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We present a computational scheme to propagate wave packets describing S states of two-electron sys-
tems. Body-fixed polar coordinates (7, r,,6) are used to represent the time-dependent wave functions on
a grid in three dimensions. We handle the Coulomb singularities by transformation of the wave function
and a modified finite-difference formula to evaluate the kinetic energy. We use a finite-difference split-
operator scheme for the time propagation and, as a first application, we compute the low-energy spec-

trum of helium and H™.

PACS number(s): 31.15.+q, 31.70.Hq, 34.50.Fa

I. INTRODUCTION

The three-body Coulomb problem characterized by
helium and H™ continue to take a central role in atomic
and molecular physics. Despite enormous effort in quan-
tum mechanics since its inception, and in classical
mechanics with the analogous three-planet problem since
early in the past century, a comprehensive description
remains unknown. Nevertheless, considerable progress
has been made on several fronts, theoretically and espe-
cially experimentally [1,2].

The problem naturally separates into two regimes dis-
tinguished by total energy either above or below the
threshold for three-body breakup [3]. Below threshold,
the concern is with resonance states which dissociate into
electron-atom or electron-ion channels, while above
threshold, the issue is the correlated three-particle
motion generated by excitation from below threshold. Of
particular interest is the connection of high-lying
electron-pair levels below threshold with Wannier ridge
states above, specifically, the link between bound and
continuum states of the electron pair. Just above thresh-
old, basic features of these states can be described analyti-
cally, albeit approximately, by the Wannier theory [4-7].
Just below threshold little is known, although a great
deal has been speculated on the association of the density
and widths of electron-pair resonances with the (Wan-
nier) threshold double-ionization law [8]. Further below
threshold, very accurate basis-set results now exist [9—13]
for the positions and widths of singly and doubly excited
resonances and a great deal of progress has been made in
categorizing their properties by invoking a classical point
of view [14] as well as an analogy with simple molecules
[15].

Many details of a dynamical process can be revealed by
examining the time propagation of wave packets. The
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advantage of the idea is its ease of implementation. The
main disadvantage is the restriction to processes with few
dimensions imposed by present-day computer-storage
limitations and ultimately computer speed. If the past
five years are any indication, however, the situation is
likely to improve dramatically in the next few years [16].
Along with the recent advances in hardware, great pro-
gress has been made in finding efficient techniques for
solving the time-dependent Schrodinger equation direct-
ly. These methods have proven to be stable and accurate
[17] and to eliminate the need for perturbation theory
with respect to particle-particle and particle-field interac-
tions. The power of these methods has been noticed by a
broad community whose interests include molecular
quantum dynamics [18], femtosecond spectroscopy [19],
strong-field atomic ionization [20], ion-atom [21], ion-
nucleus [22] and atom-surface [23] collision, as well as
quantum well spectroscopy [24]. A thorough introduc-
tion to this area of theoretical physics is provided by a
special issue of Computer Physics Communications [25]
devoted entirely to the subject of time-dependent
methods for quantum dynamics.

The goal of this paper is to develop a lattice method
capable of studying the motion of electron-pair wave
packets near the double-ionization threshold. The basic
notion is to achieve a direct, even if approximate,
description of both bound and continuum electron-pair
states, which avoids reliance on basis sets but neverthe-
less faithfully describes Coulomb long-range effects and
singularities. Ideally, we would set up this six-
dimensional problem on a six-dimensional lattice using
three Cartesian coordinates for each electron (with the
nucleus fixed as the system center of mass). This would
allow a relatively direct computation because the
Coulomb singularities could be handled simply by ar-
ranging them between lattice points. At present, howev-

3457 ©1994 The American Physical Society



3458 ZHANG, FEAGIN, ENGEL, AND NAKANO 49

er, computer memory constrains us to smaller lattices
and fewer dimensions. Hence, we consider only L =0 to-
tal angular momentum of the electron pair, i.e., S states,
in order to reduce the problem to three dimensions. This
requires the introduction of polar coordinates, for exam-
ple, r, and 7, of the two electrons with respect to the nu-
cleus and 6 the interelectronic angle. Polar coordinates
and the representation of Coulomb singularities, howev-
er, introduce additional numerical difficulties, and this
paper is also about settling these issues.

