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Energy-density relationships for the treatment of ion solvation within density-functional theory
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Useful energy-density relationships, connected with the embedding of singly charged postive or nega-

tive atomic ions in polar solvents, are developed. The insertion of the atomic charged system into the

polarizable host is modeled through successive isoelectronic processes at the nucleus, involving a varying

nuclear charge. In this way, the controversial procedure of selecting appropriate ionic radii, involved in

the calculation of solvation energies through the Born formula, is avoided and replaced by integration in

[0, ~]. The approximate expressions, derived from a variational procedure proposed by Levy [J. Chem.

Phys. 68, 5298 (1978); 70, 1573 (1979)],are reformulated within the nuclear-transition-state model. The
classical reaction field expression for the insertion energy is recovered. The quality of the approxima-
tions made are discussed within the frame of the Kohn-Sham formulation of density-functional theory.

PACS number(s): 31.30.—i, 31.20.—d, 31.70.Dk, 31.20.Sy

INTRODUCTION

The electronic properties of charged atoms and mole-
cules embedded in polar liquids have usually been de-
scribed in terms of the electrostatic potential of the
privileged subsystem, in the field of a polarizable effective
medium. Under the assumption that we may have accu-
rate electron densities at hand, the description of electro-
static potentials becomes highly sensitive to the choice of
ionic radii. For instance, within the Born formulation
[1], despite the apparent simplicity of the mathematical
expression giving the electrostatic solvation energy, there
exists no physically meaningful model to justify the
empirical adjustments of ionic radii [2—4].

A more consistent examination of atomic electrostatic
potentials revealed that it is impossible to have a uniform
criterion to select appropriate ionic radii, to be used
within a Born-like calculation of solvation energies [5,6].
This conclusion is obtained by using some exact relation-
ships between electron density and electrostatic poten-
tials derived in the context of density-functional theory
[7,8]. Starting from Poisson equation, it is quite simple to
show that the electrostatic potentials for anions and cat-
ions display different functional behavior, with respect to
the radial variable r. In the case of singly charged nega-
tive atomic ions, the electrostatic potential V(r) displays
a minimum at a critical finite value r*, 0(r*((x).
Moreover, the r * values were in close agreement with the
crystallographic ionic radii for a series of anions [8].

Estimates of ionic radii for cations may be obtained
from a simple Thomas-Fermi-Dirac model [8,9]. The
use of this simplified representation of an atomic system
indicates that there may be a radial distance r„atwhich
the chemical potential p is equal to the negative of the
electrostatic potential V(r), which is produced at r„bya
nucleus of charge Z and electrons of the ion. Here,
again, the ionic radii obtained by this procedure were in

close agreement with the Pauling ionic radii for a series
of cations [8].

In summary, the Poisson equation and density-
functional theory provide a firm physicochemical ground
to define ionic radii for anions and cations, respectively,
which can be used in the context of Born formulation of
electrostatic solvation free energy. There remains, how-
ever, the problem of being forced to use different
mathematical criteria for the selection of ionic radii in
both cases.

In this work we propose an approximate theory of ion
solvation that uses the electrostatic potential at the nu-
cleus as the basic variable. In this way, anions and cat-
ions may be treated within a unified formalism. This pro-
cedure avoids the problem of selecting ionic radii since all
integrations are performed over [0,0e].

The paper is organized as follows: In Sec. (I) we
present the charging model based on a Noyes-like cycle
and the variational formulation of the insertion energy.
In Sec. II the resulting expression of the electrostatic sol-
vation energy is reformulated within the framework of
the nuclear-transition-state (ZTS) model. In Sec. III the
quality of the approximations made is tested and dis-
cussed in the context of the Kohn-Sham version of
density-functional theory. Our conclusions are presented
in Sec. IV.

