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In this series, the recently developed explicit formalism of orthogonally spin-adapted Hilbert space
(or state universal), multireference (MR) coupled-cluster (CC) theory, exploiting the model space
spanned by two closed-shell-type reference configurations, is applied to a simple minimum-basis-set
four-electron model system consisting of two interacting hydrogen molecules in various geometrical
arrangements. In this paper, we examine the nonplanar geometries of this system, generally referred
to as the T4 models, and their special cases designated as P4 and V4 models. They correspond
to difFerent cross sections of the H4 potential-energy hypersurface, involving the dissociation or
simultaneous stretching of two H—H bonds. They involve various quasidegeneracy types, including
the orbital and configurational degeneracies, the twofold degeneracy of the ground electronic state
and interesting cases of broken-symmetry solutions. We employ the CC with singles and doubles
(SD) approximation, so that the cluster operators are approximated by their one- and two-body
components. Comparing the resulting CC energies with exact values, which are easily obtained for
these models by using the full configuration-interaction method, and performing a cluster analysis of
the exact solutions, we assess the performance of various MRCC Hilbert-space approaches at both
linear and nonlinear levels of approximation, while a continuous transition is being made between
the degenerate and nondegenerate or strongly correlated regimes. We elucidate the sources and the
type of singular behavior in both linear and nonlinear versions of MRCC theory, examine the role
played by various intruder states, and discuss the potential usefulness of broken-symmetry MRCCSD
solutions.

PACS number(s): 31.15.+q, 31.20.Tz, 31.50.+w, 03.65.Ge

I. INTRODUCTION

Recently, we have initiated an exploration of the feasi-
bility and potential of the Hilbert space or state univer-
sal multireference (MR) coupled-cluster (CC) formalism
[1—14] in describing many-electron correlation effects for
a group of low-lying electronic states of a given sym-
metry species over a wide range of nuclear geometries
encompassing both highly quasidegenerate or degener-
ate and nondegenerate regimes. Following the initial
orthogonally spin-adapted formulation of a linear ver-
sion of this method for the simplest possible case in-
volving two active orbitals of different symmetry, lead-
ing to a two-dimensional model space [2], we have ex-
tended the method to a fully quadratic version taking
into account one- and two-body cluster components rel-
ative to each model space configuration [5,9] and applied
it to a simple minimum-basis-set (MBS) model consisting
of four hydrogen atoms in various nuclear con6gurations
[5,10,14] (see also Refs. [6,7]). This simple model, consist-
ing essentially of two interacting and slightly stretched H2

molecules in different mutual orientations, was initially
used [15] to examine the performance of standard single
reference (SR) CC theory in cases when the reference con-
figuration employed becomes (quasi)degenerate with the
lowest biexcited configuration. One of the main assets
of this model, in addition to its great simplicity that en-
ables one to obtain exact solutions for a large number of
geometries using the full configuration-interaction (FCI)
procedure, is the ability to continuously vary the degree
of quasidegeneracy &om the fully degenerate limit to an
entirely nondegenerate situation, using a single parame-
ter defining the geometry of the H4 cluster considered.
This is the reason why this model was extensively ex-
plored to examine the performance of various SR as well
as MR methods [16—22].

In the first part of this series [14],subsequently referred
to as paper I, we presented a detailed study of the four
planar H4 models with the nuclei arranged in an isosceles
trapezoidal (H4 model), rectangular (P4 model), linear
(D4 model), and square (S4 model) configurations (see
Fig. 1 of paper I). In this way we were able to exam-
ine the performance of various MRCCSD (coupled clus-
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ter method involving singly and doubly excited clusters
relative to a given reference configuration) methods, in-
cluding linear approximation (L-MRCCSD), when mod-
eling the dissociation of one, two, or all four single H —H
"bonds. " Although the linear approximation was found
to perform well in degenerate situations, it suffered &om
a singular behavior due to various intruder states. How-
ever, the quadratic version of the MRCCSD theory pro-
vided excellent results over the whole range of nuclear
configurations explored, except in cases where the two-
dimensional model space was clearly lacking the ability
to describe the dissociation process under consideration.

In this paper we extend our study to various nonplanar
H4 models that again involve a stretching and/or a disso-
ciation of two H—H bonds. These models represent addi-
tional cuts of the H4 potential-energy hypersurface that
can be described —at least in principle —by the same two-
reference MRCC theory [2,5,9,10,14] and enable us to ex-
plore in greater detail the role of the symmetry breaking
not only at the one-electron level of a,pproximation but
also at the CC level. We shall explore the performance of
various versions of the MRCCSD method, including the
linear approximation.

In this work we again systematically exploit the re-
stricted Hartree-Fock (RHF) molecular orbitals (MO's).
In fact, all the models investigated in this paper pos-
sess a sufficiently high spatial symmetry that completely
determines the RHF MO's, as long as we rely on the
MBS models. One advantage of this fact is that these
MO's represent simultaneously Brueckner (or maximum
overlap) orbitals, so that monoexcited Ti clusters auto-
matically vanish. Moreover, in view of the hole-particle
symmetry of the MBS models, the triexcited clusters T3
vanish as well. We are thus left with the most impor-
tant pair clusters (T2) and quadruply excited clusters
(T4). In this way we can extricate the most essential
cluster eKects in a clean and natural way, although we
are well aware of the limitations of our model. Indeed,
we intend to explore not only larger basis sets (double
zeta plus polarization, etc. [19]) that are essential for a
successful modeling of real systems [23], but also other
than RHF-type MO's, such as multiconfiguration (MC)
self-consistent field (SCF) MO's. Of course, when using
the MC SCF MO's, it would be most efBcient to start
not with individual configurations spanning the model
space but, in fact, with the MC SCF ¹electron states
themselves that already provide an excellent description
in most cases of interest. Although some initial steps in
this direction were made using the unitary group formal-
ism [24—27], the general procedure of this kind is yet to
be developed. We thus restrict ourselves in this work to
the RHF MO's.

We first present a very brief outline of the MRCC
method employed in Sec. II. The studied models and
computational details, including a rather detailed dis-
cussion of the role of orbital and configurational degen-
eracies and of the symmetry breaking, are the subject of
Sec. III. The main results and their discussion are pre-
sented in Sec. IV, while Sec. V summarizes the main con-
clusions concerning the performance of various approxi-
mations employed.

II. MULTIREFERENCE HILBERT-SPACE
COUPLED-CLUSTER THEORY:

GENERAL STRUCTURE OF MRCC EQUATIONS
AND METHODS EMPLOYED

P = ) Pq ——) Pq, Pq ——~4~)(4~~,

Q= 1 —P, (2)

and introduce the model space projections of the exact
states ~4„),

We assume that ~4'„) are linearly independent (even
though usually not orthogonal) and span Mo.

The key concept of MRCC theories is a wave operator
U (referred to as the Bloch wave operator [29]), which

In any MRCC formalism one first selects a suitable set
of configurations ~4„), p = 1, . . . , M, that is capable of
providing a reasonable zeroth-order approximation for a
group of M exact solutions ~@„),p = 1, . . . , M, of the
electronic Schrodinger equation over the required range
of nuclear geometries. This is accomplished by partition-
ing the employed spin orbital or molecular orbital set into
the three disjoint subsets of core, valence (or active), and
virtual (or excited) (spin) orbitals. The reference config-
urations ~4'„), p = 1, . . . , M, dier in the occupancies
of valence (spin) orbitals, while having core and virtual
(spin) orbitals completely occupied and unoccupied, re-
spectively.

The complete model space Mo [1], Mo ——span(~4'„):
p = 1, . . . , M), which we shall employ in this paper, is
a subspace of the ¹ lectron Hilbert space 'R~ spanned
by the reference configurations [4'„),p = 1, . . . , M, which
correspond to all possible distributions of valence elec-
trons [electrons occupying valence (spin) orbitals] among
valence (spin) orbitals. It is invariant under unitary
transformations of valence (spin) orbitals. In the pres-
ence of spin and spatial symmetries, PHD factors into a
direct sum of invariant subspaces, each of which may
serve as an independent model space that is complete
for the symmetry species considered [11] (cf. paper I of
this series, Ref. [14]). We thus use Mo to designate
any invariant subspace of the model space that is rele-
vant to a given problem. The completeness requirement
is essential for theoretical developments that follow. In-
deed, the completeness of MD implies the connectivity
of cluster operators and of the eH'ective Hamiltonian, so
that the resulting MRCC formalism leads to a size exten-
sive description of many-body systems [1]. It should be
emphasized, however, that it is possible to obtain a size-
extensive MRCC theory that employs incomplete model
spaces (cf., e.g. , Refs. [4], [13], and [28]).

Once the reference configurations ~4„) have been se-
lected, we define projection operators onto MD and its
orthogonal complement Mo (with respect to the X-
electron Hilbert space RN), which we designate by P
and Q, respectively,
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transforms the model states [4„)into the exact solutions

I~.)
(4)

and annihilates any state from the subspace JHO. We
find that U, just like the projector P, is idempotent and
satisfies the relationships

PU=P,

pure electronic Hamiltonian.
Different An86tze for the wave operator U lead to dis-

tinct MRCC methods [1,11,43]. In the present paper we

employ the Hilbert-space approach [1], in which U is rep-
resented as a superposition of exponential operators cor-
responding to individual reference configurations ~4„),

U=) e Pq.

Thus the exact states ~@„),p, = 1, . . . , M, are expressed
in the form

and

Ul@~) = I@~).

) = ) cq~e [4q) .

Relationship (5) is equivalent to the condition of inter-
mediate normalization, which in the MR case requires
that

Just as in the SRCC theory, cluster operators T(") are
expanded in terms of a conveniently chosen set of exci-
tation operators (»G;,

(4 i@,) = b (p, q = 1, . . . , M),

where the ket states

l~ ) = Ul@ )

span the same subspace of the N-electron Hilbert space
'R~ as the exact wave functions [ill„), p, = 1, . . . , M.

The Bloch operator U represents the MR generaliza-
tion of the wave operator W = e ~4o)(Oo[ of the SRCC
theory [11,30—38]. In particular, it satisfies an energy
independent equation

T(» — (»g. (J)G.

Completeness of the model space Mo implies that both
the operators (»G; and the corresponding cluster ampli-
tudes irlt; carry at least one nonvalence (i.e., core or
virtual-type) label [1]. For every model configuration

~4„) we have a distinct family of operators ~»G; and

a distinct family of cluster amplitudes (")t;.
The matrix elements of the effective Hamiltonian that

determines the expansion coefBcients cq& and the energies
E„,Eqs. (12) and (13), are evaluated as

UHU = HU, (10) H'" = (@„~e He ~C,),

usually referred to as the generalized Bloch equation
[1,11,29,39—42]. Once this equation is solved, the un-

known states [4'„), and the corresponding energies E„
that are associated with the exact wave functions [@„),
are determined by diagonalizing the efFective Hamilto-
nian

whereas the generalized Bloch equation (10), which is
needed to find the unknown cluster operators T("), takes
the form of a highly nonlinear system of coupled algebraic
equations for (&)t;,

(~»G;C„~e He ~4„)

H = PHU = PHUP

within the model space Mo. Thus the problem of solv-
ing the Schrodinger equation for a finite number of eigen-
states ~@„)reduces to a finite-dimensional secular prob-
lem

) (H;, -S„,E„)c,„=o, (12)

where

H' = (4~~H'~~4, ) = (4~[HU)4q) (13)

and

c~~ = (@el@~)= (@'~lo~) (14)

The coefBcients cq~ represent linear expansion coefti-
cients of functions [4„) with respect to the model con-
figurations ~4„), p = 1, . . . , M. Throughout the paper
we shall assume that the internuclear repulsion term is
excluded from the Hamiltonian, so that H represents the

= ) (~»G,e„~e-~"'e~"[e,) H;,'
q (8»

(p = 1, . . . , M) . (19)

The left-hand side of the above system, which is essen-
tially identical with that of the SRCC method (with ~4„)
as a reference and other reference configurations excluded
from the excited-state manifold), is referred to as the di-
rect term, whereas the right-hand side of Eq. (19), which
has no counterpart in the SR case, represents the so-
called coupling term.

It was proved (cf. Ref. [1]) that the MRCC inethod,
defined by Eqs. (19) and (12), with the efFective Hamil-
tonian matrix elements given by Eq. (18), leads to con-
nected expansions for the cluster operators T("), so that
the resulting energies E„are size extensive. We can thus
consider several approximate variants of the MRCC for-
malism, obtained by neglecting either the higher nonlin-
ear terms in Eqs. (19) and (18), or higher many-body
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components in expansion (17) (cf. Refs. [1—11,14,44]),
without introducing disconnected terms into the H'~,
i.e., without losing the size extensivity of the resulting
approximate energies.

In the present paper, similarly as in paper I [14], we

employ the CCSD approximation, so that the cluster op-
erators T~"~ are approximated by their one- and two-body
components T~" and T2", respectively. Moreover, we ne-
glect cubic and higher-order nonlinear terms in Eq. (19),
while using the full expansion for the effective Hamilto-
nian matrix, Eq. (18). The only exception is the lin-
ear version of the MRCCSD formalism (L-MRCCSD), in
which the oH'-diagonal elements of the effective Hamilto-
nian matrix H'„(q g p) that enter linear coupling terms
are approximated by matrix elements H~p = (C~IHI@p)
in order to preserve the linearity of the resulting equa-
tions.

We restrict ourselves to the simplest possible case of
a two-dimensional model space, spanned by closed-shell
(CS)-type configurations IC'i) and I@2) involving two ac-
tive orbitals lk) and IE) that belong to diferent symmetry
species of the spatial symmetry group of the system con-
sidered. As explained in Ref. [2] (cf. also paper I of this
series), such a model space is complete, assuming that
we focus our attention on the totally symmetric singlet
states. When cubic and higher-order nonlinear terms are
neglected, the corresponding two-reference CCSD equa-
tions take the following form [2,5,9,10,45] (see also paper
I):

) L(P) (Gt) ) Q(P) (Gt)

) R(P)(Gt) + ) - B(P) (Gt) + B(P)(Gt)

(n(n~)

L (Gt) = (@pl(")G,HI@p),

L.'"'(G,') = (@ I'"'G'[H T."ll@ ) (22)

Q.".(G') = (1+~..) '(C.I(")G'[[H, T."],T."']IC.),
(23)

and the linear and bilinear coupling terms by the formu-
las

R P (G ):(4 pl
P GtT ~'ICq)H (24)

(p = 1,2). (20)

Here G;:—~"~G, designate at most biexcited operators
relative to IC„) that generate totally symmetric singlet
configurations from Mo+. The absolute, linear, and bi-

linear direct terms Lo" (Gt), L„(Gt) (n = 1, 2), and

Q„"„,(G, ) (n, n' = 1, 2, n ( n'), respectively, are given by
the well-known SR-like expressions

B.'".'(G,') =
2 (@pl'p'G,'(T-"')'I@.)H;,'

Bi2'(G,') = (Opl'"'G'T2"'(Ti"' —Ti")
I
C'~) H'"

Bi2 (Gt) = (C pl(") G [T ) T" ]leg) H'"

(25)

(26)

(27)

where in the latter four equations q = 3 —p. Since in
our case IC'2) is a doubly excited configuration relative
to l@i) and vice versa, i.e.,

I+.) = "G"(0)IC ), I+.) = "G""(0)IC.) (28)

where, in general, (P)GP&(i), i = 0, 1, designate the
particle-particle —hole-hole coupled biexcitation operators
of the orthogonally spin-adapted formalism [2,5,9,45]
(here and in the following text, o. , P, etc. designate or-
bitals occupied in IC'„), while p, o', etc. label orbitals
unoccupied in l@p)), the off-diagonal elements of the ef-
fective Hamiltonian, which enter Eqs. (24)—(27), involve

at most quartic terms, namely (Ti )4. The diagonal el-
ements H„'~, which together with the off-diagonal terms

H'„, p = 1, 2, q = 3 —p, are needed to solve the corre-
sponding 2 x 2 secular problem, Eq. (12), are identical
to corresponding SRCC expressions for the energy and
involve at most quadratic terms (Ti" ) .

Explicit, orthogonally spin-adapted expressions for the
quantities given by Eqs. (21)—(27), and for the effec-
tive Hamiltonian (18), in terms of cluster amplitudes,
are given in Refs. [2,5,9,45]. They were obtained inde-
pendently by exploiting both the replacement operator
technique [46] and the diagrammatic procedure based on
graphical methods of spin algebras [32,47].

Formulas (20)—(27), together with Eq. (12) and the
pertinent expressions for the effective Hamiltonian ma-
trix elements [2,9,45], represent basic expressions of
the fully quadratic MRCCSD formalism, hereafter re-
ferred to as the MRCCSD-3 method (see paper I). As
in paper I, we also consider two additional approxi-
mate variants of the nonlinear MRCCSD approach, des-
ignated as MRCCSD-1 and MRCCSD-2 methods, as
well as the linear L-MRCCSD method arising by ne-

glecting the nonlinear terms Q„"„,(Gt), B„"„,(G, ),tand

BiP2 (Gt) in Eq. (20). We recall that MRCCSD-1 equa-

tions are obtained by setting Qii (G, ) = Qil (G;)
B„„,(G, ) = Bi2 (Gt) = 0 in system (20). Thus
the only nonlinear term considered in the MRCCSD-1
method is the direct z(T~~")) terin Q2(2)(G,. ). Finally,
the MRCCSD-2 approximation considers pair-cluster in-
teractions in both direct and coupling terms, namely,

Q2(2)(G;) and B2(z)(Gt), while neglecting the remaining

bilinear terms Qi" (G ) Q" (G;), Bii (G. ) B"(G. )
and Bi2 (G;) (cf. paper I and Ref. [10]). Thus, the
MRCCSD-1 approximation enables us to test the role of
disconnected tetraexcited clusters 2(T2" ) in the direct
term, whereas the comparison of the MRCCSD-2 and
MRCCSD-3 methods allows us to assess the role played

by nonlinear terms involving monoexcited clusters Tz" .
Whenever the monoexcited clusters Ty vanish, there is
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no difference between the MRCCSD-2 and MRCCSD-3
approximations and the resulting approach is designated
by the acronym MRCCSD-2, 3. In fact, this is always the
case for the nonplanar models examined in this paper.

In paper I, we applied the above described
MRCCSD schemes to several MBS four-electron model
systems consisting of two interacting hydrogen molecules
in planar geometrical arrangements. In the present pa-
per we concentrate on nonplanar geometries of the same
model system. A description of nonplanar models stud-
ied in this paper, as well as of computational details as-
sociated with the use of the orthogonally spin-adapted
two-reference CCSD formalism in this case, are given in
the next section.

III. MODELS EMPLOYED
AND COMPUTATIONAL DETAILS

A. Model description

Iy
---il2 zJ(

a%= Q

(a)
4

;; —iI2

8 7

As in paper I, we study a prototypical molecular sys-
tem for which the range of the configurational and or-
bital quasidegeneracies [48] continuously varies with ge-
ometry and which is simple enough to enable numerous
computations using different methods including the FCI,
providing the exact solution. The model consists of two
interacting hydrogen molecules in various geometrical ar-
rangements.

