fit. The low-Z [8 x 8] energies are
extrapolated using the coeKcients &om this fit. In Table
I, the [8 x 8] terms for Z ( 18 and Z ( 42 for the states
1 So and 2 Pq, respectively, have been determined by
extrapolation &om higher Z.

Turning to QED corrections, we note that the present
calculation includes (Zu) a.u. corrections for singlet
states. These arise from the second-order Coulomb en-

ergy, first-order Coulomb corrections to the instanta-
neous Breit interaction, and the term [8 x 8] However. ,

TABLE III. 2 Po—2 Sq transition energies (iu cm ' except for Z = 92 which are given in eV).
The quoted errors for the all-order (AO) energies do not include Drake's revised /ED error estimate
[24] for Z = 3, 4, and 5.

Z AO
3 18231.32(3)

CI
Ref. [4]

Drake
Ref. [2]

18231.303(32)

10 78263.2 78263.4 78265.9

12 95847
14 113809
16 132219

95848
113809
132219

95853
113820
132238

18 151155 151156 151186

26 233469
36 356822
92 252.79 eV

233471
356828
252.77 eV

233604
357330
256.63 eV

4 26864.61(3) 26864.617(89)
5 35393.59(3) 35393.608(30) 35393.666(207)
6 43898.7 43898.7 43899.0
7 52420.3 52420.4 52421.0
8 60978.6 60978.7 60979.6
9 69590.5 69590.8 69592.5

MBPT MCDF
Ref. [3] Ref. [6]

95848 95825
113809 113785
132219 132195

356823

Experiment
18231.303(l)
18231.30188(1
26864.6120(4)
35393.627(13)
43899(1)
52420.0(1.1)
60978.4(0.5)
69590.9(3.4)
69586.0(2.9)

78263.3 78244.6 78265.0(1.2)
78263.2(2.4)
78262.6 (3.0)
95850.6(7.3)
113815(4)
132218(4)
132198(10)
151160(7)
151204(9)
323558(550)

356911 357400(260)
254.58 eV 260.0(7.9) eV

Ref.

9) [26]
[27]
[28]
[29]
[30]
[30]
[31]
[32]
[30]
[33]
[34]
[»]
[35]
[36]
[35]
[38]
[37]

[4o)
[41]

The values for Z=3, 4, aud 5 have been updated [24].
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TABLE IV. 2 Pz —2 Sq transition energies (in cm ). The quoted errors for the AO energies do

not include Drake's revised /ED error estimate [24] for Z = 3, 4, and 5.

10

12

AO
18226.10(3)

26853.06(3)

3537?.37(3)
43886.2
52429.0

61037.3
69741.8

78563.8

96680

CI
Ref. [4]

35377.409(30)
43886.2
52429.1

61037.5
69742.1

78564.2

96681

Drake
Ref. [2]

18226.100(20)

26853.019(44)

35377.336(86)
43886.2
52429.2

61037.7
69742.4

78564.7

96683

Experiment
18226.108(l)
18226.11206(21)
26853.0534(3)
26853.1(0.2)
35377.424(13)
43886(l)
52428.2(1.1)
52429.0(0.6)
61037.6(0.9)
69739.9(3.4)
69743.8(a.o)
78565.7(1.8)
78566.3(2.4)
96682.8(5.6)

Ref.
[25]

[27)
[42]
[28]
[29]
[30)
[43]
[30]
[31]
[32]
[3o)
[aal
[31]

The values for Z=3, 4, and 5 have been updated [24].

the complete QED treatment of corrections of this order
is already included in the QED values given by Drake [2],
so these terms must be taken out. Their value is [18]

where

(, ))= (z (3 4)

We note that since (P(rq2)) = 0 for triplet states, con-
tributions of order (Zn)s are not present for these states.
The values of the constant c are 1/(8n), 6/(243 m), and
2/(243 m) for the states 1 Sopl 2~So, and 2~Pq, respec-
tively. In order to avoid counting the AEMB[(Za) ]
terms twice, we have subtracted them &om Drake's QED
values and listed the resulting difference in the sixth col-

TABLE V. 2 P2—2 Sz transition energies (in cm ). The quoted errors for the AO energies do
not include Drake's revised /ED error estimate [24] for Z = 3, 4, and 5.