I. THE CHARGING MODEL
AND THE VARIATIONAL FORMULATION

OF SOLVATION ENERGY

Our working hypothesis states that it is possible to de-
velop a unified model of solvation for anions and cations,
if the classical Born charging process [1] is replaced by a
Noyes-like charging process [10]. This last model
represents the immersion of a charged atom into a liquid
solution through a three-step hypothetical cycle: (a) In
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the gas phase, an ion is converted into a neutral isoelec-
tronic species by removing or adding a nuclear charge
unity, (b) the resulting neutral system is added to the
liquid solution, and (c) the original charged atomic sys-
tem is restored by the process opposite to that described
in (a). If the nonelectrostatic (cavitation) energy contri-
bution [step (b)] is neglected, the electrostatic solvation
energy reduces to the sum of contributions (a) and (c).
These successive isoelectronic processes may be
represented, for the immersion of a charged monoatomic
ion say, A, by the cycle described in Fig. 1, where X is
an auxiliary isoelectronic neutral system.

According to the cycle shown in Fig. 1, we may write
the insertion energy variation as follows:

bE;„,(Z+1,Z+1)=bE, (Z+1,Z)+bEI, (Z, Z)

bE, =E» E—„=fdr5v (r)p,„(r),
where

(3)

p .(r}=,'[p-»(r)+p~(r)] (4)

is Levy's average electron density [12],defined in terms of
the one-electron densities p»(r) and p„(r),and 5v (r)
represents the difference between the electron-nuclear at-
traction operators of the isoelectronic pair (A+,X) in
vacuum. Since Levy's expression (3) was derived for an
isolated atomic system, we can immediately identify it
with the first term of Eq. (2).

Consider now the systems A + and X in the field of a
polarizable medium, with Hamiltonians

+bE, (Z, Z+1), (1) and

where btE, (Z+1,Z} represents the total-energy variation
for the isoelectronic charge in vacuum, bE&(Z, Z)
represents the total-energy variation associated with the
insertion of the neutral isoelectronic species into the po-
lar liquid, and b,E,(Z, Z+1) denotes the total-energy
variation for the isoelectronic process opposite to step (a),
in the presence of the polarizable medium. This last
quantity not only differs by an opposite sign from
bE, (Z+1,Z) but also contains the polarization effect
due to the electrostatic interaction with the medium.
Moreover, if we are interested only in the electrostatic
contributions to b E;„,(Z+ 1,Z+ 1), the quantity
b,Eb(Z, Z), representing the work required to form the
hole in the polarizable host where the ion will be embed-
ded, may be neglected to give

b E;„,(Z+ 1,Z+ 1)=b E,(Z+ 1,Z )+b E,(Z, Z+ 1)

(2)

in the sense that, hereafter, hE;„,will be considered as an
electrostatic energy variation.

From the above charging model, we may derive an ex-
pression for hE;„, applying the variational theorem.
Consider the isoelectronic pair (A+,X) in vacuum, with
Hamiltonians 8z and 8s, which differ in external poten-
tials v (r). In this particular case [step (a) of Noyes cycle
in Fig. 1],P„andPs have different nuclear charges.

For such isoelectronic changes in atoms, Levy [11,12]
has proposed the approximate relationship

and

E» ((tit„~A'„+5v(r)+b,A""'~tIt„)

E„((%~B» 5v'(r) b8'"—'~%») . —

(10)

If we neglect, in accordance with Eq. (2), the interac-
tion of the neutral species X with the polarizable environ-
ment (i.e., ( 0'» ~bP'"'~'It» ) =0), we obtain the following
approximate relationships:

E„=E»—f dr5v (r)p„(r)—(tII~ ~b,8'"'~%z ) (12)

where 8„and8» are the Hamiltonians of the isoelec-
tronic pair (A+,X) in vacuum and Pz', 8»' the corre-
sponding interaction Hamiltonians representing the elec-
trostatic interaction with the golarizable environment.
Using the fact that P„and8» differ in external poten-
tials [i.e., b,P =5v (r)], subtraction of Eqs. (5) and (6)
yields

=8„+5v(r)+b,P'"'

and

B„=P»—5v (r) —bP'"',

with

bQint Pint Pint
X A

If 4» and %„areeigenstates of A'» and 8„,respec-
tively, then by the variational theorem, we obtain from
Eqs. (7) and (8)

{z+j.)
+

A ($)
E

{z)

X(5)

and

E»=E„+f dr5v (r)p»(r) . (13)

E

't/

+
A(t) &

{2+1)
X (I)

{z}

FIG. 1. Hypothetical thermodynamic cycle modeling the
Noyes charging process, to achieve the insertion of an arbitrary
singly positive charged atom from gas to solution phase.