The first model that we investigate, designated as T4,
is obtained from the P4 model of paper I (having the
rectangular geometry [cf. Fig. 1(a)]) by rotating one of

the H2 molecules with respect to the other about the C2
axis passing through their centers by angle 8, while keep-
ing the intermolecular separation (designated as xx in the
P4 model) fixed at a chosen value R, as schematically
shown in Fig. 1(b). The H—H bond length of both hy-
drogen molecules is fixed and equal to a. To enhance the
quasidegeneracy effects, and thus to make a comparison
of the MRCCSD results with the FCI data more demand-
ing (in view of the increasing role of configurations Rom
Mo ), we consider slightly stretched hydrogen molecules
with a=2.0 a.u. [5,10] (cf. paper I). We vary the rotation
angle 8 in the interval [0, n'/2] and we define the angular
parameter n = 8/z, so that a F [0, z], as indicated in
Fig. 1(b). Thus, for every intermolecular distance R, we
have a single parameter o. describing the geometry of the
model, as for the previously defined planar models in pa-
per I. Proceeding from the planar rectangular conforma-
tion (a = 0) to the maximally twisted perpendicular one
(a = 2), we obtain a cross section of the H4 potential-
energy surface involving a simultaneous stretching of two
chemical bonds H(1)—H(4) and H(2) —H(3). Recall that
the n = 0 geometry of the T4 model corresponds to the
P4 model of Jankowski and Paldus [15]with the P4 inter-
molecular distance n equal to R [cf. Figs. 1(a) and 1(b)],
which was employed to study a simultaneous breaking of
two chemical bonds H(1)—H(4) and H(2)—H(3) when the
P4 paraxneter n )) a [cf. Fig. 1(a)]. Moreover, as shown
in paper I, it is also instructive to study the highly de-
generate compressed case when the P4 parameter o. & a
(see Secs. IIIB and III C).

Another interesting type of dissociation of the H4
molecular cluster is achieved when we consider the max-
imally twisted (a = 2) geometry of the T4 model and
vary the intermolecular separation R. The resulting V4
model is illustrated in Fig. 1(c). In analogy to the P4
model, the intermolecular distance R is now designated
by o;. As we shall explain in Secs. IIIB and IIIC, it
is again instructive to study the o. -+ oo limit and the
region of small values of n. Note that for the V4 model
with n = a/~2, the nuclei forxn the vertices of a regular
tetrahedron (Tq).

As in paper I, we restrict ourselves to MBS models with
one 1s-type atomic orbital [49] located on each hydrogen
nucleus (the same basis was employed in Refs. [5,6,10,15—
18,20,21]). Computations with larger basis sets, includ-
ing the double zeta plus polarization (DZP) basis [19]
(cf. also Refs. [6] and [22]), reveal that the MBS models
display all the qualitative features involved [such as the
singular behavior of the linear CC (L-CC) approaches
[5,10,15,19] and the role of various terms arising in the
theory [10,15]] and provide us with a good quantitative
estimate of the performance of various approximate pro-
cedures when compared with the corresponding FCI re-
sults. Nonetheless, in spite of all these useful features of
the MBS H4 models, we must keep in mind their inherent
limitations.

B. Reference configuration and orbitals

FIG. 1. Nuclear configurations and definition of the pa-
rameters R and n for the (a) P4, (b) T4, and (c) V4 models.

To define our model spaces we employ restricted
Hartree-Fock MO's. Just as in the P4 case, these are
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fully determined by the D2 symmetry group of the T4
model, so that

&'= '(»+(—1)' ' 'X +(—1)"'X
+(-1)"~.), (* = 1, , 4), (29)

e(D2g) $ D2 ——b2 8 bs .

Similarly, for the tetrahedral geometry, orbitals P2, Ps,
and P4 span three one-dimensional irreducible represen-
tations of D2, bq, b3, and b2, respectively, or b2 and e
irreducible representations of D2g, or, anally, a single
three-dimensional irreducible representation t2 of T~, in
agreement with relations

t2(T~) 4 Du = b2 e,

b2(D2g) $ D2 ——bi,

(31)

(32)

where [x] designates the largest integer not exceeding z
(Gauss symbol) and y~. (j = 1, . . . , 4) represents the ls
atomic orbital centered on the H(j) nucleus (cf. Fig.
1). Moreover, for the V4 model, as ——u4, so that or-
bitals P;, Eq. (29), are adapted to the chain D2 C D2d, ,
the latter group being the symmetry group of V4. It is
easy to verify that in this case the coefficients as = a4
do not depend on the intermolecular distance o. and are
only a function of the overlap (yi~y2) = (ys~y4). For
the tetrahedral geometry of V4, arising when n = a/V 2
[cf. Fig. 1(c)], we have that a2 ——as ——a4, so that the
orbitals p; are adapted to the chain D2 C D2g C Td, .
Thus orbitals (29) of the V4 model can be classified ei-
ther according to the irreducible representations of D2,
which is the symmetry common to all the models studied
in this paper, or according to Dqg. For the tetrahedral
geometry, we can even use Tq For t.he P4 model (or T4
with a = 0), orbitals (29) can be classified according to
the irreducible representations of D2 or D2h, , the latter
being the symmetry group of P4. Finally, for the square
geometry of the P4 model (the so-called S4 model [14]),
c2 ——a3, and the corresponding MO's are adapted to the
chain D2 C D2h, C D4h, .

The symmetry groups of various models and the sym-
metry species of the corresponding RHF MO's are sum-
marized in Table I. We note that for the V4 model, Ps
and P4 span two one-dimensional irreducible representa-
tions of D2, b3 and b2, respectively, or a two-dimensional
irreducible representation e of D2g, which decomposes
into bs and b2 when restricted (or subduced) to D2,

and Eq. (30). For the square configuration, referred to
as the S4 model, P2 and Ps span two one-dimensional
irreducible representations bq and b3 of D2 or two one-
dimensional irreducible representations b2„and 63„of
D2h or, finally, a single two-dimensional irreducible rep-
resentation e„of D4p„ in agreement with relations (cf.
Sec. IV 8 of paper I)

e„(D4h,) J, D2q = b2„ bs„„

b2„(D2i, ) f D2 ——bi) bs„(D2i, ) $ D2 ——bs. (34)

For most geometries, the orbital labeling P, , i
1, 2, 3, 4, corresponds to the increasing orbital energy
and the RHF ground-state configuration is

~

4'i)
~(Pi) (P2) ). There are, however, regions of the nu-

clear con6guration space where the RHF ground. -state
configuration is ~42) = ( )G2z(0) ~4i) = ~(Pi) (Ps) )
or even ~4s) = ( )G2&(0)~4i) = ~(Pi) (P4) ).
may be easily seen by examining the dependence of the
diagonal configuration-interaction (CI) matrix elements

H~~ = (@~~II~@~),j = 1 —3, on the geometry of the
nuclear framework or the corresponding dependence of
the orbital energies obtained with CS configuration ~4i),
~C'2), or ~@s) as a reference. The dependence of the di-

agonal CI matrix elements pertinent to the FCI A(D2)
problem (see Sec. III E) on the geometry of the nuclear
framework is shown in Figs. 2 (few representative T4
models), 3 (P4 model), and 4 (V4 model), and the corre-
sponding dependence of the orbital energies that are as-
sociated with references ~C i), ~42), and ~4s) is displayed
in Figs. 5, 6, and 7, respectively (in the case of the P4
model, Fig. 6, orbital energies associated with ~4s) are
not shown). For the T4 models (see Figs. 2 and 5), we

selected three most representative intermolecular separa-
tions B characterizing the short-range (B & a) region,

namely, B = 1.1428, i/2, and 2.0 a.u. (recall that a = 2.0
a.u. ) and three values of B from the long-range (B ) a)
region (B = 3.0, 4.0, and 7.0 a.u. ).

Two observations are immediate: For R & a, the
ground-state RHF configuration is ~@i), whereas for

B & a/~2 it is ~C'2) that becomes the RHF ground state,
while ]@i) represents one of the excited configurations
[the first or even the second one; cf. the T4 model with
B = 1.1428 a.u. as an example, Figs. 2(a) and 5(a)].
For a/i/2 & B & a, either ~4i) or [42) will represent the

TABLE I. Symmetry groups of the studied models and their special cases and symmetry species
of the corresponding RHF MO's, Eq. (29).

Model

T4 (general)
T4 (ci = 0), P4

T4 (n = 0, B = a), S4
T4 (n= 2), V4

T4(n=-', R= ~)

Symmetry group

D2

D4~

Td aI

MO symmetry
42
bg

b2„
e
b2

species
Ps
bg

b3„

g2

p4
b2

bye

b2g

e

g2
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RHF ground state, depending on the relative orienta-
tion of hydrogen molecules in space: The energy of ~42),
relative to that of ~4i), increases with the increasing an-
gular parameter a (cf. Fig. 2), so that for sinall values
of u the lowest energy configuration is ~C'2), whereas in
the vicinity of the perpendicular geometry &o. = z~„ the

b ~Cground-state RHF wave function is represented y ,
'i).

For the T4 model with R = a/~2 and a =
2 (tetrahedral

geometry) and for the T4 model with R = a and a = 0
(square geometry), the configurations ~C i) and ~42) are
degenerate, and the orbital energy pictures associate~
with ~@i) and ~42) are equivalent [see Figs. 5(b) and
5(c); cf. also Figs. 2(b) and 2(c)]. For the tetrahedra
geometry, all three occupation schemes corresponding to

3.0 2.5

2.5 2.0

2.0
1.5

1.5

1.0

0.5

1.0 '

0.5

00
0.

—0.5
[—05

—1.0
0.0 0.1 0.2 0.3 0.4 0.5

-1.0
0.0 0.1 0.2 0.3 0.4 0.5

2;0

R = 2.0 a.u.

2.0

R = 3.0 a.u.

1.5 1.5

~ ~

1.0:. 1.0;;—

0.5 0.5 [:—

0.0 [:----- 0.0 [:

—0.5
0.0 0.1 0.2 0.3

(c)

0.4 0.5
—0.5

0.0 0.1 0.2 0.3

(d)

0.4 0.5

. = (4' ~H~C' )
' = 1 —8, where the configurations ~4'i) are definedFIG. 2. Dependence of diagonal CI matrix elements H~~ =

& ~ ~ ~ ~„j=
d l ithR(a= (4 IHIP' ) = ((~&i) (Pz) ~H~(gi) (Pq) ) (except for the T4 mo e s wi ( a,in Table IV, relative to the RHF energy H&z —

&

te RHF ener
&
~on the geometry of the nuclear framework, as measure y t e angu ar parameH» represents the ground-state R energy, on e geom

n (solid lines), for the MBS T4 models with a =
t l l'd circles and squaresl nd s nares (Q and ) represent matrix elements Hii and H2&, respectively, w ereas so i cnc es anOpen circ es an squares ~~~ an

d &g t H and H44. The remaining matrix elements ~~~, j = —,are
respectively. The dotted lines correspond to successive FCI singlet eigenstates of t e

& 2 j symme ry.
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FIG. 2 (Continued)

co~gurations ~C'x), ~42), and ~4s) give equivalent orbital
energies, so that H]] —H22 —H33. In fact, ~42) and
~e's) are degenerate and yield equivalent orbital energies
for all V4 geometries (see Figs. 4 and 7).

For the MBS V4 model, described by the single-
determinantal function ~4q), orbitals Ps and P4 are de-
generate (see Fig. 7), since they belong to the same

2.5

2.0

1.5

1.0

3.0
0.5

2.0

0.0

—0.5

1.0
—1.0

0.0 2.0 4.0 6.0
o. (a.u.)

8.0 10.0

—1.0
0.0 2.0 4.0 6.0 8.0

FIG. 3. Same as Fig. 2 for the MBS P4 model with a =
2.0 a.u. and 1.1428 a.u. & o, & 8.0 a.u. In this case, the
A(D2) FCI singlet states become As(D2q) singlets. For o. & a,
matrix element H~~ represents the ground-state RHF energy.

FIG. 4. Same as Figs. 2 and 3 for the MBS V4 model
with a = 2.0 a.u. and 0.7117 a.u. & a. & 10.0 a.u. In
this case, the A(Dz) FCI singlet states are either Az(D+cf)
or Bq(Dsq) states. We do not distinguish between Aq(Dqa)
and Bq(Dsq) FCI subproblems, since the two-reference CC
theory studied in this paper breaks the Dzz symmetry of the
V4 model. Note that for n & a/v 2, the FCI ground state be-

longs to the A~ (D2q) subproblem and the Srst excited A(Ds)
singlet is a Bq(Dqq) state. For a ( a/vt2, this order is re-
versed For tetr.ahedral geometry (cx = a/~2), the two states
become degenerate and span the two-dimensional irreducible
representation E(Tg). For n & a/~2, the matrix element Hqq

represents the ground-state RHF energy.
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1.0 1.0

R = 1.4142135624 a.u.

0.5 0.5

0.0 0.0

—0.5 -0.5

—1.0
0.0 0.1 0.2

(a)
0.3 0.4 0.5

-1.0
0.0 0.1 0.2 0.3

(b)
0.4 0.5

1.0 1.0

R = 2.0 a.u. R = 3.0 a.u.

0.5 0.5

0.0 0.0

—0.5 —0.5

—1.0
0.0 0.1

(c)
0.2 0.3 0.4 0.5

—1.0
0.0 0.1 0.2 0.3 0.5

FIG. 5. Dependence of Hartree-Fock orbital energies e; (in hartrees) of MO's P;, Eq. (29), associated with three different
reference configuration ~4i) = ~(p ) (p ) ) (solid lines), ~42) = ~(pi) (ps) ) (dotted lines), and ~4s) = ~(pi) (p4) ) (short-
dsshed lines) on the geometry of the nuclear framework, as measured by the angular parameter n, for the MBS T4 models
with a = 2.0 a.u. snd R = 1.1428 (s), ~2 (b), 2.0 (c), 3.0 (d), 4.0 (e), and 7.0 (f) a.u. For the configuration ~C'i), the
energies e; for n = 0 increase in the order ci & c2 & es & eq (c2 = es for R = 1.1428 a.u.). The saine order holds for the
configuratio ~4'2) provided that R & 3.4611 a.u. (again, for R = 3.4611 a.u. , rti2 snd Ps are degenerate). For T4 models with2„prove e

e aR & 3.4611 a.u. , the orbital energies associated with the configurstion ~42) for n = 0 increase in the order ei & es & es & eq.
For R & a/~2 snd n = 0.5, the orbital energies associated with the configuration (4s) increase in the order ei & c4 & es & eg

(es ——e2 for R = a/~2). For a/v2 & R & Ro, we obtain ei & e4 & es & es (for R = Rp, c4 = E2, fol' a = 2.0 a.il. ,

Ro = 2.8 s.u.), whereas for R & Rs, ei & es & e«es. Notice that for all T4 models with n = 0.5, the orbitals Ps sn
Pq associated with the configuration ~C'i) are degenerate and the remaining two configurations ~4s) snd ~C s) yiel equiva ent
orbital energy diagrams. For the square geometry (R = a and n = 0), ~4i) and ~4'2) yield equivalent orbital energy pictures.
All three occupation schexnes, corresponding to con6guratmns ~~q&, ~4qz, and ~4'g„g q~4 z and ~~4 I~ ive e uivalent orbital energy spectra for
the tetrahedral geometry (R = a/~2 and n = 0.5). Except for the occupation scheme represented by ~4s), degeneracy of Pz
snd Pz is shifted away from the square geometry.
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FIG. 5 (Continued)

symmetry species e of D2d (cf. Table I) and the con-
figuration ~4i) = ~(Pi) (P2) ) does not break the D2d
symmetry of the V4 model. Indeed, both e orbitals are
unoccupied in ~@i), so that the corresponding Fock op-
erator F((gi)2($2) ) commutes with all the symmetry
operations of D2g. Symbolically, we can express this fact

1.0

0.5

1.5

1.0
0.0

0.5

0.0

—0.5

-0.5— 0.0 1.0 2.0 3.0 4.0 5.0 6.0 '7.0

rx (a.u.)

—1.5
0.0 4.02.0

n (a.u.
6.0

FIG. 6. Same as Fig. 5 for the MBS P4 model with
a = 2.0 a.u. and 0.6 a.u. & a & 6.0 a.u. Orbital ener-
gies associated with the con6guration ~4z) are not displayed.
For both configurations ~4i) snd ~4s), the energies e, of
MO's P, , Eq. (29), for n = 6.0 a.u. increase in the order

& ~q & ~3 & ~4 and the crossing of HOMO and LUMO
energy levels is shifted away from the square (n = a) geom-
etry. For the RHF solution ~4i), it occurs at uo ——1.1428
a.u. , while relative to the configuration ~42) it occurs at the
distance nz ——3.4611 a.u. For a = a, con6gurations ~4i) and
~4'z) yield equivalent orbital energy diagrams.

FIG. 7. Same as Figs. 5 and 6 for the MBS V4 model
with a = 2.0 a.u. and 0.5 a.u. & n & 7.0 a.u. The orbital
energy diagrams associated with configurations ~42) snd ~43)
are equivalent, so that we use chain-dashed lines to designate
the corresponding orbital energies. For the configuration ~4'q),

the energies e, of MO's P, , Eq. (29), for n = 7.0 a.u. increase
in the order ~~ & e2 & e3 & e4. For the same geometry,
the orbital energies associated with the con6guration (4s) in-

crease in the order eq & ~2 & e4 & t 3. For the con6guration
~4'i), the energies e; for o. = 7.0 a.u. increase in the order

e2 & es ——e4. In this case, orbitals Ps and P4 remain
degenerate over the entire region of n. For the tetrahedral
(o = a/~2) geometry, indicated by the solid vertical line,
all three con6gurations ~4i), ~4s), and ~4s) yield the same
orbital energies. The crossing of Eg 63 and e4 for the con-
figuration ~4i) is shifted away from the tetrahedral geometry
towards the a & a/~2 region (for a = 2.0 a.u. , it occurs at
n = 0.?117a.u. ).
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by writing

[F((pi) (p2) ), D2d] = 0.

[+((&i)'(&2)') D2~] = o

[E((pi)'(p,.)'), T~LD2d] j0,

(37)

(38)

so that Ps and P4 remain degenerate (as they do in all
other V4 geometries), while eq ( es ——e4 (c; is the en-
ergy of P;). The crossing (or the degeneracy) of all three
orbital energies 62, E3 and e4 in the V4 model will occur
for n = no ( a/~2 (for a = 2.0 a.u. , no ——0.7117a.u. ; cf.
Fig. 7). Recall that we encountered a similar situation in
the P4 model (see Fig. 6 and Sec. IV B of paper I):Using
]4'i) as a reference and proceeding from the long-range
n ) a region, where ]4 i) represents the ground-state
RHF solution, the corresponding HOMO and LUMO,
P2 and Ps, respectively, become degenerate at some in-
termolecular separation n = no ( a (for a = 2.0 a.u. ,
no ——1.1428 a.u.). On the other hand, when ~42) is em-
ployed and we proceed &om the short-range a ( a region,
where ~42) represents the ground-state RHF configura-
tion, the corresponding HOMO and LUMO energies, e3
and e2, respectively, cross one another at the distance
n = no ) a (for a = 2.0 a.u. , no = 3.4611 a.u. ). HOMO
and LUMO energies do not cross at the square geometry,
since Fock operators associated with configurations ]C'i)
and ]42) break the D4g symmetry of the S4 model [14].
Consequently, orbitals P2 and Ps of the S4 model are not
degenerate despite the fact that they belong to the same
symmetry species of D4h. We would have to employ ~C's)
configuration, in which both e„orbitals remain unoccu-
pied, to achieve degeneracy of P2 and Ps for the square
conformation.

The fact that HOMO and LUMO energies do not cross
at the square geometry of the P4 model and that the
crossing of e2 with e3 and e4 is shifted away from the

This, however, no longer holds when we employ ~42) or
~43) as a reference. These configurations violate the D2g
symmetry of the V4 model since the e orbitals are only
partially filled in ~42) and ]@s) configurations (i.e., ei-
ther the orbital Ps, or the orbital P4, is occupied, but
never both of them). This implies the following symme-
try breaking when ~4q) or ~4s) is employed as a reference:

[+(($1) (4'j ) ) D2d(D2] g 0 (j = 3, 4),

and, in consequence, Ps and P4 are no longer degener-
ate (see Fig. 7). Similar symmetry breaking is observed
for the tetrahedral geometry, independently of the ref-
erence configuration employed (]@i), ~e2), or ~4s)). In
this case, there exists a nonvanishing orbital energy gap
between the highest occupied MO (HOMO) (P2 for ~4i),
$3 for

~
42), and P4 for

~ 4s) ) and the lowest (degenerate)
unoccupied MO's (LUMO's) (Ps and P4 for [4i), P2 and
P4 for ]42), and P2 and Ps for [C's)), in spite of the fact
that P2, Ps, and P4 span a single three-dimensional irre-
ducible representation t2 of T~ (see Table I). This means
that the Fock operator associated with either one of these
configurations does not commute with all the symmetry
operations of T~. Indeed, in the case of ~4 i) we have that

tetrahedral geometry towards the n ( a/~2 region of
the V4 model when ~4'i) is employed as a reference was
first documented by Pukutome in his studies of insta-
bilities of RHF solutions describing chemical reactions
[50,51]. Fukutome showed that crossings of HOMO and
LUMO energy levels, when using [4i) as a reference, can-
not take place at the square or tetrahedral geometries,
where they would occur according to simple MO theory,
because of the presence of the interelectronic repulsion
terms in the Hamiltonian. The size of the HOMO-LUMO
gap in square and tetrahedral arrangements of atomic
sites is measured by the magnitude of the interelectronic
rep&»o»n«g» {XiX2]X1X2)= (X1XllX2X2) [50 51] (cf.
Sec. IV B of paper I).