We propagate wave packets directly in real and imagi-
nary time by taking a succession of small time steps, but
otherwise evaluating the full time-development operator
on a lattice. With a specified lattice, we improve upon
analogous quantum Monte Carlo methods [26], which are
limited essentially to determining ground states. Al-
though the present approach is rather similar to methods
involving fast Fourier transforms [27,28], we conduct a
finite-difference approximation of the kinetic energy
[29,30] and perform all computations in coordinate space.
As a first step, we compute in this paper the low-energy
spectrum of helium and H™ and demonstrate the essen-
tial features of the method. Our ongoing work will in-
volve wave packets along the Wannier ridge.

II. THEORY

We seek solutions of the time-dependent Schrodinger
equation for a three-body Coulomb system defined by one
nucleus, charge Z, and two electrons. Assuming the nu-
cleus to be the center of mass of the system, the Hamil-
tonian can be written as

H=—-1vi-ivi— ==+ 1

TViT Ve Fp ry Irp W
We use atomic units throughout this paper. For total an-
gular momentum L;=L,;+L,=0, the six-dimensional
problem reduces to three dimensions. In what follows we
use body-fixed coordinates 7, r,, and 0, where the radial
coordinates r; denote electron-nucleus separation and 6 is
the angle between the vectors r; and r,. The Hamiltonian
then takes the form
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g=-1129 .29 , 109,09
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Here the angular-momentum operator squared L? and its
coefficient b (r,,r,) are defined by
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is the potential energy. The Hamiltonian (2) exhibits
singularities at r,=r, =0 and at 6=0 and 7. As we will

describe in detail below, we evaluate the derivatives by
finite differencing. It is therefore convenient to force the
wave function to be zero at these singular points [31].
This can be done by transforming the original wave func-
tion @(r,,r,,0) according to

Y=rr,Vsinfg . (5)

The Hamiltonian acting on the “‘reduced” wave function
P(r,,r,,0) is then

H=T, +T, +b(r;,r)I*+V(r;,r,,0), (6)

r

where T, = —132/9r? denotes the kinetic-energy opera-
tor of electron (i) and
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is the transformed angular-momentum operator.
For the time development, we use a short-time propa-
gator that can be approximated as

AT, /2 AT, /2, AT, /2
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Xe 2 eM2+0(Mh), (8)
where A= —i dt with dt the time-propagation step size.

The wave function at time T =n dt is thus obtained by
successive application of the short-time propagator on
the initial function. The symmetrical splitting (8) ensures
that the error is of order A® [29,31,32]. The computation-
al details of the time propagation will be discussed in Sec.
III.

Information about the system’s eigenstates can be ob-
tained from the time-correlation function

c()=(PO)|yY(r)) , 9)

which measures the overlap between an initial 1 =0 wave
packet and the time-developed state at time ¢. Correla-
tion functions of the form (9) are frequently used for the
interpretation of molecular spectra [33-35]. However, it
is computationally more effective to evaluate the function

d()=(P(—|Y(1))=c(21) . (10)

The relation of d(t) to the correlation function c(2¢)
shows that ¢ (T) can be obtained from propagation of the
wave packet just up to 7'/2 [36].

The system energy spectrum can be extracted by a
Fourier transform of the time-correlation function, i.e.,

o(E)~ [ "7 dr e (1) . (an
Since ¢ (—t)=c*(z), the spectrum o(E) is a real number
which is, in fact, closely related to the “Fermi’s golden
rule” expression for dipole transition rates [35].

Another way to extract information about the eigen-
states of a system is to propagate an initial wave packet
in imaginary time, i.e., by setting A= —dt in Eq. (8). Itis
readily seen that for long enough propagation times the
wave packet “relaxes” or “diffuses” to the ground state
since all excited-state components of the propagated
wave packet decay to zero. This technique is commonly
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used in quantum Monte-Carlo (QMC) calculations of
eigenenergies in many-body systems [37], but has the ca-
pability over QMC of calculating excited states [38].

III. TIME PROPAGATION

A. Radial propagation

For the time propagation we require the kinetic-energy
operator acting on an arbitrary wave function. We evalu-
ate the second derivatives by finite differencing; for de-
tails see Refs. [26,27]. Consider, for example, a kinetic-
energy operator 7, acting on the wave function
Y(r,)=1, defined by a spatial grid with points r, such
that r, . ;—r,=Ar. In second order one obtains

(Tr'p)n= {_¢n—1+2¢n——¢n+l} . (12)

1
2(Ar)?
Since the above formula connects the wave function at r,
symmetrically to the function at the nearest-neighbor
points, the matrix representation of T, consists of a tridi-
agonal, symmetric matrix. In our case the wave function
Y(r,,r,,0) vanishes at the ends of the grids [see Eq. (5)],
although the wave packet does not have to be periodic.