An additional comment with regard to Eqs. (12) and
(13) is worth making. Equations (12}and (13}are not ex-
act because, in addition to the neglect of the interaction
contribution of the neutral X system with the polarizable
environment, there are the variational errors 5„and5»
associated with the expectation values E~ and Ez, re-
spectively. Since we are interested in the energy
difference AE=E~ —Ez and because the errors 6„and
5X are always positive, it follows that the errors in the en-
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ergy difFerence will in general compensate.
Addition of Eqs. (12) and (13) yields

{e„~bu'"'~'P„)= —fdr 5v {r)5p(r),

where

(14)

5V(r) =[V~(r)—V»(r)1.

According to the Hohenberg-Kohn theorem, 5p(r)
given in Eq. (15}never vanishes because p„(r)and p»(r)
are determined by difi'erent external potentials [13].
Moreover, 5p(r) represents the electronic polarization
contribution due to the isoelectronic change under the
influence of the external electrostatic field.

On the other hand, subtraction of Eqs. (12) and (13)
yields

bE(Z&, Z»)= Jt Jl dr'dZ,
A r f—p

Application of the mean value theorem yields

(19)

We start by reiterating that the insertion of an atomic
ion into a polar liquid is being described in terms of suc-

cessive isoelectronic processes that take place in vacuum

and in the presence of a polarizable environment. Within
this model, the energy changes are written as a function
of a varying nuclear charge. It seems then natural to ex-

press the energy associated with the isoelectronic changes
using the Hellmann-Feynman (HF) theorem. Consider,
for instance, the energy change from Zz to Zz. Using
the integrated form of the HF theorem, we obtain [16]

[E„E]=——f dr5v (r)p,„(r}——,'(%„~bP'"'~%'„),

(16)
=[Z„—Z»]VO, (20)

where p,„(r)is an average electron density equivalent to
that introduced in Eq. (4), but this time defined in terms
of the one-electron densities of the isoelectronic pair
(A +,X), in the presence of an external electrostatic field.

Substitution of Eq. (14) into Eq. (16) yields

[E„E»]=bE—,(Z,Z+1}
= —fdr 5v (r)p,„(r)+,' f dr 5—v (r)5p(r) .

(17)

Finally, combination of Eqs. (2}, (3), and (17) yields the
desired general expression. Namely,

bE;„,(Z+1,Z+1)=f dr5v (r)[p,„(r)—p,„(r)]
+—,

' r v r pr . 18

II. REACTION FIELD FORMULATION OF 4,E;„
WITHIN THE NUCLEAR-TRANSITION-STATE

MODEL

It is interesting to note that Eq. (18) may be easily in-

terpreted within the framework of reaction field theory
[14]. For instance, the second term of Eq. (18}represents
the electronic polarization contribution that accounts for
the solute screening cloud induced by the external (reac-
tion) field: It may be interpreted as the response of elec-
trons moving under the influence of an effective potential
including the reaction field effect. A completely
equivalent interpretation has been established by
Norskov and Lang [15]with regard to the second term of
Eq. (18), from a second-order perturbation-theory ap-
proach, in the study of atomic impurities in solids. To
reinforce the above argument, we must show that the first
term of Eq. (18) corresponds to the ion-solvent electro-
static interaction energy.