The symmetry breaking discussed above has interest-
ing consequences for the MRCC formalism employing

~4i) and ~42) as references. We address this problem in
Sec. III D. Before doing so, however, we discuss various
degeneracy types characterizing our models.

C. Orbital and con6gurational degeneracies

As pointed out in the preceding section, the config-
uration ~@i) represents the RHF ground state for most
geometries considered. There are, however, regions of
the nuclear configuration space, where the ground-state
RHF wave function is represented by ]42). As we have
seen above, different occupation schemes, represented by
~@i) and ~e'2), lead to different orbital energy spectra,
even though the MO's themselves are always the same
[see Eq. (29)], being determined by the symmetry of the
model. When we are employing the ground-state RHF
MO's as our one electron states in defining the model
space, we should, in principle, switch to the orbitals as-
sociated with ~42), whenever the energy of this configu-
ration becomes lower than that of ]@i). In the present
case, however, the same RHF MO's result, irrespective
of the reference employed, since they are completely de-
termined by the symmetry of the system. Since, further,
both configurations ~4i) and ~42) are included in our
model space, it should be irrelevant which one of them
represents the RHF ground state. However, this will no
longer be the case when larger bases than a MBS are em-
ployed, in which case the role played by the choice of the
MO basis should be carefully investigated (considering
also other than RHF-type bases), or when configurations
&om outside of the model space substantially intervene
[as, e.g. , the configuration ~@s) = ~(Pi) (P4) ) may in the
case of nonplanar model considered below] or, of course,
when considering models of lower syinmetry (such as the
H4 model studied in paper I).

In the case of the P4 model, for example, configura-
tions ]C'i) and ~42) are degenerate and equally contribute
to the exact ground state at n = a (square nuclear con-
figuration), although the HOMO and LUMO energies are
well separated in view of the symmetry breaking implied
by the one electron approximation, as already mentioned
(see paper I for details). Thus it is ]42) that represents
the RHF ground state for n & a. If we would employ the
RHF MO's associated with the ground state for a ( a,
the HOMO and LUMO energies would never become de-
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generate. Only when I@i) is used as an RHF reference,
the HOMO and LUMO energies cross one another (see
above). In view of the above discussion, the fact that we
employ l@i) as an RHF "ground state" even for ci ( a
(or, equivalently, that the HOMO and LUMO are de-
generate or almost degenerate) has no detrimental ef-
fect on the performance of the MRCC method, which
in fact works best when the reference configurations in
the model space are degenerate. In this way, however,
we can explore the entire range of the orbital quaside-
generacy effects [48], including nondegenerate cases [cf.,
e.g. , Figs. 5(d) and 5(e)] and vanishing of the HOMO-
LUMO gap [cf. Fig. 5(a)]. With the RHF MO's associ-
ated with configuration Icosi), we can even study an inter-
esting case of degeneracy of three orbitals P2, Ps, and P4,
which takes place when a = 0.7117 a.u. in the V4 model
(cf. Fig. 7). Thus the RHF MO's used throughout this
study are those associated with the configuration lcii) .

It is well known that orbital degeneracy alone causes
few problems for CC approaches [48]. Even the simplest
L-CC methods give accurate correlation energies in such
cases (cf., e.g. , Refs. [52—54]). Configurational degen-
eracy [48], on the other hand, is of much greater con-
cern. In this case, the SR L-CC approaches, such as
L-CCD or L-CCSD, suffer from singular behavior due to
the strong interaction of the ground-state configuration

with the low-lying biexcited ones [15,19,55—59], while the
I-MRCC methods fail due to the presence of intruder
states, which strongly interact with one or more model
space configurations [5,10,14]. Inclusion of nonlinear
terms removes the L-CC singularities [5,10,14,15,19,55—
57] (which can be classified as poles [60]), but new seri-
ous problems arise when both types of quasidegeneracies
(orbital and configurational) are simultaneously present
or when the dimension of the quasidegenerate reference
space becomes very large [48]. In these cases it may even
happen that the full CCSD or CCSDT (CC with sin-
gles, doubles, and triples) approaches suffer from singu-
lar behavior [14,56,57,60] due to the appearance of the
algebraic branch points [60].

It is thus important to examine the effect of various de-
generacies. The nonplanar H4 models, similarly as their
planar counterparts (see paper I), provide us with a useful
example in this regard. In order to illustrate this fact, we

give in Tables II and III the FCI expansion coefFicients of
configurations IC i) = l(gi) (P2) ), lci2) = i iG2z(0)IC'i),
and IC's) = ( iG22(0)IC'i) for the two lowest totally sym-
metric singlet states liIii) and liII2) for all T4 models
studied in this work. We immediately recognize an im-
portant role played by the above three configurations,
even though there are regions where the ground-state
FCI wave function has manifestly a SR character (e.g. ,

TABLE II. FCI coefFicients associated with configurations I@i)=l(gi) (Q2) ),
IC2) = I(gi) (Ps) ), and I4s) = I(gi) (P4) ) for the ground-state wave function of the MBS T4
model with the H—H internuclear separation a = 2.0 a.u. and different values of the intermolecular
distance R and angular parameter n. In general, the ground-state wave function is nondegenerate
and represents the lowest singlet of A.(D2) symmetry. The only exception is the tetrahedral geom-
etry (R = v 2 a.u. , o. = 0.5), where the lowest two singlets of A(Ds) symmetry are degenerate and
span the two-dimensional irreducible representation E(Tq) (see the text for details).

R = 1.1428 a.u.

lc') Ic'i) lc")

R = ~2 a.u. R = 2.0 a.u.

0.0

O. l

0.2

0.3

0.4

0.5

-0.072

-0.076

-0.090

-0.116

-0.151

0.0

0.990

0.989

0.985

0.977

0.956

0.687

-0.047

-0.050

-0.063

-0.089

-0.162

-0.687

0.119

0.127

0.154

0.210

0.325

0.785

-0.981

-0.979

-0.972

-0.954

-0.907

-0.393

0.057

0.060

0.072

0.094

0.136

-0.393

0.690

0.731

0.821

0.894

0.927

0.936

-0.690

-0.645

-0.519

-0.372

-0.258

-0.180

0.0

-0.009

-0.038

-0.078

-0.124

-0.180

R = 3.0 a.u. R = 4.0 a.u. R = 7.0 a.u.

0.0

0.1

0.2

0.3

0.4

0.961

0.961

0.961

0.962

0.962

0.962

-0.143

-0.141

-0.137

-0.131

-0.124

-0 ~ 116

-0.093

-0.094

-0.097

-0.103

-0.109

-0.116

0.967

0.967

0.967

0.967

0.967

0.967

-0.105

-0.105

-0.104

-0.103

-0.102

-0.101

-0.095

-0.096

-0.096

-0.098

-0.099

-0.101

0.968

0.968

0.968

0.968

0.968

0.968

-0.088

-0.088

-0.088

-0.089

-0.089

-0.089

-0.090

-0.090

-0.090

-0.089

-0.089

-0.089
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TABLE III. Same as Table II for the 6rst excited singlet state of A(D2) symmetry. For the
tetrahedral geometry (R = ~2 a.u. , n = 0.5), the lowest two singlets of A(D2) symmetry are
degenerate and span the two-dimensional irreducible representation E(Tq) (see the text for details).

R = 1.1428 a.u. R = ~2 a.u.

I@.) 14")

R = 2.0 a.u.

0.0

0.1

0.2

0.3

0.4

0.5

0.964

0.960

0.941

0.874

0.635

0.491

0.068

0.072

0.081

0.075

-0.022

-0.591

-0.106

-0.125

-0.194

-0.377

-0.713

-0.591

0.960

0.956

0.943

0.909

0.807

0.0

0.114

0.122

0.144

0.182

0.223

0.680

-0.117

-0.130

-0.174

-0.269

-0.470

-0.680

0.678

0.632

0.502

0.341

0.186

0.0

0.678

0.718

0.803

0.857

0.833

0.655

-0.169

-0.178

-0.207

-0.266

-0.400

-0.655

R = 3.0 a.u. R = 4.0 a.u. R = 7.0 a.u.

0.0

0.1

0.2

0.3

0.4

0.5

0.099

0.096

0.085

0.065

0.036

0.0

0.840

0.833

0.809

0.764

0.689

0.584

-0.273

-0.284

-0.318

-0.379

-0.471

-0.584

0.024

0.023

0.020

0.014

0.008

0.0

0.638

0.632

0.615

0.587

0.551

0.511

-0.384

-0.390

-0.408

-0.436

-0.471

-0.511

0.000

0,000

0.000

0.000

0.000

0.0

0.447

0.446

0.445

0.444

0.442

0.440

-0.433

-0.433

-0.434

-0.436

-0.437

-0.440

for all T4 models with large values of R). There are
also geometries (near the square conformation) where we

observe a strong interaction of only two configurations,
namely ]@x) and ~42).

The T4 model with B = 1.1428 a.u. describes a transi-
tion from the case of the exact degeneracy of HOMO and
LUMO orbitals, P2 and Ps, respectively [cf. Fig. 5(a)],
arising when o. = 0, to the case of a strong interaction of
~4x), ~4'2), and ~4s), taking place when a 0.5. Thus,
if we employ a two-reference model space Mo (see Sec.
III D)

~0 = span(l@x) IO2)) (39)

we encounter a strong interaction of h4s states with Wo
in the a = 0.5 limit. Actually, strong interaction of the
Mo and Ms configurations characterizes all V4 models.
Another interesting situation is represented by the T4
model with R = ~2 a.u. In this case, we deal with a tran-
sition &om a region of relatively strong orbital quaside-
generacy [small HOMO-LUMO gap; cf. Fig. 5(b)] and
weak configurational quasidegeneracy to a strongly corre-
lated n = 0.5 limit, where we again observe a substantial
contribution of all three configurations ]4'x), ~4'2), and

]43) in the FCI expansions for [@i ) and
] @q) (cf. Tables

II and III). As pointed out above, the n = 0.5 limit of
the T4 model with R = ~2 a.u. represents an interesting
case of Tp symmetry breaking by the Fock operator. This
symmetry breaking will certainly inQuence the behavior
of all MRCC formalisms exnploying Mo, Eq. (39), as a
model space (see Secs. IIID and IV).

In the case of the T4 model with R = 2.0 a.u. , the

HOMO-LUMO gap is relatively large [cf. Fig. 5(c)].
Nonetheless, we observe a strong configurational degener-
acy involving ~4x) and ~42) when n -+ 0. For the perfect
square (a = 0) geometry, configurations ~@x) and ~42)
become exactly degenerate (cf. paper I). When n ~ 0.5,
the interaction of ~4x) and ]42) almost disappears and
the ground-state wave function ~4'x) is relatively well ap-
proximated by the single CS configuration ~4x). Sixnul-

taneously, we observe an increasingly strong interaction
of ~42) with ]4s). This is particularly evident in the
first excited state (cf. Table III). For the remaining T4
models (with R = 3.0, 4.0, and 7.0 a.u. ), we observe an
increasingly nondegenerate character of the ground-state
wave function ~4'x) and increasingly strong interaction of
~4z) with ~4s) and other biexcited configurations rela-
tive to ]4x) [cf. Tables II and III; cf. also Figs. 2(d)—
2(f)]. When the intermolecular distance R approaches
large values, all configurations of the type ~x) G~~ (0)~4'x),
a = 1, 2, p = 3, 4 (cf. Sec. III E), contribute with more or
less equal weight in the FCI expansions of ~4'x) and ~4'2).
In the case of the ground-state wave function ]4'x), which
is reasonably well described by the single CS configura-
tion ~@x), the corresponding FCI expansion coefficients
remain small (see Table II). However, in the case of the
FCI expansion for ]@2),where ~4x) is almost absent, par-
ticipation of the biexcited configurations ~ )G~~ (0) ~4x)
becomes substantial (cf. Table III). Thus all T4 models
with large values of R (in particular, P4 and V4 mod-
els with large a) represent SR cases with an increasingly
rich biexcited mauifold that plays a dominant role in the
description of ]42).
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Interesting quasidegeneracy eKects arise when P4 and
V4 models are considered separately and we allow the
intermolecular separation B (which in the case of P4 and
V4 models is designated by a) to vary from small to large
values. In the case of the MBS P4 model with a = 2.0
a.u. , it is instructive to vary the intermolecular distance
a. from no ——1.1428 a.u. to oo [14]. In this way, we

encounter several interesting situations including (i) the
exact degeneracy of HOMO and LUMO for o. = 1.1428
a.u. , when the lowest two eigenstates of the Hamiltonian
possess a definite SR character; (ii) exact degeneracy of
l@i) and i@2& for a = 2.0 a.u. , when the orbital quaside-
generacy is absent; and (iii) various nondegenerate cases
for o. & a, when the erst excited state involves a strong
interaction of a number of biexcited configurations (cf.
Fig. 6 and Tables II and III). Similarly, for the MBS
V4 model with a = 2.0 a.u. , it is instructive to vary the
intermolecular separation n from ao ——0.7117 a.u. to
oo. As explained in Sec. III B, the orbitals P2, gs, and

P4 become exactly degenerate when n = 0.7117 a.u. In
the region 0.7117a.u. & n ( i/2 a.u. , we deal with a
strong mixing of orbital and configurational degeneracies
involving a strong interaction of l@i&, lC 2), and l4s& (see
Tables II and III and Fig. 7). For n = i/2 a.u. we

then encounter an interesting case of tetrahedral geome-
try, when the lowest two eigenstates of the Hamiltonian
become exactly degenerate [they span a two-dimensional
irreducible representation E of T~, cf. Fig. 2(b) or 4; cf.
also Sec. IV]. Finally, we approach the nondegenerate
~ ~ oo limit, which is characterized by the maximum
size of the HOMO-LUMO gap, and which is practically
identical to the o. ~ oo limit of the P4 model or any
B m oo T4 model.

~o = ~o,a„ ~o,~„,
where

(40)

Mp ~ = span 4q (41)

for all T4 models with R & 3 a.u. and o. & 0.3, where
either l@i& or i@2) dominate in the FCI expansions of
l4, ) and i%i, &.

We can thus employ the two-reference theory described
in Sec. II. The lowest totally symmetric orbital Pi rep-
resents the core orbital and the next two orbitals,
and Ps, the active orbitals. Since P2 and Ps belong to
different symmetry species of D2, which is the symmetry
common to all T4 (including P4 and V4) models (see Ta-
ble I), the resulting two-configuration model space Mo,
Eq. (39), is complete, assuming that we restrict ourselves
to the A(D2) singlet states. Since we study the MBS T4
models, there is only one virtual orbital P4.

Three cases require special attention. The 6rst one is
the S4 model, in which the hydrogen atoms form a square.
It arises when 8 = a and o. = 0 in the T4 model. In this
case, the active orbitals P2 and Ps belong to the same
symmetry species of the invariance group of the Harnil-
tonian (namely, the two-dimensional irreducible repre-
sentation e„ofD4h), so that the basic assumption of our
two-reference formalism seems to be violated. One might
thus question the D4h invariance of the two-dimensional
model space spanned by l@i& and i@2& and, consequently,
the D4p, invariance of the two-reference CC formalism,
since neither l@i& nor i@2& is D4i, scalar. Interestingly
enough, this is not the case. First of all, as shown in
paper I, the two-dimensional model space Mo, Eq. (39),
breaks down into a direct sum of D4h invariant subspaces,

D. Model spaces

The accuracy of various MRCC methods strongly de-

pends on the choice of the model space. From a purely
pragmatic viewpoint, it is best to keep the dimension of
a model space as small as possible. The larger the model

space, the more costly is the practical implementation of
the MRCC formalism and the more likely we encounter
intruder states. On the other hand, inclusion of only a
few configurations in the model space (namely, those that
dominate in the quasidegenerate regime) may be insuf-

ficient to yield a meaningful description of the low en-

ergy states in nondegenerate or strongly correlated cases
[14]. In the case of T4 inodels, there are regions of the
nuclear con6guration space where the ground-state FCI
wave function has a definite SR character (for example,
all T4 models with large values of R), but there are also
regions where we observe a strong interaction of three or
more configurations (cf. Tables II and III).

In the present paper, similarly as in paper I, we explore
basic characteristics of the two-reference CCSD formal-
ism employing the CS configurations ]4'i) = ](Pi) (P2) )
and i@2& = l(Pi) (Ps) ) as model configurations. As indi-
cated by the FCI results (see Tables II and III), the model
space spanned by ]C'i) and lO2) should be sufficient to
yield a reasonable description of the lowest two eigen-
states of the Hamiltonian in the vicinity of the square
geometry, where lC'i) and l@2) are nearly degenerate, and

~o,~„=span (42)

with

I@ ) = (l~' ) —IC' &)/~~

1@2& = (IC'i&+ lc'2))/v 2

(43)

(44)

so that Mo is itself D4g invariant and as such can be
regarded as a complete reference space. However, the

D4g invariance of Mo is not sufBcient to guarantee the

D4h invariance of the resulting MRCC formalism. The
active orbitals P2 and Ps belong to different symmetry
species of D2i, (cf. Table I), so that we should rather
use D2h, which is the symmetry of the more general P4
model, to classify the resulting states. The S4 model

represents, however, a special situation. In spite of the
fact that the Pock operator associated with the config-
uration i@i&, and the individual cluster operators T~"l,

p = 1, 2, break the D4i, symmetry of the S4 model (they
are only D2i, invariants), the corresponding MRCC wave

operator U, Eq. (15), and the effective Hamiltonian II'+,
Eq. (11), are D4h, invariants. This unusual behavior of
the MRCC formalism for the S4 model is due to the fact
that the RHF MO's (29) for the S4 model are adapted to
the chain D2 C D2h & D4h. Consequently, the reference
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configurations l@~&, and the individual cluster operators
T("&,p = 1,2, are D2g scalars, while for all the remaining
operations 0 C D4p, i D2i, we have that (cf. paper I)

and the lowest Bi(D2g) singlet

l@2) —= UIC'2) = &(IC'2) —IC's&)/~2.

ole &
= le. (45) This is a consequence of the fact that the three-reference

CC wave operator U,

OT("iO = T( (46) z( ) z.( ) z( )
U = e Pg+e P2+e P3, (52)

where q = 3 —p. Thus, although the proper symmetry
group to be used for the S4 model is D2g, all groups in
the chain Dq C D2g C D4g can be used to classify the
resulting states I@„)(p, = 1,2), Eqs. (4), (43), and (44).
In other words, the two-reference CC theory employing
model space (39) for the S4 model produces two states
that are totally symmetric with respect to the symme-
try of the Fock operator (D2g), but at the same time
belong to difFerent symmetry species [Aig and Big, cf.
Eqs. (40)—(44)] of the invariance group of the Hamilto-
nian (D4p, ), in agreement with relations

Aig(D4h, ) $ D2I, = Big(D4h, ) $ D2a = Ag(D2x) . (47)

Quite a different situation arises when we study the V4
model. In this case the invariance group of the Hamilto-
nian is D2g, but only the first reference configuration l@i)
is a D2g scalar. The second model space con6guration
l@q& is invariant under the transformations belonging to
D2, but for the operations 0 C D2g i D2 we obtain that

is D2g invariant, whereas the model space Mo breaks
down into a direct sum of three D2g invariant subspaces

JHQ = JHQ/ g JHQ/ @MD,$3

where

JH'0 &,
——span(IC'i)),

~II,~, = span((IC'2& + l@3&)/v 2),

~.,~, = span((l@. &
—l@s))/A)

(55)

(56)

As in the case of the S4 model, the wave operator U, Eq.
(52), is invariant with respect to the invariance group of
the Hamiltonian, in spite of the fact that the individual
cluster operators break this symmetry for the V4 model.
Careful inspection of the three-reference case indicates
that

OIC 2) = IC's) . (48) OT~~lO = T~~l (p = 1 —3) (57)

Consequently, the two-reference CC formalism employ-
ing model space (39) breaks the D2g symmetry of the V4
model and we have to use D2, which is the symmetry of
all T4 models, to classify the resulting solutions. In con-
trast to the S4 model, neither the individual cluster oper-
ators T("~, p = 1, 2, nor the corresponding wave operator
U are invariant with respect to the symmetry group of
the Hamiltonian when our two-reference CC approach is
applied to the V4 model. The question arises how this
symmetry breaking inBuences the MRCC results for the
lowest two singlets of A(D2) symmetry. Examination of
the V4 model with various intermolecular distances 0,

gives us an opportunity to answer this question.
To obtain a CC formalism that is D2g invariant, we

would either have to employ a one-dimensional model
space spanned by l@i& or consider the enlarged model
space

~& = span(l@'i) IC'2) IC's&). (49)

I@'~& = Ule~& = U(c»i@i&+ c2p(1@2&+ IC's&))

(p = 1, 3) (50)

The 6rst option leads to the well-known SRCC formal-
ism. The use, however, of the space &HO would require
the consideration of three-reference CC theory. In our
case, this theory would employ three active orbitals P2,
Ij53 and P4 and three CS-type references

I
C i), I

C 2), and
I O3) . The corresponding orthogonally spin-adapted for-
malism would produce two energetically lowest singlets
of Ai(D2g) symmetry, namely,

for 0 6 D2 and

OT(p)O —] T" if p =
T('- i fp=23 (58)

for 0 E D2g i D2. Since similar relations hold for the
projection operators P„,Eq. (1) [cf. Eq. (48)], the three-
reference wave operator U, Eq. (52), must be D2g invari-
ant. Neither the SRCC formalism nor the three-reference
theory employing the enlarged space Mo are subject of
the present study. Clearly, the latter approach requires
a larger than a MBS model and will be examined in the
future.