Z AO
3 18228.20(3)

4 26867.90(3)

CI
Ref. [4)

Drake
Ref. [2]
18228.1S7(18)

26867.938(36)

8 61588.9
9 70699.6

61589.1
70699.9

61589.0
70699.8

10 80121.8 80121.9 80121.6

12 100252
14 122743
16 148496

100253
122743
148497

100253
122743
148497

18 178576 178578 178577

20 214170
22 256683
26 368742
28 441908
36 900009

214174
256688
368752
441920
900044

214172
256685
368745
441910
900012

5 35430.06(3) 35430.060(30) 35430.076(59)
6 44022.0 44022.0 44021.9
7 52720.0 52720.1 52720.1

MBPT
Ref. [3)

MCDF
Ref. [6)

100252
122743
148496

100236
122723
148472

178576 178546

214170
256683
368742
441907
900008

214136
256642
368692
441854
899983

80121.9 80110.2

Experiment
18228.198(1)
18228.19935(25)
26867.9484(3)
26867.9(2)
35430.084(9)
44022(1)
52720.2(7)
52719.5(6)
61589.7(5)
70697.9(3.5)
70700.4(3.0)
80123.3(8)
80121.5(6)
80121.1(1.9)
100263(6)
122746(3)
148494(4)
148493(5)
178584(10)
178591(31)
214225(45)
256746(46)
368976(125)
441950(80)
900010(240)

Ref.
[25]
[26]
[27]
[42]

[2s]
[30]
[4s]
[so]
[»)
[32]
[so]
[33]
[34]
[31]
[a5]
[36]
[35]
[38]
[37]
[44]
[45]
[391
[46]
[4o]

The values for Z=3, 4, and 5 have been updated [24].
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TABLE VI. 2 Ps —2 Pi transition energies (in cm except for Z = 28, 47, and 64 which are
in eV). The quoted errors for the AO energies do not include Drake's revised QED error estimate
[24] for Z =4 and 5.

z
4
5

6
7
8
9

10
12
28
47
64

AO
11.54(3)
16.22(3)
12.5
-8.7
-58.8
-151.3
-300.7
-833.1
-2.323 eV
0.801
18.571

CI
Ref. [4)

16.200(30)
12.5
-8.7
-58.8
-151.2
-300.8
-833.8
-2.325 eV
0.788
18.548

Drake
Ref. [2]
11.60(9)
16.33(21)
12.7
-8.2
-58.0
-150.0
-298.8
-829.1
-2.309 eU
0.933
19.082

MCDF

0.753
18.530

Experiment
11.5586(5)
16.203(18)
13.0(1.4)
-8.2(1.6)
-59.2(1)
-149.0(4.8)
-300.7(2.2)
-832.2(9.2)
-2.33(0.15) eV
0.79(0.04)
18.57(0.19)

Ref.
[27]
[28]
[29]
[30]
[30]

[30]
[31]
[47]

[»]
[48]

The values for Z=4 and 5 have been updated [24].

umn of Table I. Total energies are given in the final
column. In Table II, the total energies for all ions with Z
= 3—24 are listed. We do not list values for 2 Pq states
for ions with Z = 3—6, since the iteration scheme de-
scribed above did not converge for these states. For ions
with Z = 26—100, only even-Z ions are considered with
the exception of Z = 47, for which experimental data are
available [15].

In Tables III—VIII, we give transition energies for
which experimental results are available. Tables III—V
give energies for the transitions 2 P„—2 S~ for n=0, 1,2,
respectively. Table VI gives values for the fine structure
splitting 2 Pp —2 Py. Tables VII and VIII give the results
for the 1 Sp—2 Pq and 1 Sp—2 Pq transitions for which
K x-ray experiments have been performed. Comparison
is made between the all-order calculations, recent CI cal-
culations [4,19], the unified method of Drake [2], MBPT
calculations [3], MCDF calculations [6], and experiment.

We see that there is close agreement between the all-

order and MBPT calculations throughout. Since the
only corrections accounted for in the present method that
are not included in the MBPT calculations [3] are rela-
tivistic corrections of fourth and higher order, we expect

close agreement. Likewise, there is very good agreement
with the CI calculations throughout the isoelectronic se-
quence. The difI'erences between the CI and all-order
values are due to two corrections included in the CI cal-
culations that have not been considered here. The first
of these differences is for two or more Breit interactions.
The all-order values include only the second-order correc-
tion for two Breit interactions, while there are third- and
higher-order corrections included in the CI calculations.
The second source of diff'erence is from higher-order cor-
rections to the frequency-dependent Breit energy. We
include frequency dependence only to first order while
the CI calculations include it to higher order.