We shall develop here a simple methodology for the
computation of EE;„„in terms of the electrostatic poten-
tial at nucleus Vo. Within this framework, we will show
that the first term of Eq. (18) represents, in the context of
reaction field theory, the ion-solvent interaction energy.

where p(r, z') is the electron density for some nuclear

charge Z' such that Z» &Z' &Z& and

, p(r', Z')
/r —r'/, 0

(21)

p(r, Z') =p,„(r), (22)

the use of the definition given in Eq. (4) together with
Eqs. (18), (20), and (21}allows us to write the first term of
Eq. (18) in terms of Vo as follows:

r v'r pP„r —p,„r= Zx —ZA Vo —Vo

=bE;„,[5p(r) ], (23)

which is the reaction field expression of the ion-solvent
electrostatic interaction energy [14],expressed in terms of
Vp and Vp, the electrostatic potential at the nucleus of a
pseudoatom having a fractional nuclear charge, in vacu-
um and in the presence of the external electrostatic field
induced in the solvent. As expected, the interaction ener-

gy is a functional of the induced electron density 5p(r).
We sha11 now show that the insertion energy may be

cast into a form completely equivalent to the Born for-
mula. This may be easily done by using the well-known
relationship between the electrostatic ion-solvent interac-
tion energy and the electronic polarization energy
[14,19]. Namely,

bEr '[5p(r)]= —
—,'bE;„,[5p(r)] . (24)

is the electrostatic potential at a nucleus with an inter-
mediate charge between Z„and Zx. This method for
calculating bE(Z„,Z»} is called the ZTS model [17].
Within this model, the energy variation associated with
the work of removing a nuclear charge unity in an
isoelectronic process may be directly obtained for atoms,
from a self-consistent-field (SCF) wave function comput-
ed for the atomic charge Z' =

—,'(Z„+Z») [18].
Within this framework, it is possible to show that the

first term of Eq. (18} represents the electrostatic ion-
solvent interaction energy, in terms of the ZTS potential
at nucleus Vo. Under the approximation
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From Eqs. (23) and (24) we get

—,
' J «5v'(r)5p(r) = —

—,
' [Z» —ZA ][Vo —

)I 0 ] (25)

Finally, combination of Eqs. (18), (23), (24), and (25)
yields the desired final result. Namely,

E[p(r)]=E[p (r)]+fdrp(r)v, „,(r) .

The E[po(r)] functional is minimized by the ground-
state density of the isolated system p (r). The E[p(r)]
functional is minimized by a new density p(r) which
diff'ers from p (r) by an amount 5p(r):

bE;„,(Z+1,Z+ I)=—,'[Z» —Zq ][Vo —Vo ] .

If we define the ZTS reaction field potential

4„'[5p(r) ]—= [ Vo —V' ],

(26)

(27)

p(r)=p (r)+5p(r) . (30)

Following the KS prescription, the density p(r) may be
obtained from a set of electronic orbitals P;(r) as

then the agreement of 4E;„,with the classical reaction
field (RF) expression of Born solvation energy is com-
plete. Namely,

bE;„,(Z+ I,Z+ 1)=—,'EZ@x [5p(r) ] . (28)

In summary, a general expression giving the solvation
energy of singly positive or negative charged atomic ions
has been presented. The formulation introduces the elec-
trostatic potential at the nucleus of a nuclear-transition-
state system having a fractional nuclear charge Z*. Ex-
pression (28), which gives the solvation energy, is com-
pletely equivalent to the reaction field version of the Born
formula. However, in the present approach, hE;„,ap-
pears completely independent of the ionic radii. This as-
pect of the model is really important and very promising,
since it permits the calculation of the insertion energy
without making any reference to the partition of the
space into a quantum region containing the solute, and a
classical region representing the solvent. The absence of
boundaries in the representation of the solute-solvent sys-
tem leads directly to integration over [0,~], thereby
avoiding the introduction of empirical ionic radii in the
calculation of solvation energies. In other words, the po-
larization of the environment appears naturally into the
formalism, as a response to the coupling between the
solute electron density and the external electrostatic per-
turbation.