The third and the last case deserving special atten-
tion is the tetrahedral (Tg) T4 model that arises when
R = a/~2 and a = 2. Tetrahedral geometry also rep-

resents a special case of the V4 model when n = a/i/2,
so that most of the above made remarks concerning gen-
eral V4 models apply in this case as well. First of all,
neither l@i& nor I@2) is a Tq scalar, so that the two-
dimensional model space Mo, Eq. (39), is not T~ in-
variant. Consequently, the two-reference CC formalism
employing l@i& and I@2) as model configurations breaks
the Tp symmetry of the Hamiltonian. In fact, as pointed
out earlier, the two-reference CC theory employing Mo
breaks even D2p symmetry, characterizing all V4 mod-
els. We thus have to classify the resulting solutions by
the irreducible representations of D2, which is the sym-
metry common to all T4 models. The two-reference CC
theory employing Ms, Eq. (39), will produce two sin-
glets that are totally symmetric with respect to D2 but
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Mo = Mo, z SMo,~, ,

where

~0 @
——span ey, 42

~0 ~, ——span 43

(60)

(61)

with

14'i) = l@i) —~s(1@2)+ 14")) (62)

do not belong to any particular irreducible representa-
tion of D2g or Tg. As a result, the two-reference CC
formalism will destroy the twofold degeneracy character-
izing the exact electronic ground state of the tetrahedral
H4 model [the FCI wave functions l4'i) and l@2) carry
the two-dimensional irreducible representation E of Td.,
cf. Fig. 2(b) or 4]. The question thus arises how large
an energy gap between i@i) and l@2) will result &om
MRCC calculations.

In order to obtain a T~ invariant MRCC formalism we
would have to consider again an enlarged model space
(49), including also the configuration ]4s). An analysis
of this case shows that the three-reference wave operator
U, Eq. (52), is Tg invariant, whereas the model space
Mo, Eq. (49), breaks down into a direct sum of two Tg
invariant subspaces,

cluster operators T~&~, p = 1 —3, are Td scalars. This
is a consequence of the fact that the RHF MO's (29)
for the tetrahedral geometry are adapted to the chain
D2 ( D2p C: Tp, so that Td symmetry operations leave

l4„) unchanged or simply permute them among them-
selves.

The above discussion indicates that we must be very
careful in selecting reference configurations. Inappropri-
ate choice of the model space may spoil an invariant char-
acter of cluster and wave operators, and the resulting CC
formalism may produce solutions that do not reflect the
symmetry properties of the Hamiltonian. An application
of the two-reference CC formalism employing the model
space spanned by l@i) and i@2) to MBS V4 models gives
us an opportunity to study such symmetry breaking. Al-
though an invariant character of the MRCC formalism
can always be restored by enlarging the model space, in-
formation about the potential usefulness of broken sym-
metry solutions may prove useful in practical calcula-
tions. We also note the similarity between the present
study of broken-symmetry CC solutions and an investi-
gation of the applicability of MRCC approaches employ-
ing incomplete model spaces (cf., e.g. , Ref. [8]). If we
examined V4 models using three active orbitals P2, Ps,
and P4, we could not regard the two-dimensional model
space Mo, Eq. (39), as the "complete" subspace of Mo,
Eq. (49), since Mo does not represent a D2g invariant
subspace of HN.

(63)

(64)

As a result, the three-reference CC theory, employing

lOi), l@2), and l@s) as model configurations, would yield
two singlet states of E(Tg) symmetry

l@~) = UI@'~) (~=1 2)

and the lowest singlet state of Ai(T~) symmetry

(65)

(66)

E(Ta) $ D2d = Ai 6 Bi . (67)

In particular, the state ]@i) represents the lowest singlet
of Ai(D2~) symmetry and the totally symmetric singlet
state l%'s), Eq. (66), the first excited state of the same
symmetry, in agreement with Eq. (50), with p = 3 [cf.
Fig. 2(b)). Again, the three-reference wave operator
U, Eq. (52), is invariant with respect to the symmetry
group of the Hamiltonian, in spite of the fact that neither
the reference configurations l4'~) nor the corresponding

with l4„), p = 1, 2, 3, given by Eqs. (62)—(64). Thus the
three-reference CC formalism would correctly describe
the twofold degeneracy of the electronic ground state of
the tetrahedral H4 model. Notice also that the two E(Td)
singlets, defined by Eqs. (62), (63), and (65), transform
as Ai(D2g) and Bi(D2g) states, in agreement with Eqs.
(50), with p = 1, and (51), and the fact that

E. CI and CC con6guration spaces

Ag(D2h) $ D2 ——A. (68)

Additional splitting of the A(D2) or As (D2g) FCI matrix
for the S4 model, whose spatial symmetry is D4h, , into
the Aig (D4q) and Bis (D4h, ) subproblems is not essen-
tial here, since the two-reference CC theory considered in
this paper yields solutions belonging to diferent D4h sub-
problems (see the discussion in Sec. III D). The ground
state of the S4 model belongs to the Biz (D4s) subprob-
lem, whereas the first excited A(D2) singlet becomes the
Ais (D4h, ) state. Similarly, we do not split the A(D2)

To assess the effectiveness of various MRCC ap-
proaches we compare them with the exact FCI results. As
already mentioned, we restrict ourselves to A(D2) singlet
states. We thus need only eight con6gurations to describe
the corresponding FCI space. The excitation operators
generating the required orthogonally spin-adapted con-
figurations l4z), j = 2 —8, when acting on the reference

l4i) = l(Pi) (P2) ), are listed in Table IV.
Notice the absence of mono- and triexcited con6gura-

tions. They may be ignored, since they belong to a dif-
ferent symmetry species than the model configurations
l4'i) and l42) [naxnely, to Bs(D2)]. Thus, for all MBS
T4 models (including P4 and V4), the CI method lim-
ited to doubly and quadruply excited states and the FCI
approach are equivalent.

For the P4 model, whose spatial symmetry is D2~, the
A(D2) singlet states become Ag(D2q) singlets, in view of
the subduction
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TABLE IV. Excitation operators G,. generating orthogonally spin-adapted configurations

]C'~) = ( )G~[4'q) spanning the FCI totally symmetric singlet space for the MBS T4 models. (See
Refs. [9] and [32] for definitions of orthogonally spin-adapted configurations and excitation oper-
ators. ) As usual, D and Q designate double and quadruple excitations, respectively. Mono- and
triexcited configurations are not listed since they belong to the Bs(D2) [or Bs„(D2&) in the P4
case] subproblem.

Configuration
number (j)

Excitation
operator G~

Type Excitation
order

REF

(i)Gas(p)

(1)G44(0)

(')G„(0)
(1)G44(P)

(1)G34 (P)

(1)G34 (1)

(1)G3344(P P P P P) (1)G33(P)(1)G44(P)

FCI matrix for the V4 model into smaller Aq(D2s) and
Bq(D2~) subproblems, since the two-reference CC the-
ory employing the model space Mo, Eq. (39), breaks
the D2g symmetry. Let us only mention that for inter-
molecular distances cr ) a/~2, the exact ground state
belongs to the A) (D2g) subproblem and the first ex-
cited A(D2) singlet represents the Bq(D2~) state. For
n ( a/v 2, this order is reversed (cf. Tables II and III),
whereas for tetrahedral geometry of the H„molecular
cluster (a = a/~2), the two states become degenerate
and span the two-dimensional irreducible representation
E(Tg), in agreement with relation (67).

The orthogonally spin-adapted doubly excited opera-
tors (~)G~&(i), (p = 1, 2; i = 0, 1) that are required in
the two-reference CCSD formalism when applied to the
MBS T4 models and their special cases P4, S4, and V4,
are listed in Table V. Acting on model configurations
]4q) and ]42), they generate totally symmetric [A(D2)]
singlet configurations in JHO, so that all of them carry at
least one nonvalence index (1 or 4). Only biexcited oper-
ators are listed, since monoexcitations do not contribute.
Due to the high symmetry of T4 models and the MBS
employed, monoexcited cluster operators T~, p = 1, 2,(J)

vanish. This means that the MRCCSD and MRCCD
methods are equivalent when MBS T4 models are ex-
amined (this is not the case when larger basis sets are
employed). Vanishing of Tz implies that there is no
difFerence between the MRCCSD-2 and MRCCSD-3 ap-
proximations for MBS T4 models (cf. Sec. II). Fi-
nally, notice the absence of the biexcitation operators
(" G~ (0), p g o', and (")G &(0),n g P, which also gen-
erate the states that are not totally symmetric with re-
spect to the D2 symmetry, common to all T4 models (cf.
Table I).

F. Solutioa of MRCC equations

Fully quadratic MRCCSD equations (20) represent an
energy-independent system of nonlinear algebraic equa-
tions of the general form

Equation
number (I)

1

(P) GP~ (i)aP

(1)G44(P)

(')G",,(0)

(1)G44(P)

(1)Gs4(P)

(1)G34(1)

10

(2)G44 (p)

(2) G22 (0)

(2)G44(p)

(2)G24 (0)

(»G24(1)

TABLE V. Biexcitation operators ~ G~&(i),
(p = 1, 2; i = 0, 1) required in the two-reference CCSD formal-
ism when applied to the MBS T4 models. Equation number
I labels the equations in system (69).
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N N

az + ) bzztz + ) czzzctztzr = 0 (I = 1, 2, . . . , X),
J=1 J(K

(69)

RHF calculations. The one- and two-electron molecu-
lar integrals needed to construct the coeKcients al, bl J,
and clJ~ and the effective Hamiltonian matrix were com-
puted using the transformation routines that form a part
of the GAMESS CI system.

with N designating the number of linearly independent
singly and doubly excited cluster coefficients tz (recall
that in the present case tl represent only biexcited am-
plitudes; cf. the preceding section).

Since the order of the spin- and symmetry-adapted
MRCCSD system of equations for the MBS T4 models is
very small (N = 10; cf. Table V), we can use the same
computational strategy as in paper I. We thus store the
coefficients az, bzz, and czzzr and solve the system (69)
for the unknown cluster amplitudes tl using the Newton-
Raphson procedure (see, e.g. , Appendix B in Ref. [53]),
while employing Gaussian elimination to solve the lin-
ear system resulting in each iteration. Normally, only
a few iterations (at most a dozen or so) are needed to
achieve the eight-digit accuracy for cluster amplitudes,
or better. This algorithm is very similar to that used in
our SRCC calculations [15,19,31,48,52—54,56,57,60—63],
except for the presence of the effective Hamiltonian ma-
trix elements H2& and H&2 in the linear and bilinear cou-
pling terms, entering Eq. (69), which depend on cluster
amplitudes and must be recalculated in every Newton-
Raphson iteration.

The convergence rate of the Newton-Raphson scheme
and the actual solution that we obtain (nonlinear equa-
tions possess generally multiple solutions) strongly de-
pend on the initial guess for cluster amplitudes t~ ~=

~~ tz ~~i&z&iv (cf. Refs. [5,10,14,60]). Thus an appro-
priate choice of t~ ~ is very crucial. The L-MRCC solu-
tions [obtained by solving system (69) with the nonlinear
part neglected czzzc = 0] are very often of little help in
view of their singular behavior due to the presence of
intruder states [5,10,14]. To avoid problems stemming
from an inappropriate choice of initial guess for cluster
amplitudes, we exploit an "analytic continuation" of so-
lutions from the region of geometries for which a good
starting point is easily available. This procedure em-

ploys as the first approximation t~ ~ the converged solu-
tion for a sufficiently close geometry t'ai(n+ b, n) = t(o;)
while choosing a sufBciently small step An. In this way,
we can examine analytic properties of CC solutions and
determine the limits of applicability of CC approaches.
The method of analytic continuation is particularly help-
ful in the vicinity of singularities that plague some of
the nonlinear MRCCSD solutions (see the following sec-
tions), where extremely small steps b,a (such as 10 or
smaller) are applied in order to localize the position of
the singularity. It is the only procedure that enables us
to follow a particular solution of the system (69) while
changing the geometry of the model under consideration
[5,10,14,15,19,48,M, 57,60—63].

The actual MRCC computations were carried out with
a set of programs exploiting spin and spatial symmetry
common to all (planar as well as nonplanar) H4 mod-
els, which was also employed in paper I. The GAMESS

electronic structure package [64] was used for the initial

IV. RESULTS

We now focus on a comparison of MRCCSD ener-
gies and FCI data. We first discuss L-MRCCSD results
(Sec. IV A) before turning our attention to nonlinear
MRCCSD-n results (Sec. IV B).

A. L-MRCCSD results

In the vicinity of the square geometry, where ~C'i)
and ~42) are nearly degenerate, and for all T4 mod-
els with 1.1428 a.u. & R & 2.0 a.u. and
0.3, where either C i) or ~C 2) is a dominant con-
figuration in FCI expansions for ~@i) and ~42), the
L-MRCCSD formalism provides very good correlation
energies. In this region, the differences between the
L-MRCCSD and FCI results for the energy of the ground
state are usually smaller than 1 mhartree. Except for the
highly compressed cases, the differences between the L-
MRCCSD and FCI results increase with R, but even for
the T4 model with R = 2.0 a.u. and o. & 0.3 they do
not exceed 2 mhartree. In the case of the first excited
state of A(D2) symmetry, the differences between the
L-MRCCSD and FCI energies are slightly larger, but
again for the majority of geometries belonging to the
above region they do not exceed couple of millihartrees.
This excellent performance of the L-MRCCSD method
is apparent from Figs. 8(a)—8(c), which display the cx

dependence of the L-MRCCSD and MRCCSD-2, 3 ener-
gies for T4 models with R = 1.1428, ~2 and 2.0 a.u.
The remaining Figs. 8(d)—8(f) display the n depen-
dence of the L-MRCCSD and MRCCSD-2, 3 energies for
T4 models with larger intermolecular distances, namely,
R = 3.0, 4.0, and 7.0 a.u.

L-MRCCSD results are meaningful up to R 2.0 a.u.
and o. 0.3. Already for R = 3.0 a.u. , the discrepancies
between the L-MRCCSD and FCI results become sub-
stantial. The differences between the L-MRCCSD and
FCI results for the first excited state of iA(D2) symme-
try exceed in this case 60 mhartree, even if we restrict
ourselves to the well-behaved o. 0 geometries [cf. Fig.
8(d)]. This can also be seen by considering the B de-

pendence of the L-MRCCSD energies for the T4 niodel
with o. = 0 or, equiva1ently, the o. dependence of the
L-MRCCSD energies for the P4 model (see Fig. 9).

Serious problems with the linear approximation be-
gin to appear for large intermolecular separations R or
when o. ~ 0.5 in the T4 model. In both cases the
choice of a two-dimensional (or, actually, of any low-
dimensional) model space becomes problematic due to an
increasingly strong interaction between the model space
configurations and configurations belonging to Mo . In-
deed, when the intermolecular separation R approaches
large values, their interaction becomes very substan-
tial, so that we find an almost equal participation of
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the reference configuration !42) = G22(0) l@i) and
of the doubly excited configurations (cf. Table IV)
c'.) = &'G':(0)lei) le.) = &'&Gii(0)i@i) lc'.)

( )Gii(0)!@i), and !47) = & &Gi2(1)I@i) in the first
excited-state wave function lili2) (e.g. , for R = 7.0 a.u. ,

the corresponding FCI expansion coefficients equal about
0.4, —0.4, —0.4, 0.4, and 0.5, respectively, independently
of a). At the same time, the reference !4i), which repre-
sents a dominant con6guration in the FCI expansion of
!if' i), is almost totally absent. For small intermolecular
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FIG. 8. A comparison of the FCI and various MRCCSD energies b,E (in hartrees) relative to the energy of the configuration
[4'i), b,E = E —Hii, for the low energy singlet states of A(Dz) symmetry for the MBS T4 models with a = 2.0 s.u. and
R = 1.1428 ( ), v 2 (b), 2.0 (c), 3.0 (d), 4.0 (e), snd 7.0 (f) a.u. , considered over the whole range of the angular parameter a.
In sll cases we employ the RHF MO's associated with configuration [4'i) = [(Pi) ($2) ). The L-MRCCSD energies that sre
represented by the long- (lower energy root) and short-dashed (higher energy root) lines display a singular behavior around
a = 0.358 snd 0.496 for R = 1.1428 a.u. a = 0.445 for R = v 2 a.u. , a = 0.461 for R = 2.0 a.u. , and a = 0.343 for R = 3.0
s.u. For R = 1.1428, ~2, 2.0, and 3.0 a.u. , there are regions where the L-MRCCSD method yields complex energies. For T4
models with R = 1.1428, ~2, and 2.0 a.u. [Figs. 8(s)—8(c)], they are very narrow, so that we display them in a separate Fig.
11. In the case of the T4 model with R = 3.0 a.u. , complex L-MRCCSD energies are obtained for a 6 (0 3237, 0.332.6) [see
Fig. 8(d)]. Pairs of energies associated with the MRCCSD-2, 3 solution are represented by the thick chain-dashed lines. For
the T4 model with B = 1.1428 a.u. , continuation of the MRCCSD-2, 3 solution towards o. = 0.5 limit becomes impossible due
to the appearance of an algebraic branch point at n = 0.4794. As in Figs. 2—4, the dotted lines represent the successive FCI
eigenstates of the A(Ds) symmetry.
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FIG. 8 (Continued).

separations R (R & 2.0 a.u. ) and a m 0.5, we observe
a substantial contribution of the JHo configuration l@s)
in both FCI states l4'1) and l4z) (cf. Tables II and III).