For the triplet states, agreement with the results of
Drake are in general good for the transitions 2 Pi —2 Sj
and 2 P2 —2 Sq, but are not as good for 2 Pp —2 Si and
the fine structure 2 Pp —2 Py. The disagreement comes
in particular from (Zn) 4 corrections missing from Drake's
values for the 2 Pp state. This issue has already been
carefully addressed in Refs. [3,4,20] and will not be fur-
ther discussed here. For the singlet states, agreement
between the present calculation and Drake is also fairly
good, though both fall outside of the experimental errors

TABLE VII. 1 So—2 'Pi transition energies (in eV).

z
16
18

19
21
22
23
24
26

32
36
54
92

AO
2460.630
3139.582

3510.46
4315.41
4749.64
5205.16
5682.06
6700.43

10280.19
13114.42
30629.7
100614

CI
Ref. [19]

3139.617

4749.71

5682.15
6700.54

10280.39
13114.70
30630.6
100616

Drake
Ref. [2]
2460.627
3139.577

3510.46
4315.40
4749.63
5205.15
5682.05
6700.40

10280.14
13114.34
30629.3
10060?

MCDF
Ref. [6]

3139.65

6700.60

13114.80
30630.8

Experiment
2460.649(0.09)
3139.553(0.038)
3139.6(0.25)
3510.58(0.12)
4315.54(0.15)
4749.74(0.17)
5205.27(0.21)
5682.32 (0.40)
6700.73(0.20)
6700.90(0.25)
10280.70(0.22)
13115.45(0.30)
30629.1(3.5)
100626(35)

Ref.
[49)
[50]
[»)
[52]
[52]
[52]
[52]
[52]
[52]
[53]
[54]
[55]
[56]
[57]
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TABLE VIII. 1 Ss—2 Pq transition energies (in eV).

Z
18

26
32
36
54
92

AO
3123.534

6667.57
10220.76
13026.05
30205.9
96172

CI
Ref. [19]
3123.574

6667.69
10220.98
13026.36
30206.9
96178

Drake
Ref. [2]
3123.530

6667.55
10220.73
13026.00
30205.6
96167

MCDF
Ref. [6]
3123.59

6667.75

13026.50
30206.5

Experiment
3123.522(0.036)
3123.6(0.24)
6667.50(0.25)
10221.80(0.35)
13026.8(3)
30209.6(3.5)
96171(52)

Ref.
50]
51]
[53]
[s4]
ss]
[s6
[S7

for Z = 26, 32, and 36 in the case of 2 Pq —1 Sp transi-
tions. For both the 2 Pg —1 Sp and 2 P~ —1 Sp tran-
sitions, both CI and MCDF are in better agreement with
experiment, though their values are uniformly larger for
all Z than are the all-order and Drake calculations and
are in worse agreement with experiment for Z = 18. We
also note that while the discrepancies with Drake for Z
= 92 are much smaller than the present experimental un-
certainties, they still amount to 7 eV for the 2 Pg —1 Sp
transition and 5 eV for the 2 Pq —1 Sp transition, and
will be significant for the next generation of experiments.

IV. DIRECTIONS FOR FUTURE PROGRESS

~L
Ig = dP dP ~ ~ T)P

PQ
(4.I)

When L is large this integral is dominated by the region
r' r, and one easily finds

One of the main drawbacks of MBPT and all-order
calculations, and the main source of numerical error in
the present work, is the fact that infinite partial wave
summations must be dealt with. One possible approach
to this problem is the use of asymptotic formulas. As
an example, one &equently encounters radial integrals of
the form

However, the errors of the present calculation are al-

ready substantially below experimental precision for a
wide range of high-Z ions. It is, in a sense, unfortunate
that agreement with experiment is as good as it is. This
is because the (Zn)~ a.u. /ED corrections referred to in
the Introduction are (now that the "structure" part of
the helium calculations has been understood) the most
interesting theoretical problem left for the helium iso-

electronic sequence. At present, the only calculations
of such terms are the recent work of Drake et al. [21]
in which contributions of order o.41no, a.u. are deter-
mined for Z = 2, and the work of Ref. [18], in which
(Zn)4 a.u. contributions associated with two photon ex-

change are evaluated for the ground state of heliumlike
ions. The next theoretical steps must be the extension
of the latter calculation to excited states along with the
evaluation of radiative corrections where a single pho-
ton is exchanged. We note that significant progress in
this direction has been made for alkalilike ions [22,23].
The two-loop Lamb shift must also be evaluated at some

point, but because loop expansions tend to involve extra
powers of a/vr, these latter corrections may be numeri-

cally small. Because no large discrepancies are presently
seen between theory and experiment, the investigation
of new /ED effects in the helium isoelectronic sequence
will require improving the experimental accuracies along
with new calculations.

2L+ 1
Ir, = drf(r, r).

L L+1 (4.2) ACKNOW'LED GMENTS

In this way large L limits can be calculated, though we
have not done this for the present calculation. If higher
accuracy is desired, such calculations would allow the an-
alytic summation of the leading 1/L dependence, which
should lead to much more precise extrapolations. Al-
ternatively, the basis set and numerical methods could
be extended to higher angular momentum, although this
would be extremely expensive in terms of computer time.
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