III. ZTS ELECTRON DENSITY
IN THE PRESENCE OF AN EXTERNAL FIELD

The basic assumption leading to Eq. (28) is represented
by approximation (22), which relates Levy's average elec-
tron density with the corresponding ZTS electron densi-
ty. It is important to emphasize that the average electron
density approximates the transition density in the in-
tegral HF theorem, which is an exact expression for
isoelectronic changes in vacuum [12]. However, it is not
obvious that such an approximation still holds for ions in
the presence of a perturbing external electrostatic field.
In order to test the quality of approximation (22) for
isoelectronic changes in atomic ions coupled to an exter-
nal field, it is necessary to determine the corresponding
electron density. The Kohn-Sham (KS) formulation of
density-functional theory [20] appears to be a suitable
procedure to achieve this objective.

When an atomic ion is under the infiuence of an addi-
tional external spin-independent potential v,„,(r), pro-
duced, for instance, by a polarizable environment, the
effective energy of the atomic ion becomes

(31)

where the summation is done over all the bound states
having monoelectronic energies e; lower than the chemi-
cal potential p.

The P, (r} orbitals are solutions of the eigenvalue equa-
tion (in atomic units):

[ ,'V, +v—,s—(r)]P,(r)=e, P;(r), (32)

(33)

The third term of Eq. (33) is the electronic Hartree po-
tential, whereas the fourth one represents the exchange-
correlation potential. This last term is usually obtained
from a model exchange-correlation energy functional

e„,[p]. To a first-order approximation, the effective KS
potential compatible with the electron density p(r) given
in Eq. (30) may be written as

v ff ( r ) =v, tr( r ) +5v, s'( r ) (34)

where v, tr(r) is the sum of the external potential v(r), the
electronic Hartree potential, and the exchange-
correlation potential. The quantity 5v, tt(r) may be ob-
tained from a RF model, and it will depend, to a first-
order approximation, on the induced electron density
5p(r)=p(r) —

p (r). If a linear-response model [21] is as-
sumed for simplicity, the reaction-field-induced electron
density becomes

5p(r)=[a ' —l]p (r) . (35)

This simplified model of electronic polarization may be
used within a KS-like formalism to determine the elec-
tron density p(r). For instance, if we place the model
within the Hartree-Fock-Slater X approximation [22],
the exchange-correlation potential reduces to

(36)

with

3
v» (r)= ——', a —p(r)

1/3

=C(a)[p(r)]' ' . (37}

Combination of Eqs. (21) and (33)—(37) yields

5v,s(r) =@„*(r)+5v»(r), (38)

where the effective potential v,s(r) is also a functional of
the density and is given by
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with

@,„(r)=[1—e 'l~o
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theory. The most relevant aspects of the proposed model
are the following.

(i) The formalism uses the electrostatic potential at the
nucleus as the basic property for the description of the
ion-solvent interactions. This quantity is in general de-
scribed more accurately than total energies for atoms. As
a result, anions and cations may be treated within a
unified formalism and the problem of introducing arbi-
trary empirical ionic radii is avoided and replaced by in-
tegration in [O, ao].

(ii) The present model may be easily implemented
within a density-functional theory formulation for the
self-consistent treatment of the ion-solvent interactions.
Although our model was developed within a simplified
scheme, where correlation effects are not included, the
method is not dependent upon this approximation and
may be extended to include correlation effects upon sol-
vation.

On the other hand, some limitations are present in the
proposed formalism. For instance, all the solute polariza-
tion is assumed to be electronic in nature. Orientational
(temperature-dependent) effects are not introduced in the
present formulation of solvation effects. However, this
limitation allowed us to adopt a simple linear-response
model for the representation of the induced electronic po-
larization through the polarization of an electron gas un-
der the effect of an electrostatic external field. This in-
duced electron density is to be interpreted as the response
of electrons moving independently under the inhuence of
an effective potential, including the reaction field effect.
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