As shown in paper I (cf. also Refs. [5,10]), a strong
interaction of the model space configurations with con-
figurations from Mo results in singular behavior of the
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1.5

1.0

0.5

0.0
Li

—0.5

—1 ~ 0

—1.5
0.0 P.O 4.0 6.0 8.0

FIG. 9. Same as Fig. 8 for the MBS P4 model with a =
2.0 a.u. and 1.1428 a.u. ( o. & 8.0 a.u. Recall that for o. =
1.1428 s.u. , active orbitsls P2 snd P3 become degenerate snd
the reference con6gurstiou l@q) represents the ground-state
RHF wave function only for n & 2.0 a.u. The L-MRCCSD
method becomes singular for n = 3.46 a.u. and n = 6.80 a.u.
For a C (3.41 s.u. , 3.43 s.u. ) sud a E (6.54 s.u. , 6.70 s.u. ),
the energies resulting from the L-MRCCSD theory become
complex.

L-MRCCSD formalism. The nature of these singularities
is very similar to those encountered in SR approaches
[15,19,35,36,55—60]. Whenever one of the model space
configurations becomes degenerate with some low-lying
state belonging to Mo+, the L-MRCCSD coefficient ma-
«i» b=b(a) = libre(a)lli&r, z&r~ [cf Eq. (69)] becomes
singular and we observe the appearance of one or more
poles in the functional dependence of the solution vectort:t(a) =lltr(a)lli&r&tv and the co»esponding ~n~~gi~~
EL MRccsD(a), p, = 1, 2, on the geometry of the nuclear
&amework. In fact, L-MRCC formalisms are more likely
to suffer from singular behavior than SR theories, since
the probability to encounter intruder states increases
with the dimension of the model space (see the relevant
discussion in paper I). This is precisely what happens
when the intermolecular distance B becomes large or the
angular parameter a approaches its largest possible value
0.5. Let us consider, for example, the T4 model with
B = 1.1428 a.u. In this case, L-MRCCSD approach has
two singularities [see Fig. 8(a)]. The first one appears for
o. = 0.358, corresponding to the region of a very strong
interaction between l@q) and l@s), whereas the second
one appears for a = 0.496, where l4's) strongly interacts
with lC'2). We have seen in paper I that we can pre-
dict the occurrence of these singularities by examining
the dependence of configurational energies, given by the
diagonal CI matrix elements H~r = (Ci]Hl4~), on the
geometry of the nuclear framework, since they will occur
in the vicinity of geometries for which the model space
configuration energies cross those corresponding to Mo .
Thus, for example, when we plot the n dependence of the
diagonal CI matrix elements H~~ for the T4 model with
R = 1.1428 a.u. [see Fig. 2(a)], we immediately realize
that the L-MRCCSD singularities at o. = 0.358 and 0.496
correlate reasonably well with crossings of Hzq with H33
at o. —0.39 and of H22 with H33 at o; = 0.5.

In the case of the T4 model with R = ~2 a.u. , the
L-MRCCSD approach has only one singularity [see Fig.
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8(b)]. It appears at a = 0.445, which is the region of
strong interaction between (4'i), 142), and (4s). The
occurrence of only one singularity in this case seems to
correlate with the fact that there is only one geometry for
which Hqq and H22 intersect with H33 namely, o; = 0.5
[see Fig. 2(b)]. Singularities for T4 models with R = 2.0
and 3.0 a.u. [see Figs. 8(c) and 8(d), respectively] seexn
to correlate with the interaction between 142) and Its)
[note the crossing of H22 and Hss at o. = 0.5, Figs. 2(c)
and 2(d)]. For the T4 model with R = 2.0 a.u. , the
L-MRCCSD method becomes singular at a = 0.461,
while for R = 3.0 a.u. , the singularity is shifted towards
the a = 0 limit and appears at a = 0.343. This is very
likely due to the increasing proximity between the H22
and H33 energies that occurs in a much broader region
of o, values than only in the immediate vicinity of the
n = 0.5 limit when R becomes large [cf. Fig. 2(d)].

All L-MRCCSD singularities for T4 models with in-
termediate or small values of R are invariably associ-
ated with a strong interaction between 14i) and 143)
or (42) and (4s). Thus inclusion of (4s) in the model
space should eliminate the singular behavior of the two-
reference L-CCSD formalism for small values of R (just
as the inclusion of 142) removes singularities arising in
the SR L-CC approach). The situation gets more com-
plicated for R ~ oo when the interaction between the ref-
erence configuration 142) and other configurations 14~)
from Mo+ strongly increases [cf. Figs. 2(e) and 2(f)].
As a consequence, we find quite a few L-MRCCSD sin-
gularities for T4 models with large values of R, which
can hardly be eliminated by incorporating 14s) in the
model space. In fact, it becomes rather difFicult to de-
tect these singularities when examining T4 models with
a large but fixed intermolecular separation R since they
are practically isotropic [cf. Figs. 8(e) and 8(f)]. It
is thus more revealing to examine the dependence of
the L-MRCCSD energies on the intermolecular distance
R. The most important are the cross sections of the
L-MRCCSD potential-energy surfaces for the P4 and V4
models, shown together with the MRCCSD-2, 3 and FCI
energies in Figs. 9 and 10. In the case of the P4 model,
we find two singularities at a = 3.46 and 6.80 a.u. As
explained in paper I, they are associated with a strong
interaction between the reference configuration (42) and
doubly excited configurations (4s), 144, ), (4s), and IC 7)
(cf. Table IV), as may be seen from Fig. 3, which shows
an increasing degeneracy of 142), Its), 144), and Its) for
a ~ oo and the crossing of H22 with H77 at o; 5.6 a.u.

Even more complicated situation arises in the V4
model, where (42) and Its) are degenerate and a strong
interaction between (42), (4s), 144), (4s), and 147) sets
in for larger values of a (see Fig. 4). Matrix elements
H22 —H33 cross H77 at n —5.0 a.u and for a + oo
we have that K22 —H33 —H44 —H55 In addition,
for a = ~2 a.u. , Hii ——H22 ——Hss. Strong interaction
between (4i), (42), and (4s) in the vicinity of the tetra-
hedral geometry correlates well with the appearance of
a singularity at o. = 1.28 a.u. This singularity is very
steep and is shown in greater detail in Fig. 10(b). Other
singularities appearing in this region are also associated
with the degeneracy between (4s) and (4's), but can-
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FIG. 10. Same as Figs. 8 and 9 for the MBS V4 model
with a = 2.0 a.u. and 0.7117 a.u. & o. & 10.0 a.u. Recall
that for a = 0.7117 a.u. , active orbitals $2 and Ps snd virtual
orbital P4 become degenerate and that the reference confi-
guratio ~4'i) represents the ground-state RHF solution only
for n ) ~2 s.u. The L-MRCCSD method becomes singu-
lar for a = 1.28, 6.03, aud 7.45 a.u. For n E (5.64 a.u. ,5.93
a.u.), (7.21 a.u. ,7.32 a.u. ), and (7.55 a.u. ,7.63 a.u. ), the ener-
gies resulting from the L-MRCCSD theory become complex.
The region of the singular behavior of the MRCCSD-2, 3 ap-
proach (MRCCSD-2, 3 solution cannot be continued beyond
n = 1.2226 a.u. ) and the steepest L-MRCCSD singularity
(appearing at n = 1.28 a.u.) is displayed in detail in (b). Re-
call that the two-reference CCSD formalism breaks the Dqq
symmetry of the V4 model. As a consequence, the broken-
symmetry MRCCSD-2, 3 solution destroys the twofold degen-
eracy of the ground state for n = ~2 a.u. Notice, however,
that MRCCSD-2, 3 solution correctly approximates the shape
of the FCI energy curves by minimizing the gap between the
two roots of the eHective Hamiltonian for o. 1.40 a.u.
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not be seen here, since they are shifted away &om the
o. = 0.5 geometry of the T4 model (cf. the above discus-
sion). It is rather improbable that the two singularities
appearing in the long-range region of the V4 model [at
a = 6.03 and 7.45 a.u. ; cf. Fig.10(a)] are associated with
this degeneracy. They seem to result from the proxim-
ity of H22 —H33 and H44 ——H55 and a strong interac-
tion between ~42), ~4s), and ~47) for n 5.0 a.u. It
is, in fact, remarkable that configurations ~O2) and ~4s)
are degenerate for all intermolecular distances o. , whereas
the number of L-MRCCSD singularities in the V4 model
is relatively small. We must not forget, however, that
the above analysis has only an approximate character.
We must also remember that MRCC amplitudes tl(n)
are algebraic functions of n (due to the algebraic nature
of MRCC equations), so that the solution vector t(n) is
defined for all complex o. with the possible exception of
a finite number of isolated poles and algebraic branch
points. The appearance of algebraic branch points at the
linear level of approximation is rather unlikely (cf. Ref.
[60]). Thus the number of L-MRCCSD singularities can-
not become very large, especially when we realize that
we employ very small configuration space.

Recall that whenever we pass a singular re-

gion, the second root of the effective Hamiltonian
approximates successively higher and higher excited
states, even though the lowest root of H' invariably de-
scribes the ground state [14]. In. fact, only for T4 models
with B & 3.0 a.u. and o, not exceeding 0.3—0.4, where
the L-MRCCSD approach remains nonsingular, the
L-MRCCSD energies approximate the first two A(D2)
singlets. Once we pass the singularities in the o. 0.4—
0.5 region, the second root of H' approximates the third
A(D2) state. For R —& oo, i.e. , when all singularities

have been passed, the second L-MRCCSD root approx-
imates a group of the fourth, fifth, and sixth A(D2)
states, which are degenerate for R m oo (see Figs. 8—10).
This interesting behavior of the L-MRCCSD formalism
is related to an increasingly large participation of the
model configurations ~4i) or ~4q) in the FCI expansions
of consecutive A(D2) singlets and an increasingly strong
interaction between the Mo and Mo configurations for
o. —i 0.5 and R ~ oo (cf. paper I). Let us consider, for
example, the behavior of the L-MRCCSD formalism for
the T4 model with R = 1.1428 a.u. [cf. Fig. 8(a)]. For
a ( 0.358, the model space configurations ~4i) and ~42)
represent dominant configurations in the FCI expansions
of ~@2) and ~4i). In this region, references ~4i) and ~42)
do not significantly interact with configurations belong-
ing to Mo so that the FCI energies Eq and E2 differ little
from the diagonal CI matrix elements H22 and Hii [see
Fig. 2(a)]. It is thus not surprising that the L-MRCCSD
approximation describes the lowest two A(D2) singlets.
However, once we pass the singular region (a = 0.358),
which is characterized by a strong interaction between
~4'i) and ~@s), we observe an increasingly large partici-
pation of the reference ~4i) in the FCI expansion of the
third A(D2) singlet and a smaller and smaller role of ~4i)
in the FCI expansion of ~42). For a = 0.4, ~4i), and
]4s) are almost degenerate and the absolute values of
corresponding FCI expansion coefBcients for each of the

lowest three states of A(D2) symmetry are almost equal
in this region (they equal 0.151 and 0.162 for ~4i), 0.635
and 0.713 for ~42), and 0.703 and 0.627 for ~4s), respec-
tively). Once we pass the singular region (n 0.3—0.4),
the reference ~4i) begins to play the dominant role in
the FCI expansion of ~4's) (for a = 0.5, the correspond-
ing FCI expansion coeKcient equals 0.821), compared to
relatively small role of ~Oi) in the FCI expansion of

~
@2).

In the vicinity of the a = 0.5 limit, we can hardly distin-
guish between the CI matrix element Hq q and the FCI
energy of ~4s) [cf. Fig. 2(a)]. As a result, the second
root of the L-MRCCSD effective Hamiltonian begins to
approximate the third A(D2) singlet rather than the sec-
ond iA(D2) state [cf. Fig. 8(a)]. A similar analysis can
be carried out for the remaining cases. Notice again the
usefulness of Figs. 2—4 in this regard.

As pointed out in paper I, the off-diagonal matrix el-
ements of H' and the non-Hermiticity of the effective
Hamiltonian, as measured by the difference Hzz —Hz~,
assume large values in the vicinity of L-MRCCSD singu-
larities. It may thus happen that the discriminant of the
secular equation (12),

(Heir Heir) + 4HefrHefr (70)

becomes negative, so that the L-MRCCSD formalism
fails to provide real energies for n C 0 = (cubi, n2)
near the singularity. For the models studied in this
paper, this type of breakdown of the L-MRCCSD the-
ory occurs several times. We observe such a behavior
for both P4 and V4 geometries and for the T4 mod-
els with R = 1.1428, ~2, 2.0, and 3.0 a.u. In the case
of the T4 models, the regions 0 are usually very nar-
row. For example, for the T4 model with R = 1.1428
a.u. , complex L-MRCCSD energies are obtained only for
0.3567 & o. & 0.3573 and 0.4967 ( o. ( 0.4970. The
corresponding regions 0 are so narrow that they must
be displayed separately in Figs. 11(a) and ll(b). These
regions could be easily overlooked if the dependence on
the angular parameter o. were not carefully examined.
In the case of the T4 model with R = y 2 a.u. , there is

only one L-MRCCSD singularity and, correspondingly,
only one region 0 = (0.4408, 0.4414), which is shown
in Fig. 11(c). Similarly, there is only one narrow re-
gion 0 for the T4 model with R = 2.0 a.u. In this
case, the L-MRCCSD method produces complex ener-
gies when 0.4574 ( n ( 0.4589 [see Fig. 11(d)]. For
the T4 model with B = 3.0 a.u. , and for the P4 and V4
models, the situation is slightly different. In this case,
regions of nonexistence of real L-MRCCSD energies be-
come considerably larger. For example, for the T4 model
with R = 3.0 a.u. , the L-MRCCSD method fails to pro-
vide real energies for n 6 (0.3237, 0.3326) [see Fig. 8(d)].
For the P4 model, there are two regions 0 . In this
case, the L-MRCCSD energies become complex for 3.41
a.u. & o. ( 3.43 a.u. and 6.54 a.u. ( o. ( 6.70 a.u.
(cf. paper I and Fig. 9). For the V4 model (see Fig.
10), there are three such regions, namely, (5.64 a.u. ,5.93
a.u.), (7.21 a.u. ,7.32 a.u. ), and (7.55 a.u. ,7.63 a.u. ). We
thus see that the size of the interval 0 increases with
R. Notice that at the terminal points of every interval
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0, i.e., at oI = nq and OI = oI2, the L-MRCCSD ener-
EL-MRCCSD nd EL-MRCCSD ~e identical [cf Figs

8(d) and 9—11]. This becomes clear when we realize that
0 for a ~ & a & oI2 and 6 ) 0 for oI & a ~ and

oI ) ot2, so that for n = oI q and OI = a 2 we must have
0 and

EL-MRCCSD EL-MRCCSD 1 jHeff + jef) (71)1 2 2 4 11 22 I

As a Gnal remark, we should recall that the above type
of breakdown of the L-MRCCSD approximation (namely,

the existence of regions 0, where L-MRCCSD energies
are complex) distinguishes the MR L-CC theories from
the SR ones, which may become singular, but can never
yield complex energies (cf. paper I).

B- Nonlinear MRCC SD results

Just as in the SR case [15,19], singular behavior of the
linear approximation can be eliminated by a proper ac-
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FIG. 11. A comparison of the pCI snd MRCCSD energies EE (in hartrees) relative to the energy of the configuration
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count of nonlinear terms. This is illustrated graphically
in Figs. 8—10 and in greater detail in Tables VI—IX, where
three difFerent nonlinear approximations, designated as
NIRCCSD-n, n = 1,2,3 (see Sec. II), are compared with

the FCI results. All MRCCSD solutions were obtained by
an analytic continuation procedure described in Sec. III
F. Even in the vicinity of the square geometry, where the
L-MRCCSD method represents an excellent approxima-

TABLE VI. Comparison of the FCI and MRCCSD-n (n=1,2,3) energies, relative to the electronic energy of the configuration

i@&), AE = E—Hzz (in mhartrees), for the two lowest singlet states of A(D2) symmetry of the MBS T4 model with a = 2.0 a.u.
and R = 1.1428; v 2 and 2.0 a.u. RHF MO's associated with the configuration ic'&) are employed throughout. For R = 1.1428
a.u. and a = 0, active orbitals Ps and Ps are degenerate. For u = 0.5, Ps and P4 are degenerate for all intermolecular distances
R employed. NC($) designates no convergence when continued towards the a = 0.5 limit. For the T4 model with R = 1.1428
a.u. , the critical o. values for the MRCCSD-1 and MRCCSD-2, 3 solutions are 0.4824 and. 0.4794, respectively.

FCI MRCCSD-1 MRCCSD-2, 3

R = 1.1428 a.u. 0.000

0.100

0.200

0.250

0.300

0.350

0.400

0.450

0.500

-4701.263

-4684.804

-4646.461

-4625.603

-4606.528

-4590.653

-4578.857

-4571.629

-4569.198

-791.128

-766.579

-696.389

-647.208

-590.903

-529.266

-464.208

-399.328

-358.014

-67.990

-70.081

-78.132

-86.483

-101.072

-127.897

-173.392

-232.471

-273.111

-791.152

-766.621

-696.527

-647.470

-591.437

-530.453

-466.916

-404.421

NC($)

-67.794

-69.904

-78.155

-86.883

-102.458

-131.805

-182.092

-247.349

NC($)

-791.113

-766.567

-696.407

-647.281

-591.130

-529.946

-466.1?1

-403.774

NC($)

-67.790

-69.899

-78.148

-86.880

-102.471

-131.842

-182.084

-247.087

NC(j, )

R = v2 a.u. 0.000

0.100

0.200

0.250

0.300

0.350

0.400

0.450

0.500

-4683.700

-4674.077

-4650.493

-4636.978

-4624.199

-4613.257

-4604.946

-4599.774

-4598.021

-507.653

-487.032

-428.825

-388.386

-342.290

-292.179

-240.082

-188.993

-143.668

-62.335

-62.862

-65.039

-67.286

-70.97?

-77.319

-88.810

-109.706

-143.668

-507.675

-487.073

-428.954

-388.622

-342.736

-293.070

-242.031

-193.707

-155.710

-62.205

-62.760

-65.054

-67.429

-71.338

-78.057

-90.237

-112.327

-147.524

-507.626

-487.011

-428.849

-388.477

-342.537

-292.800

-241.688

-193.366

-155.639

-62.197

-62.750

-65.040

-67.414

-71.326

-78.064

-90,290

-112.441

-147.564

R = 2.0 a.u. 0.000

0.100

0.200

0.250

0.300

0.350

0.400

0.450

0.500

-4565.348

-4561.751

-4552.580

-4547.083

-4541.710

-4536.965

-4533.267

-4530.923

-4530.120

-117.621

-111.672

-98.907

-92.911

-88.109

-84.601

-82.262

-80.934

-80.504

-7.268

0.495

26.518

47.392

72.839

101.112

129.069

151.292

160.158

-117.686

-111.797

-99.249

-93.443

-88.909

-85.793

-84.081

-83.857

-85.444

-7.263

0.499

26.500

47.312

72.582

100.381

127.069

145.920

147.143

-117.575

-111.672

-99.082

-93.240

-88.652

-85.453

-83.602

-83.138

-84.307

-7.266

0.495

26.499

47.311

72.575

100.353

126.993

145.783

147.050
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tion, this procedure required fewer iterations than when
starting from the L-MRCCSD solution. We thus used the
L-MRCCSD solution as an initial guess only for one of
the geometries near the square conformation. The result-
ing solution of nonlinear MRCCSD equations was then
continued towards the a = 0 and o, ~ oo limits of the P4
model, then towards the n = 0.5 limit of the T4 model
with fixed intermolecular separation R, and, finally, to-

wards the a = 0 and a ~ oo limits of the V4 model.
Convergence of the Newton-Raphson scheme was usually
very fast. Exceptions were the vicinity of the a = 0.5
limit of every T4 model and T4 models with larger in-
termolecular separations R (designated as a in P4 and
V4 models). Serious convergence problems began to ap-
pear for R ( ~2 and o. 0.5 (cf. the later part of this

TABLE VII. Same as Table VI for R = 3.0, 4.0, and 7.0 a.u.