For the time propagation, we write the tridiagonal ma-
trix as a direct sum of two block-diagonal matrices TZ
and T2 and split the short-time propagator symmetrical-
ly:

E 0 E
A AR AP ATE (13)
This expression is exact through second order, consistent
with the splitting in Eq. (8). Since the blocks appearing
in the matrices T59 are symmetrical 2 X2 matrices, the
exponentiation can be performed analytically.
One thus obtains

ATE/Zt/}) - _L_(;”ZBE%_]‘*'GE%
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The evaluation of the kinetic part of the short-time prop-
agator with the finite-difference formula as expressed by
the above equations will be called the “finite-
difference—split-operator” (FD-SPO) technique in what
follows. The name is lent from the ‘Fourier
transform—split-operator” technique (FT-SPO) [29].
The latter splits the kinetic and the potential part of the
propagator, and the kinetic energy is evaluated by fast
Fourier transforms. In our case, the kinetic and the po-
tential energy part of the propagator are also split [see
(8)], but an additional splitting of the kinetic energy (13)
is necessary as well.

It is of interest to compare the efficiency of the
FD-SPO and FT-SPO schemes. A Fourier transform in
one dimension requires N log,N operations, where N is
the number of grid points. At each time step, one needs
two transforms, into and out of the momentum represen-
tation. The FD-SPO scheme requires only N operations
for the second derivatives, but 3N operations to evaluate
the three exponential operators in Eq. (13). In principle,
therefore, the finite-difference scheme requires less com-
putational effort as the number of grid points increases.
There is, however, another consideration. The FD-SPO
error in the time propagation (13) scales as A /(Ar)? since
T,~1/(Ar)%.. This means that in order to achieve the
same accuracy with double the number of points, the
time step has to be reduced by a factor of 4. With
Fourier transforms, on the other hand, time-step size and
grid parameters are mostly independent (see the discus-
sion regarding Fig. 1).

B. Angular propagation

In the preceding section, we transformed the angular-
momentum operator Eq. (3) and obtained Eq. (7) in order
to implement the split-operator approximation in the
time development. In short, the split of the time-
development operator requires stand-alone derivatives
with coefficients independent of derivative coordinates.
With the transformed angular-momentum operator (7)
we can then directly introduce a finite-difference approxi-
mation for the second derivative with respect to 6.

One readily finds, however, that the conventional
finite-difference formula Eq. (12) applied as a function of
6 to the transformed wave function ¥ develops severe
inaccuracies near the grid boundaries 6=0 and 7. The
difficulty arises because the second derivative becomes
infinite near the boundaries since 1~ V'sinf there, so that
1? in Eq. (7) becomes difficult to approximate with just
three values of 3. Instead, we note that

1*V'sinf=0 (18)

is an identity that holds for all 6. Therefore, we intro-
duce a modified finite-difference approximation for I2
directly according to

(IPY)=—

(U120, +p 4} (19)

(Ae)2

where a; is a correction which we defined by requiring
that Eq. (19) holds. Thus, substituting ¥, =V sin(k A6)
into (19) and enforcing (18), we have
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FIG. 1. Angular-momentum spectrum: (a) Number of grid
points N =40 and A@=1/41; (b) number of grid points N =70
and AG=m/71.

Vsin[(k +1)A0]+Vsin[(k — 1)AB]
V'sin(kAB) '

Near the middle of the lattice the wave function ¥ and its
derivatives are finite, and we expect our approximation
(19) to reduce to the conventional finite-difference formu-
la Eq. (12) with @, =1. Setting k =1 N in (20) and noting
that LNAO= 1, we see that ay ,~ 1, as desired.

We tested Eq. (19) by computing the time evolution of
a Gaussian wave packet given by

$(0)=Vsinfe (770" (21)

(20

=1
ak‘_?

The angular-momentum spectrum was calculated from
the Fourier transform of the time-correlation function (9)
which was computed up to a time ¢, =65.5. Figure
1(a) shows that with N =40 grid points the spectrum is
fairly well represented up to about L =5. Figure 1(b)
shows that with N =70 grid points convergence improves
up to about L =8.