FCI MRCCSD-1 MRCCSD-2, 3

R = 3.0 a.u. 0.000

0.100

0.200

0.250

0.300

0.350

0.400

0.450

0.500

-4306.127

-4305.146

-4302.597

-4301.034

-4299.481

-4298.088

-4296.987

-4296.283

-4296.041

-63.061

-62.919

-62.552

-62.329

-62.109

-61.912

-61.757

-61.659

-61.625

327.960

333.039

346.901

355.941

365.410

374.382

381.838

386.804

388.551

-64.154

-64.128

-64.157

-64.288

-64.575

-65.098

-65.948

-67.214

-68.958

324.820

329.364

341.243

348.374

354.965

359.734

361.343

358.736

351.530

-63.600

-63.521

-63.369

-63.336

-63.387

-63.573

-63.954

-64.587

-65.517

324.720

329.252

341.090

348.186

354.732

359.443

360.989

358.313

351.035

R = 4.0 a.u. 0.000

0.100

0.200

0.250

0.300

0.350

0.400

0.450

0.500

-4083.972

-4083.631

-4082.741

-4082.192

-4081.645

-4081.153

-4080.763

-4080.513

-4080.427

-57.269

-57.216

-57.077

-56.992

-56.907

-56.831

-56.770

-56.732

-56.718

441.613

442.639

445.331

446.999

448.669

450.178

451.377

452.148

452.414

-62.072

-62.223

-62.714

-63.114

-63.636

-64.290

-65.084

-66.020

-67.089

410.376

410.160

409.137

408.049

406.411

404.122

401.124

397.416

393.057

-59.529

-59.570

-59.718

-59.852

-60.041

-60.294

-60.618

-61.017

-61.492

409.908

409.670

408.579

407.437

405.729

403.354

400.252

396.420

391.919

R = 7.0 a.u. 0.000

0.100

0.200

0.250

0.300

0.350

0.400

0.450

0.500

-3711.257

-3711.230

-3711.15?

-3711.111

-3711.066

-3711.026

-3710.993

-3710.973

-3710.966

-54.701

-54.697

-54.689

-54.683

-54.678

-54.673

-54.669

-54.667

-54.666

469.618

469.620

469.626

469.629

469.632

469.635

469.637

469.639

469.639

-67.143

-67.184

-67.304

-67.392

-67.495

-67.613

-67.742

-67.881

-68.026

395.450

395.305

394.885

394.584

394.233

393.840

393.414

392.967

392.509

-59.856

-59.872

-59.919

-59.954

-59.996

-60.045

-60.099

-60.158

-60.221

393.807

393.653

393.208

392.890

392.517

392.099

391.64?

391.172

390.684
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section) .
Our calculations imply that the inclusion of direct

(T2" )2 terms already provides a nonsingular formalism
yielding reasonably good results. It is, however, the
MRCCSD-2, 3 formalism that renders the best descrip-
tion of the ground state. For small values of R, the
difference between the MRCCSD-1 and MRCCSD-2, 3
approximations is very small. Thus, for A & 2.0 a.u. ,
the differences between the MRCCSD-1 and MRCCSD-
2,3 energies do not exceed 1 mhartree (cf. Table VI).
For large values of R, however, the nonlinear coupling
term Bzz (Gt) plays a substantial role. Differences be-
tween the MRCCSD-1 and MRCCSD-2, 3 results for the
ground-state energy of the T4 model with 8 = 4.0 a.u.

range &om 2.5 mhartree for 0, = 0 to almost 5.6 mhartree
for o. = 0.5. For B = 7.0 a.u. , the difference between
the MRCCSD-1 and MRCCSD-2, 3 ground-state energies
equals about 8 mhartree, independently of the o. value
(cf. Tables VII; see also Tables VIII and IX).

A different situation arises when considering the first
excited singlet state i@2). For 1.1428 a.u. ( R ( 2.0
a.u. , the difference between MRCCSD-1 and MRCCSD-
2,3 results is usually smaller than 0.1 mhartree, and even
for the T4 model with R = 7.0 a.u. it does not ex-
ceed 2 mhartree. In the latter case, however, none of
the MRCCSD-n approximations provides good results.
For R = 4.0 a.u. , the difference between the MRCCSD-
n and FCI results for the energy of i@2) ranges from

TABLE VIII. Same as Tables VI and VII for the MBS P4 model with a = 2.0 a.u. In this case, the A(Dg) singlet states
become As(Dsq) singlets. For a = 1.1428 a.u. , active orbitals $2 and Ps become degenerate.

FCI MRCCSD-1 MRCCSD-2, 3

Hgg AE2

1.1428

1.145

1.15

1.20

1.30

1.40

1.60

1.80

1.90

1.95

1.98

1.99

-4701.263

-4701.293

-4701.347

-4700.974

-4695.734

-4685.498

-4654.017

-4612.684

-4589.587

-4577.592

-4570.273

-4567.815

-791.128

-788.553

-782.719

-725.733

-618.873

-520.896

-349.331

-210.047

-155.978

-134.584

-123.867

-120.655

-67.990

-67.953

-67.867

-66.978

-65.001

-62.696

-56.397

-44.008

-30.868

-20.648

-13.009

-10.202

-791.152

-788.577

-782.742

-725.756

-618.896

-520.918

-349.349

-210.065

-156.010

-134.629

-123.924

-120.716

-67.794

-67.757

-67.673

-66.795

-64.842

-62.563

-56.318

-43.982

-30.859

-20.643

-13.004

-10.197

-791.113

-788.538

-782.704

-725.716

-618.852

-520.870

-349.290

-209.988

-155.917

-134.527

-123.816

-120.606

-67.790

-67.753

-67.668

-66.790

-64.836

-62 ~ 555

-56.307

-43.974

-30.857

-20.644

-13.007

-10.201

2.00

2.01

2.02

2.05

2.10

2.20

2.50

3.00

4.00

5.00

7.00

10.00

-4565.348

-4562.872

-4560.388

-4552.889

-4540.247

-4514.525

-4435.563

-4306.127

-4083.972

-3919.365

-3711.257

-3547.071

-117.621

-114.760

-112.069

-104.949

-95.815

-84.443

-70.873

-63.061

-57.269

-55.391

-54.701

-54.650

-7.268

-4.209

-1.030

9.171

27.951

68.960

187.247

32?.960

441.613

464.667

469.618

469.740

-117.686

-114.830

-112.143

-105.038

-95.930

-84.613

-71.256

-64.154

-62.072

-64.236

-67.143

-67.914

-7.263

-4.203

-1.024

9.178

27.959

68.959

187.012

324.820

410.376

407.406

395.450

391.961

-117.575

-114.717

-112.029

-104.920

-95.806

-84.475

-71.039

-63.600

-59.529

-59.283

-59.856

-60.078

-7.266

-4.207

-1.028

9.174

27.956

68.958

187.000

324.720

409.908

406.416

393.80?

390.161
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about 32 mhartree for n = 0 to about 60 mhartree for
o. = 0.5. For T4 models with R & 7.0 a.u. , the difference
between the MRCCSD-n and FCI energies of the first
excited singlet is about 75—80 mhartree, independently
of the value of the angular parameter a (see Table VII;
cf. also Tables VIII and IX and Figs. 8—10). Larger
discrepancies between the MRCCSD-n and FCI results
for o. 0.5 are observed already for R = 2.0 a.u. In
this case, the MRCCSD-n error in the first excited state
energy increases &om a few microhartrees for o. 0 to
about 13 mhartree for a = 0.5 (cf. Table VI). This in-

dicates an increasing importance of configurations &om
Mo+ for R m oo and a -+ 0.5. They are not necessar-
ily dominant configurations, but, as already pointed out,
their contribution to low-lying eigenstates of the Hamil-

tonian is substantial (cf. Secs. III C and IV A). This is
especially the case for excited states. In the case of ~4'2),
we observe a large and almost equal participation of all
biexcitations ( ) G~~ (0)~4q), and even larger contribution
of l lG~2(1)~@q), while ~4q) is almost totally absent (cf.
the third paragraph in Sec. IV A). Clearly, the model
space Mo, Eq. (39), is not large enough to describe such
a situation. Notice that an increasingly substantial role
of Mo+ configurations correlates with the decreasing en-

ergy gap between the orbital energies of the active orbital
$3 and the virtual orbital P4 (cf. Figs. 5—7).

Another indication of an increasing importance of con-
figurations from Mz+ for large values of R and a ~ 0.5 is

the increasing role of quadruply excited clusters T4" that

TABLE IX. Same as Tables VI—VIII for the MBS V4 model with a = 2.0 a.u. In this case, the A(Dg) FCI singlet states
are either 'A~(Dsq) or 'Bq(Dsq) states. We do not distinguish between the Aq(D2q) and Bq(D2q) FCI subproblems, since all
MRCCSD-n formalisms break the D2g symmetry of the V4 model. For all values of a, the active orbital Ps and the virtual
orbital P4 are degenerate. NC(t) designates no convergence when continued towards the a = 0 limit. The critical a values for
the MRCCSD-1 and MRCCSD-2, 3 solutions are 1.2112 and 1.2226 a.u. , respectively.

FCI MRCCSD-1 MRCCSD-2, 3

AEg

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.60

1.70

1.80

1.90

-4580.420

-4587.733

-4592.948

-4596.262

-4597.858

-4598.021

-4597.900

-4596.535

-4590.117

-4579.546

-4565.605

-4548.946

-307.736

-266.173

-226.692

-189.167

-153.488

-143.668

-134.858

-124.572

-109.257

-98.617

-90.890

-85.055

-234.724

-206.370

-182.695

-163.288

-147.559

-143.668

-119.554

-87.274

-27.347

26.881

75.917

120.210

NC(g)

-271.038

-231.991

-195.107

-162.187

-155.710

-144.525

-132.745

-115.769

-104.267

-96.092

-90.050

NC(1')

-224.401

-197.509

-175.252

-155.126

-147.524

-125.021

-93.522

-34.752

18.288

66.009

108.831

NC(t)
-271.063

-232.016

-195.128

-162.151

-155.639

-144.415

-132.570

-115.422

-103.728

-95.356

-89.115

NC(g)

-224.258

-197.440

-175.220

-155.140

-147.564

-125.067

-93.567

-34.801

18.232

65.944

108.753

2.00

2.10

2.20

2.30

2.40

2.50

3.00

3.50

4.00

5.00

7.00

10.00

-4530.120

-4509.589

-4487.742

-4464.910

-4441.369

-4417.355

-4296.041

-4181.836

-4080.427

-3917.979

-3710.966

-3547.019

-80.504

-76.861

-73.883

-71.407

-69.320

-67.542

-61.625

-58.480

-56.718

-55.183

-54.666

-54.646

160.158

196.127

228.452

257.440

283.377

306.529

388.551

431.446

452.414

466.480

469.639

469.735

-85.444

-81.848

-78.992

-76.694

-74.828

-73.305

-68.958

-67.459

-67.089

-67.349

-68.026

-68.120

147.143

181.303

211.647

238.488

262.124

282.838

351.530

381.805

393.057

396.043

392.509

391.303

-84.307

-80.506

-77.439

-74.923

-72.833

-71.0?9

-65.517
-62.844

-61.492

-60.460

-60.221

-60.179

147.050

181.191

211.511

238.325

261.928

282.605

351.035

380.978

391.919

394.487

390.684

389.463
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are neglected in the MRCCSD formalism (triply excited

clusters T3" are also neglected, but for the MBS T4 mod-
els they do not appear for symmetry reasons). To provide
a better insight, we have carried out a detailed cluster
analysis of the two energetically lowest FCI eigenstates
of iA(D2) symmetry, using our reference space Mp and
the cluster ansatz of Eq. (15) (for details, see Sec. VII
and the Appendix in paper I), obtaining exact values of
the orthogonally spin-adapted cluster amplitudes defin-

ing the operators T,",i = 2, 4,p = 1, 2 (recall that.(p)

Ti" = 0). Thanks to the small dimension of MBS config-
uration spaces, there are only two quadruply excited clus-

ter amplitudes, namely, (t4 ) = (3344~t4 ~1122)p p p p p

and (t4 ) = (2244~t4 ~1133)ppppp. They are associ-
ated with quadruple excitations ( ) G&&42& (0, 0, 0, 0, 0) and
(2)G2&2&4s4s(0, 0, 0, 0, 0), respectively (cf. Table IV). Their
exact values for the MBS T4 model and several values
of R and a are given in Table X. In the following we
concentrate on the region B & 2.0 a.u. Let us first no-
tice that the absolute values of both tetraexcited clus-

ter coeKcients increase with B and o;. Exception is the
short-range (R ( 2.0 a.u. ) region, which we shall discuss
later on. An especially rapid increase (by a few orders
of magnitude) is observed when we vary the intermolec-
ular distance B for o. 0, or when B is fixed and equal
to 2.0—3.0 a.u. while o, changes from 0 to 0.5. Much
smaller changes are found when we vary B for o. 0.5,
but we must keep in mind that in this region the tetraex-
cited coeflicients (t4 ) and (t4 ) approach their maxi-
mum values, independently of the intermolecular separa-

tion R (cf. Table X). While the amplitude (t& )) remains

small for R & 2.0 a.u. , the amplitude (t4 ) assumes(2)

large values when B m oo. Consider, as an example,
the T4 model with B = 7.0 a.u. In this case, the ab-

solute value of (t4 ) equals to about 0.63—0.65, whereas(2)

the total weight of pair clusters in the many-body ex-
pansion of T(2), defined as (cf. Table V) (Pl s t21) ~i, is

only three times larger and equals 1.77—1.80. Large val-

ues of (t4 ) are also observed for the T4 models with
B 2.0—3.0 a.u. and o. 0.5. For the T4 model with

TABLE X. Exact values of the orthogonally spin-adapted quadruply excited cluster ampli-
tudes associated with reference states ~4i) = ~(4'ii) (P2) ) and ~C'2) = ~(4'ii) (Ps) ) for the
MBS T4 model with the H—H internuclear distance a = 2.0 a.u. and different values of
the intermolecular separation R and angular parameter o., as obtained by the cluster anal-
ysis of two energetically lowest FCI eigenstates of A(D2) symmetry The. quadruply ex-
cited cluster amplitudes (t4 ) = (3344~t4 ~1122)p,p, p, p, p = (~ Gird( 200, ,000)4 ~Ti4~4i) and

(t4 )—:(2244)t4 (1133)p,p p, p, p = ( G j3i3(0, 0, 0, 0, 0)C'z]T 4~4'2) are designated as tii and ti2,
respectively [for definition of quadruple excitations ' Giis2(0, 0, 0, 0, 0) and ~Giiss(0, 0, 0, 0, 0),
see Table IV]. Triexcited clusters are not listed, since they vanish due to symmetry (see the text
for details).

R = 1.1428 a.u. R = ~2 a.u. R = 2.0 a.u.

0.0

0.1

0.2

0.3

0.4

0.5

0.003112

0.002774

-0.000268

-0.015910

-0.091250

-0.237800

0.000146

0.000031

-0.000447

-0.002104

-0.010467

-0.049799

0.002376

0.001946

-0.000091

-0.006107

-0.023136

-0.065858

0.000276

0.000134

-0.000467

-0.002403

-0.010741

-0.065858

0.000398

-0.000027

-0.001442

-0.004239

-0.009392

-0.019794

0.000398

0.000016

-0.001590

-0.006694

-0.025984

-0.119471

R = 3.0 a.u. R = 4.0 a.u. R = 7.0 a.u.

0.0

0.1

0.2

0.3

0.4

0.5

-0.004544

-0.004954

-0.006227

-0.008497

-0.011994

-0.016890

-0.027128

-0.031111

-0.045274

-0.077589

-0.145298

-0.274609

-0.011?40

-0.012088

-0.013121

-0.014795

-0.017016

-0.019628

-0.212660

-0.221581

-0.248853

-0.29558?

-0.362315

-0.447324

-0.020794

-0.020846

-0.02099?

-0.021231

-0.021525

-0.021850

-0.625927

-0.626956

-0.629933

-0.634550

-0.640338

-0.646729
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R = 3.0 a.u. , the absolute value of (t4 ) equals about(2)

0.27, whereas (gl st2I)~ is only 1.32, so that the ra-

tio (t4 )j(gl s t2I) i equals 0.2. A similar ratio for the

reference [Cj'i), namely, (t4 )j(gl i tI) ~, is four times
smaller. In view of these facts, it is not surprising that
our two-reference CCSD formalism provides a poor de-
scription of the first excited state when R m oo and
o. ~ 0.5. It is also not surprising that in this region,
the description of the first excited state is much worse
than the description of the ground state. To obtain a
correct description of the first excited state, to which

i@i) hardly contributes, we must either account for the

T4 ) cluster component or increase the dimension of Mo.
The connected cluster components T4 are far less im-(&)

portant here so that there is no need to include them
to achieve a relatively good description of the ground-
state wave function, even though increasingly poor de-
scription of the first excited state afFects the MRCCSD
results for the ground state. Despite the fact that the
two-dimensional model space (39) seems to be well suited
for both quasidegenerate and nondegenerate regimes (cf.
Table II), for large values of R the error in the MRCCSD-
2,3 results for the ground state reaches almost 6 mhartree
(MRCCSD-1 method gives 13 mhartree error). This
is another indication of an increasingly large role of the
coupling terms. These terms couple the ground state
with the first excited state, so that the poor description

of the latter state must result in a poorer description of
the ground state.

Clearly, when approaching the R + oo limit, where
the ground-state FCI wave function has a definitely non-
degenerate character (cf. Table II), a preferred solution
would be to switch to the well-known SRCCSD formal-
ism (cf. Refs. [15] and [19]). To illustrate this, we have
performed a series of SRCCSD calculations for T4 mod-
els with R ) 2.0 a.u. The results are given in Table
XI. They clearly reveal a well-known fact that SRCCSD
formalism is well suited to describe nondegenerate situ-
ations. For R = 2.0 a.u. and o. 0.5 and R & 3.0 a.u. ,
the SRCCSD method gives invariably better description
of the ground state compared to all MRCCSD methods
investigated in this paper. For R = 4.0 a.u. , the differ-
ence between SRCCSD and FCI results does not exceed

10 phartree and for R = 7.0 a.u. one can hardly distin-
guish between SRCCSD and FCI energies. The situation
changes when we approach the highly degenerate region
near the square geometry (R 2.0 a.u. , a ( 0.3). In this
case, MRCCSD-2, 3 method gives better results. The dif-
ference between ground-state energies obtained with the
MRCCSD-2, 3 and FCI approaches does not exceed 0.2
mhartree, compared to nearly 3 mhartree obtained with
the SRCCSD method for R = 2.0 a.u. and a 0 (cf.
Table XI). The SRCCSD method is clearly less reliable
in this region. It is also more diScult to converge the
SRCCSD solution. On the other hand, even for the

TABLE XI. Comparison of the MRCCSD-2, 3 ground-state energies (in mhartrees), relative to the electronic energy of the
configuration i@&) (represented by the matrix element Hii), with the exact (FCI) data and SRCCSD results employing ic'&)
as a reference for the MBS T4 models with a = 2.0 a.u. and R = 2.0, 3.0, 4.0, and 7.0 a.u. For R ) a, i@i) represents
the ground-state RHF solution, so that FCI, SRCCSD, and MRCCSD-2, 3 results listed here are the ground-state correlation
energies (see the text for details).

FCI SRCCSD
R = 2.0 a.u.

MRCCSD-2, 3 FCI SRCCSD
R = 3.0 a.u.

MRCCSD-2, 3

0.000

0.100

0.200

0.300

0.400

0.500

-4565.348

-4561.751

-4552.580

-4541.710

-4533.267

-4530.120

-117.621

-111.672

-98.907

-88.109

-82.262

-80.504

-120.455

-114.054

-100.223

-88.556

-82.328

-80.474

-117.575

-111.672

-99.082

-88.652

-83.602

-84.307

-4306.127

-4305.146

-4302.597

-4299.481

-4296.987

-4296.041

-63.061

-62.919

-62.552

-62.109

-61.757

-61.625

-63.034

-62.895

-62.535

-62.100

-61.756

-61.626

-63.600

-63.521

-63.369

-63.387

-63.954

-65.517

R = 4.0 a.u. R = 7.0 a.u.

0.000

0.100

0.200

0.300

0.400

0.500

-4083.972

-4083.631

-4082.741

-4081.645

-4080.763

-4080.427

-57.269

-57.216

-57.077

-56.907

-56.770

-56.718

-57.258

-57.206

-57.071

-56.905

-56.771

-56.720

-59.529

-59.570

-59.718

-60.041

-60.618

-61.492

-3711.257

-3711.230

-3711.157

-3711.066

-3710.993

-3710.966

-54.701

-54.697

-54.689

-54.678

-54.669

-54.666

-54.701

-54.697

-54.689

-54.678

-54.670

-54.666

-59.856

-59.872

-59.919

-59.996

-60.099

-60.221
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R = 2.0 a.u. model, the performance of the SRCCSD
method improves with increasing o. while the opposite is
the case for the MRCCSD. Indeed, for B = 2.0 a.u. and
n = 0.5, the difference between the SRCCSD and FCI en-
ergies is only 30 phartree, while the corresponding differ-
ence for the MRCCSD case is almost 4 mhartree. Thus it
is very remarkable that the simple SR theory is capable of
describing highly degenerate ground state so accurately.
This must be related to the fact that two quasidegener-
ate model-space configurations ~C i) and ]4q) difFer only
by a double excitation and no other configurations play
an essential role in the ground-state wave function for
8 & 2.0 a.u.

Although SRCCSD method yields highly accurate de-
scription of the ground state over the broad range of
T4 geometries, it has a clear disadvantage compared to
MRCCSD methods, namely, it does not provide us with
any information about the excited states. The two-
reference CCSD formalism gives us automatically such
an information, even though results for the first excited
state become rather poor when R becomes large. Perhaps
a better solution would be to employ the three-reference
model space Mo, Eq. (49) (cf. the discussion in Secs. III
C and III D and later in this section), which should pro-
vide us with a much better overall description of the first
excited state, while yielding additional information about
the second excited A(Dq) singlet. An especially large
improvement could be expected for the V4 model. The
wave functions provided by our two-reference method vi-

olate the D~p symmetry of this model, whereas the wave
functions resulting from the three-reference theory can
be adapted to this symmetry (cf. Sec. III D).

A poor description of the first excited state by the two-

reference CCSD formalism, for large values of R, does not
imply that the two-reference theory is completely useless
in this region. It should be noted that our two-reference
CCSD method yields a qualitatively correct shape of the
potential energy surface for the first excited iA(Dq) state
[see Figs. 9 and 10(a)]. For large intermolecular separa-
tions, the FCI and MRCCSD-n energies saturate and do
not change with further increase in R, even though the
MRCCSD-n results are ofF by about 80 mhartree due to
the small dimension of the reference space employed.

As already mentioned, in the vicinity of the square ge-

ometry, where ~Oi) and ~4q) are nearly degenerate, and
for all T4 models with 1.1428 a.u. & B & 2.0 a.u. and
n & 0.3, where ~4i) and ~4q) are dominant configurations
in the FCI expansions of ~4'i) and ~4q), all MRCCSD-n
methods provide very good results. In this region, the
difference between the FCI and MRCCSD-n energies for
both ~iIii) and ]iIiq) does not exceed 1 mhartree and is
often smaller than 0.1—0.2 mhartree. This excellent be-
havior of nonlinear MRCCSD-n formalisms is largely due
to the fact that the configurations &om Mo contribute
little to both FCI states ~~Ili) and ~@q) (notice, however,
an important role of ]4s) for n 0.3) and due to a rel-
atively large energy gap between the active orbital Ps
and the virtual orbital P4 in this entire region. Conse-

quently, the connected tetraexcited cluster components

T4 and T4 are very small (see Table X). In this re-(i) (~)

gard it would be desirable to examine other choices of

molecular orbital bases (such as MCSCF orbitals, triplet
orbitals, etc. [20]), as well as, of course, the effect of
basis size [6,23]. This problem was already addressed in
the context of the MR MBPT study of the P4 model,
where it was shown that various shifting techniques of
the orbital energy levels can accelerate the convergence
of perturbation theory series and thus extend the range
of applicability of MR theories [20].

In the quasidegenerate region (R 2.0 a.u. and
o. & 0.3), we get better results for the first excited state
rather than for the ground state (see Table VI). The op-
posite is true in regions of nondegenerate ground state
(R &( 2.0 a.u. and n 0, R 2.0 a.u. and n 0.5,
8 )) 2.0 a.u. ), independently of the character (degener-
ate or nondegenerate) of the first excited state (see Ta-
bles VI—IX and Figs. 8—10). Better results for the ground
state are also obtained in strongly correlated cases char-
acterized by a heavy mixing of orbital and configurational
quasidegeneracies (R (( 2.0 a.u. and a 0.5), provided
that the MRCCSD-n results are available [cf. Tables VI
and IX; see also Figs. 8(a), 8(b), and 10(b)].

In general, the nonlinear MRCCSD results are avail-
able as long as reference configurations significantly con-
tribute to at least one of the FCI states ~iIii) or ~4'q).
The results for T4 models with large B indicate that the
weight of reference configurations in one of the two FCI
states can be relatively small in order to obtain a con-
vergent MRCCSD solution, although the rate of conver-
gence of the Newton-Raphson scheme deteriorates and
the MRCCSD results for one of the two states become
rather poor. The situation changes when the weight of
reference configurations in the FCI expansions of both
~iIli) and ~@q) becomes too small. In this case the
MRCCSD energies begin to deviate from the FCI results
and the nonlinear MRCCSD method may even become
singular. This is precisely what happens for the T4 mod-
els with R &( 2.0 a.u. and a = 0.5, or for the V4 model
with o. & ~2 a.u. In this region, configurations from

significantly contribute to both ~@i) and ~4q), and
we observe an increasingly strong quasidegeneracy of the
orbital Pq with orbitals Ps and P4 [cf. Tables II and III
and Figs. 5(a) and 7]. Recall that for the V4 model with
ci = 0.7117 a.u. , orbitals Pq, Ps, and P4 become exactly
degenerate (cf. Sec. III B and Fig. 7). It is thus in-

appropriate to use our Mo as a reference space in this
region. This is why for the T4 model with R = 1.1428
a.u. we were unable to continue the MRCCSD-1 solu-
tion beyond o. = 0.4824 and the MRCCSD-2.,3 solu-

tion beyond n, = 0.4794 [see Table VI and Fig. 8(a)].
The MRCCSD-1 and MRCCSD-2, 3 solutions for the V4
model cannot be continued beyond the intermolecular
distances o., = 1.2112 and 1.2226 a.u. , respectively (cf.
Table X and Fig. 10). In the vicinity of the above ge-
ometries, the MRCCSD-n energies begin to deviate from
the FCI results, the rate of convergence of the Newton-

Raphson procedure dramatically deteriorates, and the
critical point where no convergent solution can be ob-
tained is soon reached, even when we carefully "analyti-
cally continue" a given solution, allowing only very small
changes in the geometry (such as 10 s or smaller; see
Sec. III F).
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and

(73)

(74)

becom. e as large as 0.470516 for p = 1 and 0.339409
for p = 2, in spite of the fact that the absolute value

of (tz ) remains relatively small in this region. These
values of k&"~, p = 1, 2, should be compared to 0.097028
and 0.019285, respectively, obtained for n = 0. This
indicates that neither T4 nor T4 is negligible in com-

parison with coupled-pair cluster components z(Tz" )
when R « 2.0 a.u. and o. 0.5. It is thus not surprising
that in this region the two-reference CCSD formalism,

This behavior is very much reminiscent of that found
in the strongly correlated limit of cyclic polyene models,
where no real solution of SRCC (CCD, CCSD, CCSDT-
1, or ACPTQ [60]) equations, which is continuous as
a function of the resonance integral P from the weakly
correlated side, can be found beyond a certain critical
value P, (see Refs. [56,57,60]). In this case we were
able to prove that this critical value P = P, represents
an algebraic branch point of the first order, so that
the SRCC energy bifurcates into the two complex so-
lutions that have no physical meaning. It seems that
the critical geometries a of the V4 or T4 model with
R = 1.1428, beyond which further continuation of the
MRCCSD-n solutions is not possible, also represent al-
gebraic branch points. The critical values o., do not rep-
resent poles, since none of the cluster components t~(o.)
tends to infinity as a —+ a, . Just as in the SR case
[56,57,60], the Jacobian of MRCCSD-n system (69) van-
ishes for n = n, . This invalidates the Newton-Raphson
procedure and causes its failure in the immediate vicin-
ity of o, in the same way as in the SRCC approach to
cyclic polyenes [56,57,60]. Recall that similar behavior
of nonlinear MRCCSD-n formalisms was found for the
S4 model. It was also found for other planar geome-
tries when we examined multiple solutions of MRCCSD-
n equations describing higher than the first-excited state
(see paper I).

In order to avoid a singular behavior of the nonlinear
MRCCSD formalism for T4 models with R « 2.0 a.u.
and o. —0.5, we must employ a larger model space. It
is very likely that such a model space can be obtained
by including the reference ~4s) in Mo Altern. atively, we

must go beyond the CCSD approximation. The cluster
analysis of the exact wave functions ~4i) and ~4z) [as-
suming the cluster Ansatz of Eq. (15)] for the T4 model
with R = 1.1428 a.u. and different values of a indicates
a rapid increase in the importance of T4 and T4 clus-
ters with increasing a (by two orders of magnitude when
n changes from 0 to 0.5; see Table X). These clusters
remain negligible up to o. 0.2. Then, a rapid increase
sets in. For o, = 0.5, the ratio of the connected tetraex-
cited components T4" to their disconnected counterparts

z(Tz )~, p = 1, 2, defined as

(72)
where

employing model space (39), fails.
In the case of the V4 model, the ratio of connected

tetraexcited components T4" and their disconnected

counterparts z(T& l) remains large for all values of a.
In the nonsingular (o. ) 1.21 a.u. ) region, the coefficient
k~il varies between 0.25 and 0.44 (the maximum value of
0.44 is reached for n = 1.21 a.u.), whereas the coefficient
k~ ~ is never smaller than 0.34. FCI values of the quadru-

ply excited cluster coefficients (t& ) become large as well.

Except for a —~2 a.u. , one of the two coefficients (t~ )
(J)

is always larger (in absolute value) than 0.1 (cf. Table
X). Large values of connected tetraexcited components
Tz~"l indicate that the two-dimensional model space Mo,
Eq. (39), is not rich enough to describe low-lying eigen-
states of the V4 model. Similar conclusion can be drawn
by looking at the FCI expansion coefficients for ~4'i) and
~4'z) (see Tables II and III; cf. also Sec. III C). For
example, in the immediate vicinity of the MRCCSD-n
singularities we observe a large and almost equal partici-
pation of reference configurations ]@i)and ~4z), and Mo+
configuration ~4's), in the first excited state (for n = 1.20
a.u. , the corresponding FCI expansion coefficients equal
0.561, —0.556, and —0.556, respectively). Actually, the
model space A4o is not even invariant with respect to
the Dqp symmetry of the V4 model. In consequence, the
two-reference CCSD formalism yields broken symmetry
solutions. The resulting wave functions do not belong to
any particular symmetry species of Dqp. As in the case
of all T4 models, they classify as A(Dz) singlets (cf. Sec.
III C).

In view of the above discussion, we should expect
rather poor performance of all MRCCSD-n methods for
the V4 model. Remarkably enough, this is not the case.
For a wide range of V4 geometries, results are quite rea-
sonable (cf. Table IX and Fig. 10). The difference be-
tween the MRCCSD-2, 3 and FCI results for the ground
state is usually smaller than 5 mhartree (only in the
vicinity of the T~ geometry it exceeds 10 mhartree), and
all MRCCSD-n approaches provide us with a qualita-
tively correct shape of the potential energy surface for
the first excited state. The broken-symmetry MRCCSD-
n solutions destroy the exact twofold degeneracy of the
FCI states ~4'i ) and ~@z ) that occurs for n = ~2
a.u. (cf. Secs. III C—III E). Instead of the crossing
of E&~ci(a) and Ez~ci(n) at a = ~2 a.u. , we observe
the two roots of the MRCCSD-n effective Hamiltonian
avoiding one another [see Fig. 10(b)]. It is interest-
ing to observe how MRCCSD-n methods try to recover
the correct shape of the FCI energy curves in the vicin-
ity of n = ~2 a.u. geometry. In this region, the gap
between the MRCCSD-n energy curves Ei "(o.)
and EzMRccsD "(a) reaches its minimum value of about
7 mhartree for n —1.40 a.u. As explained in Sec. III
D, we would have to include the third reference config-
uration ~4s) in the model space to achieve a correct de-
scription of the twofold degeneracy of the ground state
for the tetrahedral V4 model. In general, the inclusion of
~e 3) in /Ho should lead to a Dzg invariant MRCCSD for-
malism and to a substantial improvement of MRCCSD
results (perhaps even to overcoming of the singular be-
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havior at o. 1.2 a.u. ), even though other configura-
tions I4~) may still be required to obtain a quantita-
tively good description of the first excited state in the
o. ~ oo limit. It is, however, remarkable that a much
simpler two-reference CCSD formalism is capable of pro-
viding us with the most essential information about the
low-lying eigenstates of the Hamiltonian, in spite of the
fact that the two-reference theory breaks the symmetry
of the Hamiltonian. This indicates that the Hilbert-space
MRCC methods have a much larger potential than one
might expect solely on the basis of cluster analysis of FCI
results and symmetry considerations.

So far, we have compared the MRCCSD results with
FCI data. Our results clearly indicate that Hilbert-
space MRCCSD methods provide us with a very good
description of the configurational quasidegeneracy (or
nondynamic correlation) effects. Another indication of
the potential of the state-universal CC formalism is its
ability to describe dynamic correlation effects for multi-
configurational states. We must, of course, emphasize
that the distinction between the dynamic and nondy-
namic correlation e8'ects is based on intuitive concepts,
which may not be very useful in quasidegenerate situ-

ations where one can hardly distinguish between them.
For example, SRCCSD method yields, in principle, only
dynamic correlation, since it assumes a nondegenerate
reference. However, for the completely degenerate T4
model with B = 2.0 a.u. and o. = 0, it yields almost
all the correlation energy, including dynamic as well as
nondynamic effects (cf. the above discussion). Nonethe-
less, we can estimate the importance of dynamic vs non-
dynamic correlation eEects by diagonalizing the e8'ective
Hamiltonian truncated at the first MR MBPT order [39],

( + iH' =—PH( iP + PVU( i = PH( ~P + PVP

in the model space (39), and by comparing the resulting

roots E~l+ l with the exact (FCI) energies E„:—E„
(p = 1, 2). Notice that l + l II' is simply a 2 x 2

«mat»x ll&~. lip. g=i, 2 -=II(C'.IIIIC'e) ll. .=i,2 The en-

ergies E„,p = 1, 2 (or, rather, their counterparts

b,E„+ calculated relative to Hii), for T4 models with

TABLE XII. Matrix elements of the effective Hamiltonian truncated at the first order of the perturbation, + H = PHP and its roots
AE~ + ) = E + —Hip (p, = 1, 2) calculated relative to the energy of the configuration i4'i) for the MBS T4 models with a = 2.0 a.u. and

R 1 1428' ~2) 2 0& 3 Oi 4 Oy and 7.0 a.u. Clearly, we have + H Hpq, p, q = 1, 2 (cf. Sec. V)

Hyy Hi2 —H~i DE(D+1)
1 AE2 Hyy H22 ~E(0+1)

1

0.000 -4701.263

0.100 -4684.804

0.200 -4646.461

0.300 -4606.528

-5461.676

-5419.584

-5306.913

-5152.639

0.500 -4569.198 -4802.149

0.400 -4578.857 -4981.169

R = 1.1428 a.u.

51.289

53.187

58.305

65.477

73.758

82.654

-763.856

-738.610

-665 ~ 559

-553.852

-415.408

-259 ~ 298

3.444

3.830

7.741

13.096

26.347

-4683.700 -5149.566

-4674.077 -5117.721

-4650.493 -5030.263

-4624. 199 -4905.225

-4604.946 -4758.872

-4598.021 -4598.021

R = ~2 a.u.

52.914

54.406

58.584

64.783

72.371

80.949

-471.801

-450.219

-388.602

-295.240

-182.608

-80.949

5.935

6.575

8.832

14.215

28.682

80.949

R = 2 0 a u. R = 3.0 a.u.

0.000 -4565.348

0.100 -4561.751

0.200 -4552.580

-4565.348

-4545.979

-4490.814

0.300 -4541.710 -4406.846

0.400 -4533.267 -4301.151

0.500 -4530.120 -4177.664

56.970

58.051

61.186

66.104

72.488

80.052

-56.970

-50.698

-37.655

-26.997

-20.778

-17.330

56.970

66.471

99.421

161.861

252.894

369.786

-4306.127 -3833.710

-4305.146 -3823.545

-4302.597 -3793.960

-4299.481 -3747.354

-4296.987 -3686.911

-4296.041 -3616.082

63.894

64.637

66.811

70.270

74.789

80.075

-8.489

-8.524

-8.629

-8.803

-9.034

-9.303

480.906

490.125

517.267

560.930

619.111

689.262

R = 4.0 a.u. R = 7.0 a.u.

0.300

-4082.741 -3335.842

-4081.645 -3310.343

0.400 -4080.763 -3277.713

0.500 -4080.427 -3240.586

0.000 -4083.972 -3357.672

0.100 -4083.631 -3352.089

68.857

69.360

70.824

73 ~ 129

76.082

79.429

-6.470

-6.518

-6.657

-6.872

-7.144

-7.446

732.770

738.060

753.556

778.175

810.195

847.287

-3711.257

-3711.230

-2715.242

-2714.575

-3711.066

-3710.993

-3710.966

-2709.699

-2706.049

-2702.088

-3711.157 -2712.652

73.604

73.721

74.061

74.588

75.252

75.987

-5.410

-5.424

-5.463

-5.525

-5.604

-5.691

1001.425

1002.078

1003.968

1006.892

1010.549

1014.568
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R = 1.1428, ~2, 2.0, 3.0, 4.0, and 7.0 a.u. are given in
Table XII.

It is seen that for R ( 2.0 a.u. and n ( 0.3, the cor-
relation effects have mostly nondynamic character. In-

deed, in this region the difference between Ez and(o+x)

FCI ground-state energy does not exceed 40 mhartree,
(o+~)whereas the corresponding difference between E2 and

the energy of the 6rst excited state is smaller than 75
mhartree. As a result, for R & 2.0 a.u. and o, & 0.3,
the MRCCSD-2, 3 method yields very accurate results for
both states considered (with the accuracy of less than

0.1 mhartree for ~@z) and less than 0.4 mhartree for
~@2)). This corresponds to our earlier observation that in
this region either [4z) or [4 2) dominate in the PCI expan-
sion of the lowest two A(D2) singlets. For large values of
R and o. 0.5, the situation is entirely different. In this
region, the MR dynamic correlation effects, as measured

by the difference EFci —E„+ (p = 1, 2), represent a
dominant contribution to the correlation energy of the
first (p, = 2) excited state. For example, for R = 7.0 a.u. ,

the difFerence between E2
+ l and E2Fcz becomes as large(o+x)

as 550 mhartree, which is a clear indication of the large
role of Mo+ configurations, or, equivalently, T4 cluster
components, in describing the first excited A(D2) singlet.
The presence of extremely large dynamic correlation ef-
fects for the first excited state affects the performance of
the MRCCSD formalism and leads to 75—80 mhartree er-
ror in the resulting energy. On the other hand, it is quite
remarkable that simple two-reference CCSD theory is ca-
pable of reducing the 550 mhartree error obtained by
diagonalizing ( + )H'+ to about 75—80 mhartree and, in
this way, of recovering a large portion of dynamic corre-
lation effects for the first excited state, despite the fact
that the model space Mo, Eq. (39), is not large enough
to reasonably approximate ~@2) and despite the fact that
the CCSD approximation is not accurate enough to ac-
count for important high-order cluster components.