Finally, we performed the same propagation in com-
plex time. As one readily shows, (1 — ) converges to
the / =0 ground state of /2, namely, V’sin6. Thus, in Fig.
2, we plot the ratio I2y(0,¢,,,)/V sinf as a function of 6,
where the maximum propagation time was ¢, =10.
The closeness of the ratio to unity across the grid, except
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E T R .

0.8
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047
0.2
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FIG. 2. The plot of R(8) vs 6 where R(6)
=6, 1) /P(0)yq Where P(0),y=(1/V2)V'sin6 and t,,,, = 10;
the exact value is R =1.

very near the ends of the grid, reinforces our confidence
in the approximation (19).

IV. APPLICATION TO HELIUM ANDH ™

As a first application of the computational method out-
lined in the preceding section, we propagated a two-
electron helium wave packet in imaginary time A= —dt.
We took as initial function

2,2
WO)=r,r,Vsinfe 1 e (70" (22)

and used 60 grid points for each of the radial coordinates
in the range 0 <r; <6 and 28 points for the angular coor-
dinate in the range 0<0<7. We used dt=3X10"> for
the time-step size. After a total propagation time
tmax = 50, we obtained —2.87 for the ground-state energy
and an overall error of ~1% compared to the accepted
value —2.903 72 [39].

We then propagated in real time with the same initial
function (22). We increased each radial grid, however, to
128 points in the range 0 <r; <20 but reduced the angu-
lar interval to 24 points. The angular-momentum contri-
bution exp{Ab(r,,r,)I?} requires the smallest time step
during the propagation. This stems from the fact that it
contains a factor of A/{(A0)*(Ar)*} in the exponent.
The time-development algorithm is therefore optimized
by using a separate, smaller time step for the angular-
momentum contribution [40].

We note in passing that the algorithm we use is ideal
for parallel computing because the operations in Egs. (14)
and (15) require communication only between nearest-
neighbor elements on the lattice.

Figure 3 shows the calculated spectrum for helium. It
reveals a large peak at —2.87 followed by an energy gap
of ~0.5. The peak clearly belongs to the ground state.
The next higher peak appears at —2.146, just where the
exact spectrum begins to show structure above the
ground state [10,39]. Although we do not resolve the ex-
cited states, we consider these results satisfactory because
of the accurate representation of the ground state and the
energy gap above. The energy resolution of ~0.05 is
fixed by the finite propagation time 7, =131 used.
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FIG. 3. The low-lying energy spectrum of helium computed
from the Fourier transform Eq. (11) of the correlation function
Eqg. (9).

Also, the spatially extended, excited-state wave functions
are not fully represented by the radial grid used here.
Note that the large ground-state peak is due to the large
component of the ground state in the initial wave packet.
The helium computations described above are easily
converted to other two-electron systems. Thus we calcu-
lated the ground state and correlation function of H™
simply by changing Z=2 to Z=1 and doubling the
length of each radial grid (holding, however, the number
of grid points fixed), in order to represent the increased
size of this loosely bound system. With the imaginary-
time propagation, we found the ground-state energy to be
—0.52, as compared to the accepted value of —0.527 75
[39]. Consistent with this result, the energy spectrum
calculated from the correlation function (9) shows a peak
at —0.527. Note that H™ has only a single bound state.

V. CONCLUSION

We have developed a method to propagate S-state
electron-pair wave packets directly on a three-
dimensional polar-coordinate grid. The technique proves
to be stable with respect to time propagation of the full
three-body Coulomb problem. All spatial derivatives

have been calculated by finite differencing. The angular
propagation requires special care, and we introduce a
modified finite-differencing scheme to remove numerical
instabilities near the boundaries of the angular grid. Our
approach eliminates need for basis sets while accurately
representing the Coulomb singularities and therefore
should handle in principle wave packets above and below
the three-body breakup threshold.

As a first application, we have calculated ground-state
energies of helium and H™ with reasonable accuracy.
The results demonstrate the method’s ease of implemen-
tation, even though the low-lying energy spectrums for
these systems can be computed more accurately by other
numerical techniques. Our interests are in the study of
electron-pair wave packets near the Wannier ridge, for
which other methods have shown only limited success.
We now have a tool that can be applied to a wide variety
of problems including strong-field ionization of hydrogen,
electron-hydrogen scattering, and even the effects of im-
purity atoms in quantum dots and wires.
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