In this regard, it is also instructive to compare the
separation (or excitation) energy between the two sin-
glet states considered as given by the zero and first or-
der energies, i.e. , by AH:—~H2q —Hzz~ and bE~ + l =
E2

+ —E~
+ ), and by the MRCCSD-2, 3 and FCI meth-

~EMRCCSD —EMRCCSD-2, 3 EMRCCSD-2, 3o s, i.e., 2 1
~EMRccsD-2, 3 ~EMRccsD-2, 3 d gEFcy Epcg

Ekcz ~EFcz ~EFGI Foz very shozt inteznu
clear separations (R ( 2 a.u.), the rough estimates pro-
vided by AH and AE( + ) are quite reasonable. The
difFerences between AH and corresponding FCI sepa-
ration energies for R = 1.1428 a.u. range between 40
and 150 mhartree) and for AE( + ) between 45 and 200
mhartree; for R = ~2 a.u. , these differences range be-
tween, respectively, 0 and 20 mhartree and 30 and 162
mhartree. Corresponding difFerences for the MRCCSD-
2,3 excitation energies range between 0.2 and 7 mhartree
for R = 1.1428 a.u. (although no solution can be found
for a = 0.5) and between 0.1 and 8 mhartree for R = ~2
a.u. For R = 2 a.u. and n = 0, we have that AH = 0,

(0+1) 11394 and QEMRccsD 110 309 mhartree
while AE = 110.353 mhartree. Thus the 6rst-order

result gives a very good separation energy in this case.
Note, however, that in a seemingly analogous case when

Hii ——H22, which arises when R = ~2 a.u. and a = 0.5,
we get AH = 0 AE( + ) = 161.898, GEM
8.075, and b,EF z = 0 (all in millihartrees). For R = 2
a.u. , the first-order description also rapidly deteriorates
as n increases, so that for R = 2.0 a.u. and o.
0.5 we have already that (all in millihartrees) AH =

2 456 ~E(o ) 387 116 ~EMRccsD
and AEFcr 240.662. The same holds when R in-
creases, as may be expected on the basis of the ex-
cited state behavior described above. Thus, for R = 7.0
a.u. and o. 6 [0, 0.5], we have that (all in millihartrees)
AH = 1000 AE('+') —1013 AE ' —452 and
d E' '-524.

V. SUMMARY

In this paper we applied several different variants of
the Hilbert-space MRCCSD formalism to a simple MBS
four-electron model system consisting of two interacting
hydrogen molecules in various geometrical arrangements.
We examined nonplanar geometries, generally referred
to as T4 models, and their special cases designated as
P4 and V4 models. They correspond to different cross
sections of the H4 potential-energy hypersurface, involv-
ing the dissociation or simultaneous stretching of two
H—H bonds. They comprise various quasidegeneracy
types, including orbital and con6gurational degeneracies,
a twofold degeneracy of the ground electronic state and
interesting cases of symmetry breaking at both HF and
CC levels. Since all MO's employed belong to different
symmetry species of the spatial symmetry, common to all
T4 models, we were able to exploit our orthogonally spin-
adapted formulation of the Hilbert-space MRCC theory,
which requires different spatial symmetry of active or-
bitals [2,5,9].

One of the aims of the present study was to assess
the importance of bilinear (T2" )2 terms, in particular,
the role of the (Tz"l)2 coupling term Bzz (G;), Eq. (25).
Thus, in addition to the L-MRCCSD approximation, in
which all nonlinear terms are neglected, we examined
three nonlinear MRCCSD theories, which represent dif-
ferent approximations to the fully quadratic MRCCSD-3
approach.

The linear approximation was shown to be reliable as
long as the two lowest eigenstates of the Hamiltonian
contain a significant contribution &om reference config-
urations. This includes quasidegenerate situations, char-
acterized by a strong interaction of model states, as well
as nondegenerate cases, where either the first or the sec-
ond reference contribute significantly to both low energy
eigenstates. There are, however, cases of a nondegen-
erate ground state, which require several configurations
to describe the 6rst excited state. They appear when
we break two H—H bonds. In these situations, or in
cases of heavy mixing of orbital and configurational de-
generacies, the L-MRCCSD formalism suffers kom sin-
gular behavior. These singularities appear whenever the
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low-lying excited configurations become quasidegenerate
with reference configurations. The simple diagnostics for
the occurrence of L-MRCCSD singularities, based on the
behavior of diagonal CI matrix elements and introduced
in paper I, was shown to be extremely useful. As in
the case of planar models, we found regions where the
L-MRCCSD theory fails to yield real energies. These re-
gions appear near the singularities. Their existence is
related to a large non-Hermiticity of the L-MRCCSD ef-
fective Hamiltonian in the vicinity of each singularity.

Singular behavior of the linear approximation is cir-
cumvented by accounting for nonlinear terms. As in the
case of planar geometries, it is sufficient to include (T2" )

2

clusters in the direct term in order to obtain a nonsingu-

lar and highly accurate formalisin. Inclusion of (T2" )
clusters in the coupling term usually improves the results.
In the case of the ground state, this improvement may be
substantial. The first excited state is much less sensitive
to the presence of bilinear coupling terms.

All nonlinear MRCCSD methods provide excellent re-
sults when the two lowest eigenstates of the Hamiltonian
contain a significant contribution &om reference config-
urations. However, contrary to the linear formalism,
nonlinear two-reference CCSD approaches are capable of
yielding a realistic description of both potential-energy
surfaces even when the weight of reference configura-
tions in one of the two FCI states is relatively small.
When the model space is adequate for the ground state,
but is not rich enough to approximate the first excited
state, only results for the latter become poor. For our
models, this happens in nondegenerate cases involving a
dissociation or simultaneous stretching of two chemical
bonds. Remarkably enough, even in these cases we ob-
tain a valuable information about the approximate shape
of the potential-energy surface for the first excited eigen-
state of the Hamiltonian. Excellent description of the
first excited state for the T4 model with a = 2.0 a.u. ,

R & v 2 a.u. , and n = 0.3 indicates that the two-reference
CCSD formalism may give a highly accurate result even
in the region where the role of configurations from JHp
is substantial. The larger the gap between the active and
virtual orbitals and the smaller the gap between differ-
ent active orbitals, the better MRCCSD results can be
expected. It would thus be instructive to examine dif-
ferent types of MO bases. This would correspond to the
exploitation of various shifting techniques of one-electron
levels in MR MBPT calculations, which can extend the
range of applicability of the MR MBPT formalism for
nondegenerate situations [20] (cf. paper I).

The situation changes when the weight of model state
configurations in the FCI expansions of the lowest two
eigenstates of the Hamiltonian becomes very small. In
this case we usually deal with a heavy mixing of orbital
and configurational degeneracies and a strong interaction
between several configurations. We should thus increase
the dimension of the model space to obtain reasonable
results. Otherwise, the MRCCSD energies begin to devi-
ate &om the FCI results and it may even happen that the
nonlinear MRCCSD method becomes singular. We can
preserve a small dimension of the model space, but then

we must go beyond the CCSD approximation. This was
confirmed by performing a cluster analysis of FCI wave
functions which shows a rapid increase in the importance
of connected tetraexcited clusters in strongly correlated
situations. Cluster analysis of FCI wave functions shows
that the inclusion of connected quadruply excited clus-
ters (particularly those associated with the second ref-
erence) should essentially improve the MRCC results in
nondegenerate situations. In particular, we should ob-
tain a much better description of the potential energy
surface for the first excited state. Recall that similar be-
havior of the MRCCSD formalism was observed in paper
I. It would thus be worthwhile to investigate the possi-
bility of extending the approximate methods of account-
ing for connected quadruply excited clusters (such as the
ACPQ [65], ACP-D45 [15,53,54], or ACCD [66]), or sim-
ilar methods that proved to be useful in SR situations
(e.g. , ACP-D14 [61]), to the MR case [67]. We also hope
to address the role of semi-internal tri- and tetraexcited
configurations that are singly or doubly excited with re-
spect to the other reference [2]. Another possibility is
to employ the three-reference CCSD formalism exploit-
ing the model space spanned by three CS-type reference
configurations and using three active orbitals of different
symmetry. Implementation of such an approach should
not be much more involved than the implementation of
the two-reference theory studied in this paper, but we

should obtain better description of the low-lying eigen-
states for nonplanar H4 models.

We showed that the two-reference CCSD formalism is
capable of providing essential information about the low-

lying eigenstates of the Hamiltonian, even when the two-
reference theory breaks the symmetry of the Hamilto-
nian. We examined an interesting case of the tetrahedral
geometry, where broken-symmetry MRCCSD-n solutions
destroy the twofold degeneracy of the ground state due
to a wrong choice of the model space. It was truly im-

pressive to observe how these broken-symmetry solutions
recover the correct shape of FCI energy curves by rnin-

imizing the gap between the two roots of the effective
Hamiltonian in the vicinity of the tetrahedral geometry„
where the exact energy curves cross one another.

Results of the present study, together with the re-
sults obtained in paper I, indicate that the Hilbert-space
MRCC formalism represents a powerful computational
method that is capable of describing many-electron cor-
relation effects in systems with varying degree of quaside-
generacy. It will be useful to extend these studies and
perform similar computations with larger basis sets, such
as the DZP basis of Ref. [19] (preliminary calculations
have already been performed; cf. Refs. [6] and [23]).

ACKNOWLEDGMENTS

Continued support by NSERC (3.P.) is gratefully ac-
knowledged. One of us (P.P.) would like to express his
sincere gratitude to Professor J.Paldus for his hospitality,
thoughtfulness, and numerous helpful discussions during
his stay in the Department of Applied Mathematics of
the University of Waterloo.



49 APPLICATION OF HILBERT-SPACE. . . . II. 3513

[1] B. Jeziorski and H.J. Monkhorst, Phys. Rev. A 24, 1668
(1981).

[2] B. Jeziorski and J. Paldus, J. Chem. Phys. 88, 5673
(1988).

[3] L. Meissner, Ph.D. thesis, Nicholas Copernicus Univer-

sity, Torun, Poland, 1987 (in Polish); L. Meissner, K.
Jankowski, and J. Wasilewski, Int. J. Quantum Chem.
34, 535 (1988).

[4] L. Meissner, S.A. Kucharski, and R.J. Bartlett, J. Chem.
Phys. 91, 6187 (1989); S.A. Kucharski snd R.J. Bartlett,
ibid. 95, 8227 (1991).

[5] J. Paldus, L. Pylypow, and B. Jeziorski, in Many Body-

Methods in Quantum Chemistry, edited by U. Kaldor,
Lecture Notes in Chemistry Vol. 52 (Springer, Berlin,
1989), pp. 151—170.

[6] A. Balkova, S.A. Kucharski, L. Meissner, and R.J.
Bartlett, Theor. Chim. Acta 80, 335 (1991).

[7] A. Balkova, S.A. Kucharski, snd R.J. Bartlett, Chem.
Phys. Lett. 182, 511 (1991).

[8] A. Balkova, S.A. Kucharski, L. Meissner, and R.J.
Bartlett, J. Chem. Phys. 95, 4311 (1991).

[9] P. Piecuch and J. Paldus, Theor. Chim. Acta 83, 69
(1992).

[10] J. Paldus, P. Piecuch, B. Jeziorski, and L. Pylypow,
in Recent Progress in Many-Body Theories, edited by
T.L. Ainsworth, C.E. Campbell, B.E. Clements, and E.
Krotscheck (Plenum, New York, 1992), Vol. 3, pp. 287—
303.

[11] J. Paldus, in Methods in Computational Molecular
Physics, Vol. 293 of NATO Advanced Study Institute, Se-
ries B: Physics, edited by S. Wilson and G.H.F. Dierck-
sen (Plenum, New York, 1992), pp. 99—194.

[12] J. Paldus, in Relativistic and Electron Correlation Ef
fecta in Molecules and Solids, Vol. 318 of NATO Advanced
Study Institute, Series B: Physics, edited by G.L. Malli
(Plenum, New York, 1994), pp. 207—282.

[13) D. Mukherjee and S. Pal, Adv. Quantum Chem. 20, 291
(1989).

[14] J. Paldus, P. Piecuch, L. Pylypow, and B. Jeziorski,
Phys. Rev. A 47, 2738 (1993) (referred to as paper I).

[15] K. Jankowski and J. Paldus, Int. J. Quantum Chem. 18,
1243 (1980).

[16] U. Kaldor, Int. J. Quantum Chem. 28, 103 (1985).
[17] S. Wilson, K. Jankowski, and J. Paldus, Int. J. Quantum

Chem. 23, 1781 (1983); 28, 525 (1985).
[18] N. Iijima and A. Saika, Int. J. Quantum Chem. 27, 481

(1985).
[19] J. Paldus, P.E.S. Wormer, and M. Benard, Coll. Czech.

Chem. Commun. 53, 1919 (1988).
[20] S. Zarrabian and J. Paldus, Int. J. Quantum Chem. 38,

761 (1990).
[21] K. Jankowski, J. Psldus, and J. Wasilewski, J. Chem.

Phys. 95, 3549 (1991).
[22) S.A. Kucharski, A. Balkova, and R.J. Bartlett, Theor.

Chim. Acta 80, 321 (1991).
[23] J. Paldus snd L. Pylypow (unpublished).
[24) A. Bsnerjee snd J. Simons, J. Chem. Phys 76, 4548.

(1982); M.R. HofFmann and J. Simons, ibid. 88, 993
(1988); 90, 3671 (1989).

[25] C.L. Janssen and H.F. Schaefer III, Theor. Chim. Acta
79, 1 (1991).

[26] J. Paldus snd X. Li, in Symmetries in Science VI: From
the Rotation Group to Quantum Algebras, edited by B.
Gruber (Plenum, New York, 1993), pp. 573—591; X. Li

and J. Paldus (unpublished).
[27] P. Jankowski, B. Jeziorski, and J. Paldus (unpublished).
[28] L. Meissner and R.J. Bartlett, J. Chem. Phys. 92, 561

(1990).
[29] C. Bloch, Nucl. Phys. 6, 329 (1958).
[30] J. Cizek, J. Chem. Phys. 45, 4256 (1966); Adv. Chem.

Phys. 14, 35 (1969);J. Cizek and J. Paldus, Int. J. Quan-
tum Chem. 5, 359 (1971).

[31] J. Paldus, J. Cizek, and I. Shavitt, Phys. Rev. A 5, 50
(1972).

[32] J. Paldus, J. Chem. Phys. 67, 303 (1977); B.G. Adams
snd J. Paldus, Phys. Rev. A 20, 1 (1979).

[33] J. Paldus, J. Cizek, snd B. Jeziorski, J. Chem. Phys. 90,
4356 (1989).

[34] R.J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981).
[35] J. Paldus, Diagrammatic Methods for Many Fermi-on

Systems (University of Nijmegen, Holland, 1981).
[36] J. Psldus, in New Horizons of Quantum Chemiatry,

edited by P.-O. Lowdin and B. Pullman (Reidel, Dor-
drecht, 1983), pp. 31—60.

[37] R.J. Bartlett, C.E. Dykstra, and J. Paldus, in Advanced
Theori es and Computational Approaches to the Elec-
tronic Structure of Molecules, edited by C.E. Dykstrs
(Reidel, Dordrecht, 1984), pp. 127—159.

[38] R.J. Bartlett, J. Phys. Chem. 93, 1697 (1989).
[39) I. Lindgren snd J. Morrison, Atomic Many Body Th-eory

(Springer, Berlin, 1982).
[40] I. Lindgren, Int. J. Quantum Chem. Symp. 12, 33 (1978);

J. Phys. B 24, 1143 (1991);I. Lindgren and D. Mukher-
jee, Phys. Rep. 151, 93 (1987).

[41] I. Lindgren, J. Phys. B 7, 2441 (1974).
[42] V. Kvasnicka, Czech. J. Phys. B 24, 605 (1974); 27, 599

(1977); Adv. Chem. Phys. 36, 345 (1977).
43] B. Jeziorski and J. Paldus, J. Chem. Phys. 90, 2714

(1989).
&44] W.D. Laidig and R.J. Bartlett, Chem. Phys. Lett. 104,

424 (1984); W.D. Laidig, P. Saxe, and R.J. Bartlett, J.
Chem. Phys. 86, 887 (1987).

[45] P. Piecuch and J. Paldus, Int. J. Quantum Chem. 36,
429 (1989).

[46] J. Paldus and B. Jeziorski, Theor. Chim. Acta 73, 81
(1988).

[47] J. Paldus, B.G. Adams, and J. Cizek, Int. J. Quantum
Chem. 11, 813 (1977).

[48] J. Paldus, M. Takahashi, and B.W.H. Cho, Int. J. Quan-
tum Chem. Symp. 18, 237 (1984).

[49] S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).
[50] H. Fukutome, Prog. Theor. Phys. 47, 1156 (1972).
[51] H. Fukutome, M. Takahsshi, and T. Takabe, Prog.

Theor. Phys. 53, 1580 (1975).
[52] B.G. Adams, K. Jankowski, and J. Paldus, Chem. Phys.

Lett. 67, 144 (1979).
[53] B.G. Adams, K. Jankowski, and J. Paldus, Phys. Rev. A

24, 2316 (1981).
[54] B.G. Adams, K. Jankowski, and J. Psldus, Phys. Rev. A

24, 2330 (1981).
[55] K. Jankowski, L. Meissner, and J. Wasilewski, Int. J.

Quantum Chem. 28, 931 (1985).
[56] J. Paldus, M. Takahsshi, and R.W.H. Cho, Phys. Rev. B

30, 4267 (1984).
[57] M. Takshashi and J. Paldus, Phys. Rev. B 31, 5121

(1985).
[58] J. Paldus, P.E.S. Wormer, F. Visser, and A. vsn der

Avoird, J. Chem. Phys. 76, 2458 (1982).



35 I.4 PIOTR PIECUCH AND JOSEF PALDUS

[59]

[60]

[61]

[62]

[63]

[64]

K. Jankowski, J. Paldus, and P. Piecuch, Theor. Chim.
Acta 80, 223 (1991).
P. Piecuch, S. Zarrabian, J. Paldus, and J. Cizek, Phys.
Rev. B 42, 3351 (1990).
P. Piecuch and J. Paldus, Int. J. Quantum Chem. Symp.
25, 9 (1991).
J. Paldus and P. Piecuch, Int. J. Quantum Chem. 41,
135 (1992); P. Piecuch, J. Cizek, and J. Paldus, ibid. 41,
165 (1992).
M. Takahashi and J. Paldus, Int. J. Quantum Chem. 28,
459 (1985).
The GAMESS system of programs by M. Dupuis, D. Span-
gler, and J.J. Wendoloski, National Resource for Com-
putations in Chemistry, Software Catalog, University of

[65]

[66]

[67]

California, Berkeley, CA, 1980, Program QG01; M.W.
Schmidt, K.K. Baldridge, J.A. Boatz, J.H. Jensen, S.
Koseki, M.S. Gordon, K.A. Nguyen, T.L. hindus, and
S.T. Elbert, Quantum Chem. Prog. Exch. Bull. 10, 52
(1990).
J. Paldus, J. Cizek, and M. Takahashi, Phys. Rev. A 30,
2193 (1984).
R.A. Chiles and C.E. Dykstra, Chem. Phys. Lett. 80, 69
(1981);S.M. Bachrach, R.A. Chiles, and C.E. Dykstra, J.
Chem. Phys. 75, 2270 (1981); C. E. Dykstra, S.-Y. Liu,
M. F. Daskalakis, J. P. Lucia, and M. Takahashi, Chem.
Phys. Lett. 137, 266 (1987).
P. Piecuch, R. Toboka, and J. Paldus, Chem. Phys. Lett.
210, 243 (1993).


